
Group-aware Service Discovery using Effect
Ontology for Conflict Resolution in Ubiquitous

Environment

 Gwang-hun Kim, Do-hyun Kim, XuanTung Hoang, Young-hee Lee
Information and Communications University

{nuly17, t12t12t12, tung_hx, yhlee}@icu.ac.kr

 Abstract  In this paper, we propose a group-aware service

discovery architecture resolving conflict problem in ubiquitous

computing. In the past, researches on resolving conflict have

used service’s QoS, user’s preference, and user’s intention.

However, previous researches have the problem that it applies

resolution scheme to non-conflicting situation because it does not

consider space concept. Therefore, we propose a group-aware

service discovery architecture resolving conflict problem

considering interaction space that is affecting scope of task to

increase user’s satisfaction. In this architecture, service ontology

model including interaction space as well as QoS, preference, and

intention expresses service information and task information.

With service ontology model, the architecture detects and

resolves conflict situation. And discovery scheme that is

proposed resolution method finds non-conflict service with

interaction space concept. Simulation result shows that proposed

architecture provides higher user’s satisfaction than previous

research.

 Keywords  conflict resolution, group awareness, semantic

service discovery, ubiquitous computing

1. Introduction

Although new computing paradigm called ubiquitous

computing [1] was introduced in 1991, we are still on initial

stage of ubiquitous environment. In ubiquitous environment,

computer is harmonized with our daily life and it makes our

daily life convenient. To realize ubiquitous computing

paradigm, one of the most important and challenging issue is

how to provide relevant information and / or service to the user

and we call it context awareness [2].

Context awareness is the key feature to make the paradigm

successful. To make context awareness system, we collect

physical information with heterogeneous physical sensor and

infer high level. We can use the context to adapt application or

discover the most appropriate service in such environment. In

real world, users usually interact with others when they

perform their task. Thus, we need to not only consider the

context of individual user but also put them together into

group context, a set of context of individual users [3].

During the interaction, user‟s intention may conflict. For

example, Alice turned the light off to sleep and Bob wants to

turn the light on while he is entering. In this situation, their

intentions make conflict. System should support a conflict

resolution ability to make human‟s life convenient.

In conflict resolution, it is important to maximize the

satisfaction of the involved users as much as possible [5].

Many researches try to address conflict problem. CARISMA

[4] selects one of resolution choices that maximize user‟s

satisfaction based on service‟s QoS and user‟s preference.

However, it has limitation that targets cooperative application

having same intention. Park et al. [5] considers not only

service‟s QoS and user‟s preference but also user‟s intention.

It detects conflict with action semantic ontology having

intention information and finds a negotiation value that can

maximize user‟s satisfaction. It can target different

applications because it considers user‟s intention.

However, Park et al. has possibility to apply conflict

resolution in spite of no conflict situation that can be judged

based on intuition. In the example of above, if we use main

light that affects entire bedroom space, it is conflict situation

and system should resolve conflict problem. However, if we

use stand light that affects only entering person and stand light

does not affect sleeping person, it is not conflict situation and

system does not need to react. Park et al. applies conflict

resolution in case of both of main light and stand light.

Therefore, we need conflict resolution model similar with

intuition. To realize conflict resolution system, we need

„interaction space‟ concept that is the affected range of

service‟s task. If we use interaction space concept, we can

discover the service that affects to wanted user and does not

affect to non-wanted user. Ultimately, the consideration of

interaction space concept increases user‟s satisfaction. To

make this system, we construct a service ontology model

considering service‟s QoS, user‟s intention, user‟s preference,

and service‟s interaction space. System detects conflict

situation based on service ontology model. And system uses

„service discovery‟, that is the component of ubiquitous

middleware, to discover non-conflict service. The simulation

results show that the proposed approach provides higher

satisfaction than previous work. It is optimized at the situation

when there are many services having various interaction

space.

The rest of the paper is organized as follows. In Chapter 2,

we discuss our approach with related work. Chapter 3 covers

design considerations and assumption. Chapter 4 describes

how to design our proposed approach in detail. Chapter 5

presents implementation and evaluates our research. Finally

we describe our conclusions and suggest future work in

Chapter 6.

ISBN 978-89-5519-136-3 -1811- Feb. 17-20, 2008 ICACT 2008

2. Related work

In this chapter, we first introduce research about conflict

resolution to understand how they address conflict problem

and show what weak point is. And we make comparison table

among them and our paper. Then, we introduce service

discovery research that is a solution of this paper.

CARISMA is context-aware middleware system. It

addresses conflict problem that occurs when different policies

can be used in the same context. There are two types of

conflicts in CARISMA such as intra-profile conflict and

inter-profile conflict. Intra-profile conflict occurs on an

application for a single user and inter-profile conflict occurs

among applications for multiple users. It proposes sealed-bid

auction mechanism that collects bid from conflicted

applications and selects policy that maximizes social welfare

based on service‟s QoS and user‟s preference.

Park et al. addresses a conflict problem between different

context-aware applications. It considers not only service‟s

QoS and user‟s preference for conflict resolution but also

user‟s intention for different applications. It detects conflict if

the effects of each user‟s action are contradictory. The action

semantic ontology has information to infer the contradictory

effect. It uses cost minimization method to resolve conflict

problem. It considers user‟s non-satisfaction as a cost. It tries

to find the value that can minimize user‟s non-satisfaction. It

means that the negotiation value can maximize user‟s

satisfaction.

Table 1 summarizes the consideration of existing conflict

resolution researches such as CARISMA, Park et al., and this

paper. CARISMA considers service‟s QoS and user‟s

preference to resolve policy conflict among applications.

However, it targets to same kinds of applications. Park et al.

considers service‟s QoS, user‟s preference and user‟s intention.

Thus, it can be used for various kinds of application because it

considers user‟s intention. However, in real world, service has

interaction space that is the affected range of service‟s task. If

we consider interaction space, system can discover the service

that affects the wanted user and does not affect the unwanted

user. Consequently, we can maximize user‟s satisfaction with

interaction space concept.

Service Discovery is an important component in ubiquitous

middleware. It suggests the most appropriate service without

user‟s distraction. It has two issues such as context-awareness

and semantic search ability.

Context-aware Service discovery uses context information

to discover service for the user. For example, when user wants

to use printer service, system suggests the printer that is the

nearest one from user. In that situation, system uses location as

a context. System can use other contexts such as load of printer,

QoS, and queue of printer as well as location context. To

realize context-aware service discovery, discovery server

should get context information of service provider and service

requester that can help system to discover service.

Semantic Service discovery can discover service without

exact information such as service‟s name and type. Early

works in service discovery such as UPnP [6], SLP [7], and

Salutation [8] try to find/match service with user queries based

on exact information such as service‟s name and type.

However, these kinds of simple syntactic matching for

discovery may lose its flexibility owing to strict requirement

on common agreement of all service‟s syntactic. Moreover,

syntactic matching decreases the possibility to discover to

most appropriate service because it just depends on described

syntactic information, not service‟ semantics. With these

limitations, there has been much work to discover services

based on the semantics of services. Similar to semantic web

[9], semantic service discovery schemes [10,11] usually

deploy ontology [12] as their common knowledge repository

storing service information.

In this paper, we use service discovery as a solution for

conflict resolution. Service discovery of this work has

context-aware feature because it considers location context.

And service discovery of this work also has semantic search

feature because it uses ontology to infer relevant service

without exact service‟s information.

3. Design considerations and Assumption

This chapter provides some consideration points in design

of proposed conflict resolution system. And this chapter shows

some assumptions.
Firstly, we consider overall conflict addressing architecture.

Discovery scheme that is proposed conflict resolution scheme

runs in the situation that has non-conflict service. Unless there

is non-conflict service, Discovery scheme does not work and

we should run Negotiation scheme that is previous work‟s

scheme. Two schemes are complementary relation. Therefore,

we should consider conflict addressing architecture that two

schemes harmonize on.

Secondly, we consider interaction space model that is newly

added concept. We want to model interaction space concept to

make conflict resolution model similar with intuition.

Interaction space‟s design should increase user‟s satisfaction

and be similar with human‟s intuition. We make service

ontology that has not only interaction space, but also other

considerations such as QoS, preference, and intention.

Finally, we consider that how we detect conflict situation

and how we resolve conflict problem. Conflict detection runs

with service ontology model. We consider how proposed

Discovery scheme discovers non-conflict service with

interaction space concept.

The proposed approach has these assumptions as following.

- Two persons are related with conflict

- Conflict is contradictory situation of two persons‟ effect

- Service‟s QoS can be quantified

- System needs location system that has hierarchy ontology.

Table 1. Comparison of Conflict Resolution Research

System QoS Preference Intention Interaction Space

CARISMA o o x x

Park et al. o o o x

Proposed

scheme
o o o o

ISBN 978-89-5519-136-3 -1812- Feb. 17-20, 2008 ICACT 2008

4. Proposed approach

Our proposed approach consists of two parts: conflict

detection, conflict resolution. System detects conflict with

user‟s intention in service ontology model. And system

resolves conflict with two schemes such as Discovery scheme

and Negotiation scheme. Discovery scheme discovers the

service that does not make conflict with intention, preference,

and interaction space. Negotiation scheme calculates

negotiated value with intention and preference. Firstly, system

tries Discovery scheme. Unless there is non-conflict service,

system tries Negotiation scheme.

4.1 Overall Architecture

APPLICATION

LAYER

MIDDLEWARE

LAYER

SERVICE

LEGEND:
CONFLICT

MANAGER

DISCOVERY

MANAGER

ACTION

HISTORY

REPOSITORY

SERVICE

ONTOLOGY

REPOSITORY

CONTEXT

MANAGER
RULE

REPOSITORY

NEGOTIATION

RESOLVER

RESOLVER

SELECTER

CONFLICT

DETECTOR

DISCOVERY

RESOLVER

APPLICATION

SERVICE

PROFILE

MANAGER

SEMANTIC

MATCHMAKER

CONFLICT

RESOLVER

QUERY

HANDLER

1 23

4

5

Figure 1. Overall structure of the conflict resolution

architecture

The overall structure of the architecture is presented in

Figure 1. There are mainly two parts in this system such as

application layer and middleware layer. Application layer has

application and service. And middleware layer has

middleware components to support ubiquitous application

such as conflict manager, context manger, discovery manager

and so on. Conflict manager manages conflict situation and

discovery manager finds appropriate service for user and

context manager manages and generates context. We explain

architecture‟s work step as follows.

1. Context Manager infers person‟s activity context with

collecting physical information and notifies activity

context to application.

2. Application finds matched rule in Rule Repository and

retrieves task information if it exists.

3. Application requests relevant service instance with task

information to Discovery Manager.

A. Conflict Manager intercepts the request to check

conflict existence.

B. If conflict is detected, Conflict Manager executes

resolution scheme.

i. Firstly, it executes Discovery scheme.

ii. Unless there is non-conflict service, it

executes Negotiation scheme.

4. Application receives service instance (essential) and

negotiation value (optional).

5. Application interacts with the service.

4.2 Service Ontology Modeling

We propose service ontology model for conflict detection

and conflict resolution. This ontology contains service‟s QoS,

user‟ intention, user‟s preference, and service‟s interaction

space. User‟s intention can be used for conflict detection.

User‟s preference, service‟s QoS, and service‟s interaction

space can be used for conflict resolution. We extend Woohyun

et al. [13], the ontology for context-aware and semantic

service discovery, to address conflict problem. Thus, if we use

proposed service ontology model, we can use two features

such as conflict resolution and context-aware semantic service

discovery. Newly added features are Preferredlevel and

usedcount in preference ontology, haspolarity in effect

ontology, InteractionSpace.

Figure 2. Service Ontology Model

Figure 2 shows an upper-ontology designed by OWL [14].

Ovals represents classes, black arrows represents

characterized properties, while arrows represent inverse

properties, and dotted lines represent subsumption relations

among some classes. On the upper ontology, we do not show

all of the properties among the classes and all of the

characteristics of each property such as function, transitive,

inverse, and symmetric. For example, input node can get

various types of node such as account number of bank

application and departure time of train application according

to target environment. We just present a design principle to

make use of this ontology model in various environments.

Activity Ontology has information about user‟s current

activity. It can present user‟s context. Resource Ontology has

information about service that supports its function. It contains

service model. We defined „Task‟ as a service granularity [15].

Task has IOPE (Input, Output, Precondition, Effect) [9] to

register and discover service semantically. Preference

Ontology expresses user‟s preference about service. It has

performedWith

performedInperformedFor Activity

Human

Resource

Location

(a) Activity Ontology

exerciseEffect

locatedIn
familiarWith

Human

ResourceLocation

(c) Preference Ontology

requireDevicerequireSource

hasInput

hasOutput
hasPrecondition

hasEffect
achieveTask

Resource

Source Device

Service

Task EffectInput

PreconditionOutput

(b) Resource Ontology

hasIntensity

hasImpact

hasPattern Human
Perceivable

Effect

Effect

Behavior
Pattern

Impact
- Volume
- Brightness
- Temperature
- Vibration
- FontSize
- Resolution

- Appear
- FadeIn
- Flash
- RiseUp
- Ascend

Start
Pattern

Run
Pattern

Stop
Pattern

Intensity

- Any(0-100)
- TooWeak(0-20)
- Weak(21-40)
- Average(41-70)
- Strong(71-90)
- TooStrong(91-100)

- Disappear
- FadeOut
- Darken
- SinkDown
- Descend

- Keep
- Highlight
- Change
- Random
- Flow
- ZoomIn
- ZoomOut

Human
Unperceivable

Effect

(d) Effect Ontology

subClassOf

Property

SuperClass SubClass

General Notation

* current version 0.4

Interaction
Space

hasInteractionSpace

Physical
Space

Logical
Space

- Public
- Social
- Private

- LivingRoom
- BedRoom
- BedRoom_Bed
- BedRoom_Door
- BedRoom_Table

XSD:Integer

usedCount

hasPhysicalSpace

hasLogicalSpace

locatedIn

XSD:Integer

preferredLevel

XSD:Integer

- +1
- 0
- -1

hasPolarity

ISBN 978-89-5519-136-3 -1813- Feb. 17-20, 2008 ICACT 2008

PerferredLevel that can express preferred level of impact and

UsedCount expresses service‟s preference.

Effect Ontology is major ontology for conflict resolution. It

has three sub classes such as InteractionSpace, Impact, and

BehaviorPattern. InteractionSpace is defined as the affected

range of service‟s task. We use two concepts to express

interaction space such as physical space and logical space.

Physical Space is geographical range of that service`s action

affects. It uses location hierarchy ontology for semantic

expression. For example, location ontology has bedroom class

and there is sub-class such as bedroom‟s bed and bedroom‟s

door in bedroom class. Logical Space is human activity range

that service‟s action affects. We inspire logical space concept

from [16]. Logical space expresses not geographical space, but

human relation space. It consists of private that is for only one

person, social that is for group, and public that allows freely

accessible to people. For example, PDA and headphone is

private, shared screen is social, and big screen in Seoul train

station is public. Impact affected target‟s context. It has

intensity that can express level of service‟s impact such as

brightness, temperature, sound. BehaviorPattern is changing

pattern of target‟s context. It has polarity that can simply

express BehaviorPattern. It is used for conflict detection.

4.3 Conflict Detection

Conflict Manager intercepts task request from Application

and check if conflict exists. To detect conflict, Conflict

Manager gets a list of previous tasks from Task History

Repository and check whether below condition is matched or

not.

If (A ∩ B), then they are conflict

A: Impact is same

B: Behavior Pattern’s polarity is -1 and +1

If task request and one of previous tasks is matched with

above condition, Conflict Manager determines that it is

conflict situation. We assume that conflict is contradictory

situation of two persons‟ effect. We call the previous task to

conflict task. We can show example of detecting conflict

situation with Figure 3. In Figure 3, if previous task is „turn the

light off‟, its impact is brightness and behavior pattern‟s

polarity is -1. And if request task is „turn the light on‟, its

impact is also brightness and behavior pattern‟s polarity is +1.

Thus, it is conflict situation because impact is same and

behavior pattern‟s polarity is contradictory.

Figure 3. Example of detecting conflict situation

4.4 Conflict Resolution

If Conflict Manager detects conflict situation, it tries to

resolve conflict problem. This architecture has two resolution

schemes such as Discovery scheme and Negotiation scheme.

Discovery scheme is proposed scheme that finds non-conflict

service with interaction space and Negotiation scheme is

previous scheme proposed by Park et al. Firstly, system runs

Discovery scheme. Unless there is non-conflict service,

system executes Negotiation scheme. The reason why

executes discovery scheme first is that discovery scheme can

increase user‟s satisfaction more than negotiation scheme.

Figure 4. Discovery scheme’s flow

Figure 4 shows Discovery scheme‟s flow. Discovery

scheme finds the service that does not make conflict problem

with interaction space. There are two steps in discovery

scheme. In first step, system finds matched services with

request task. Service should register itself before executing

discovery scheme. And in step 2, with candidate services that

system finds in step 1, system finds non-conflict services with

conflict task in terms of interaction space. Originally, the

service matched with request task makes conflict with conflict

task. However, we discover non-overlapped service

considering interaction space. We determine whether

interaction space overlapped or not with below rule.

If (A ∩ B), then their interaction space is overlapped

A: Physical space is overlapped

B: Service’s logical space is public or social

If user‟s interaction space where user can sense

environmental change is not overlapped with service‟s

interaction space where service affects to others, we determine

that it is not conflict. And although user‟s sensing area is

overlapped with service‟s affecting range, we also determine

that it is not conflict if service‟s logical space is private. For

example, in bedroom, a user is sleeping on the bed. If turning

the main light on, it is conflict because light service‟s physical

space is overlapped and light service‟s logical space is public.

However, if turning the stand light on, it is not conflict because

stand light service‟s physical space is not overlapped. We

made a feasible scenario to show how discovery scheme works

in chapter 5.

If Conflict Manager failed to discover non-conflict service,

it executes Negotiation scheme. It calculates negotiated value

that can minimize user‟s dissatisfaction with QoS and

preference. We skip detail explanation of Negotiation scheme.

hasImpact

hasPattern Effect

Behavior
Pattern

Impact

- Brightness
- Increase

Interaction
Space

hasInteractionSpace

Physical
Space

- BedRoom

hasPhysicalSpace

- +1

hasPolarity

Request task

hasImpact

hasPattern Effect

Behavior
Pattern

Impact

- Brightness
- Decrease

Interaction
Space

hasInteractionSpace

Physical
Space

- BedRoom
- -> Bed

hasPhysicalSpace

- -1

hasPolarity

Conflict task

Polarities are contradictory

Impact is same

Non-conflict
Services

<FUNCTION>

FIND MATCHED

SERVICE

<FUNCTION>

FILTER OUT WITH

CONFLICT TASK

SERVICE

ONTOLOGY

REPOSITORY

REQUEST TASK 패키지1

패키지1

SERVICE

SERVICE

Conflictful
Services

CONFLICT TASK

ISBN 978-89-5519-136-3 -1814- Feb. 17-20, 2008 ICACT 2008

5. Evaluation

5.1 Scenario

To illustrate how this work address conflict situation, we now

describe a feasible scenario.

 Bob arrives at home after finishing his work and sits down

at sofa. System plays the music because system knows that he

always play the music. But Bob commands stop the music to

take a rest because of hard work in his office. Sometime after,

Alice who is Bob’s wife enters the home. Alice has listened to

the music that is song by her favorite singer. Alice commands

play the music to listen to the music continually. Then system

detects conflict between Bob’s task and Alice’s task, it

suggests a portable music service to Alice that can avoid

conflict. Thus, Bob does not affect and Alice can listens to the

music with a portable music service.

Figure 5. Scenario – conflict situation between user who wants

to listen to music and user who does not listen to music in living

room

In Figure 5 scenario, Bob‟s task and Alice‟s task make

conflict problem because their impact (sound) is same and

polarity is contradictory (-1 and +1). Thus, system detects

conflict situation and it executes discovery scheme. System

found a portable music service as a result of discovery scheme.

In step 1 of discovery scheme, a portable music service is

matched with Alice‟s task because impact (sound) is same and

behavior pattern (play) is same and physical space (sofa in

living room) is overlapped. And in step 2 of discovery scheme,

system determines that a portable music service does not affect

to Bob because its logical space is private even if its physical

space is overlapped. Thus, with this process, system addresses

conflict problem.

5.2 Simulation

We have built a simulator to validate the proposed approach.

In this simulation, we compare difference between previous

work and proposed approach and we show that our approach

has better performance in terms of user‟s satisfaction.

We use total cost of two users as dissatisfaction degree. If

cost is high, user‟s satisfaction is low. We use Table 2‟s

equation. We modify Park et al.‟s equation to make Table 2. In

case of discovery scheme, it uses part of cost function because

it does not affect to the user that does not want to use service.

TC - total cost of two users

CU A
Pr - user A‟s preference

CU B
Pr - user B‟s preference

 - user A‟s service QoS

 - user B‟s service QoS

r - resolution QoS

Figure 6. cost according to service’s QoS with high preference

of ‘turn on’ task

Parameter Alice Bob

Intention TurnOff(0) TurnOn(10)

Preference VeryHigh(5) VeryLow(1)

Table 3. Setting table of Scenario 1

Figure 6 shows the cost according to service‟s QoS with high

preference of „turn on task‟. Its setting uses Table 3. In Figure

6, x-axis shows servcie‟s QoS and Y-axis is a cost

(unsatisfaction value) related calculated with above equation

for negotiation scheme‟s cost and discovery scheme‟s cost

respectively.

Negotiation value is 1.66 values if we calculate it with Table

3‟s setting. Equation is shown in [5]. In Table 3‟s setting,

TurnOffTask has more preference than TurnOnTask. Thus,

negotiation value is near to TurnOffTask. In negotiation

scheme‟s graph, if service‟s QoS is bigger, cost is smaller and

it becomes flat from 1.66 QoS. It is because r value (resolution

value) uses negotiation value if service‟s QoS is bigger than

negotiation value. If we use QoS value as r value although

service‟s QoS is bigger than negotiation value, negotiation

scheme‟s cost will increase from 1.66 QoS. Figure 6 shows big

cost difference between negotiation scheme and discovery

scheme.

On the other hand, discovery scheme graph decreases

constantly from QoS 0 and cost will be 0 at QoS 10. It is

because discover scheme provides service to wanted user and

it does not affect to unwanted user. And we can see that cost

 Negotiation scheme Discovery scheme

r factor

if QoS > negotiataion point

r = negotiation point

else

r = QoS

r = QoS

Cost

function

22)(Pr)(Pr   rrC CUCUT BA

 2)(Pr  rC CUT A

Table 2. Cost function table for simulation

Bob
Alice

Conflict Task – ‘Stop the music’
Impact = sound

Impact’s intensity = 0

Polarity = -1
Preference = VeryHigh(5)
Physical space = sofa in livingroom

Request Task – ‘Start the music’
Impact = sound

Impact’s intensity = 10

Polarity = +1
Preference = Low(2)
Behavior Pattern = play
Physical space = sofa in livingroom

conflict

not affect af
fe

ct

Service – ‘I Pod’
Impact = sound

Impact’s intensity = 6

Behavior Pattern = play
Physical space = sofa in livingroom
Logical space = private

A portable

music

service

ISBN 978-89-5519-136-3 -1815- Feb. 17-20, 2008 ICACT 2008

difference between negotiation scheme and discovery scheme

increases when QoS increases. It is because negotiation

scheme affects both of users and discovery scheme affects just

one user.

It is because small negotiation value (1.66) makes fast flat

pattern. Figure 6 shows the best performance of discovery

scheme.

Figure 7. cost according to service’s QoS with high preference

of ‘turn off’ task

Parameter Alice Bob

Intention TurnOff(0) TurnOn(10)

Preference Low(2) VeryHigh(5)

Table 4. Setting table of Scenario 2

Figure 7 shows the cost according to service‟s QoS with

normal preference of „turn on task‟. Its setting uses Table 4.

Negotiation value is 8.33 values if we calculate it with Table

4‟s setting. In Table 4‟s setting, TurnOnTask has more

preference than TurnOffTask. Thus, negotiation value is near

to TurnOnTask. In negotiation scheme‟s graph, if service‟s

QoS is bigger, cost is smaller and it becomes flat from 8.33

QoS. It is because r value (resolution value) uses negotiation

value if servcie‟s QoS is bigger than negotiation value. If we

use QoS value as r value although service‟s QoS is bigger than

negotiation value, negotiation scheme‟s cost will increase

from 8.33 QoS. On the other hand, discovery scheme graph

decreases constantly. Figure 7 shows the worst performance of

discovery scheme. However, discovery scheme‟s performance

is better than negotiation scheme‟s performance.

6. Conclusion and Future work

In this paper, we proposed conflict addressing architecture

considering interaction space. We considered not only

service‟s QoS, user‟s intention, user‟s preference, but also

service‟s interaction space. Service‟s interaction space

expresses the affected range of service‟s task. Proposed

approach detects conflict with user‟s intention in service

ontology model. And system resolves conflict with two

schemes such as Discovery scheme that is proposed scheme

and Negotiation scheme that is previous scheme. Discovery

scheme discovers the service that does not make conflict with

intention, preference, and interaction space. Negotiation

scheme calculates negotiated value with intention and

preference. The simulation results showed that the proposed

approach provides higher satisfaction than previous work. The

difference increases if „turn off‟ task‟s preference is higher. In

the future, we plan to extend proposed approach to urban space

environments where many people interact with each other.

7. Acknowledgement

This work was supported in part by MIC & IITA through IT

Leading R&D Support Project

References

[1] M. Weiser, “The Computer for the 21st Century,” Scientific American

Special Issue on Communications, Computers, and Networks, Sep, 1991.
[2] Anind K. Dey. “Providing Architectural Support for Building

Context-Aware Applications,” PhD thesis, College of Computing,

Geogia Institute of Technology, Nov, 2000.
[3] D. Lee, S. Han, I. Park, S. Kang, K. Lee, S. Hyun, Y. Lee, and G. Lee, “A

Group-Aware Middleware for Ubiquitous Computing Environments,” in

Proceedings of the 14th International Conference on Artificial Reality
and Telexistence (ICAT 2004), pp. 291 - 298, Seoul, Korea, Nov-Dec,

2004.

[4] L. Emmerich, C.Mascolo, "CARISMA: Context-Aware Reflective
mIddleware System for Mobile Applications," IEEE Transactions on

Software Engineering, vol. 29, no. 10, pp. 929-945, Oct, 2003.

[5] I. Park, K. Lee, D. Lee, S. Hyun, and H. Yoon, "A Dynamic
Context-Conflict Resolution Scheme for Group-aware Ubiquitous

Computing Environments," in Proceedings of the 1st International

Workshop on Personalized Context Modeling and Management for
UbiComp Applications (ubiPCMM'05), in conjunction with the 7th

International Conference on Ubiquitous Computing (ubicomp'05), pp.

42-47, Sep, 2005.
[6] Universal Plug and Play Forum. Universal Plug and Play Device

Architecture. Version 0.91, http://www.upnp.org, March 2000.

[7] Guttman, E., Perkins, C., Veizades, J., and Day, M. Service Location

Protocol, Version 2. IETF RFC 2608, June 1999.

[8] Salutation Consortium. White Paper: Salutation Architecture : Overview,

http://www.salutation.org/whitepaper/originalwp.pdf, 1998.
[9] W3C. Semantic Web. http://www.w3.org/2001/sw/

[10] Broens, T., Pokracv, S., van Sideren, M., Koolwaaij, J., and Costa, P. D.

Context-aware, Ontology-based Service Discovery. EUSAI 2004: 72-83.
[11] Toninelli, A., Corradi, A., and Montanari, R. Semantic Discovery for

Context-Aware Service Provisioning in Mobile Environments. 9th

MCMP 2005, Ayia Napa, Cyprus.
[12] Ontology. http://en.wikipedia.org/wiki/Ontology

[13] Kim, W., Kang, S., Lee, Y., Lee, D., and Ko, I. Activity Policy-Based

Service Discovery for Pervasive Computing. Lecture Notes in Computer
Science, Vol. 4254, pp 756-768, 2006.

[14] OWL. http://www.w3.org/2004/OWL

[15] Masuoka, R., Parsia, B., and Labrou, Y. Task Computing - the Semantic
Web meets Pervasive Computin. 2nd International Semantic Web

Conference (ISWC2003), 20-23 October 2003, Sanibel Island, Florida,
USA.

[16] V. Kostakos, E. O'Neill, and A. Penn, "Designing Urban Pervasive

Systems," Computer, vol. 39, no. 9, pp. 52-59, Sep, 2006.
[17] D. Lee, S. Han, I. Park, S. Kang, K. Lee, S. J. Hyun, Y. H. Lee, and G.

Lee, “A Group-Aware Middleware for Ubiquitous Computing

Environments,” ICAT 2004,
[18] Protégé. http://protege.stanford.edu/

ISBN 978-89-5519-136-3 -1816- Feb. 17-20, 2008 ICACT 2008

http://www.w3.org/2001/sw/

