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The brain requires task-dependent interregional coherence of information flow in the anatomically
connected neural network. However, it is still unclear how a neuronal group can flexibly select its
communication target. In this study, we revealed a hidden routing mechanism on the basis of recurrent
connections. Our simulation results based on the spike response model show that recurrent connections
between excitatory and inhibitory neurons modulate the resonant frequency of a local neuronal group, and
that this modulation enables a neuronal group to receive selective information by filtering a preferred
frequency component. We also found that the recurrent connection facilitates the successful routing of any
necessary information flow between neuronal groups through frequency-dependent resonance of
synchronized oscillations. Taken together, these results suggest that recurrent connections act as a
phase-locking neuronal tuner which determines the resonant frequency of a local group and thereby
controls the preferential routing of incoming signals.

he brain consists of numerous subregions responsible for specialized functions, and these subregions
constitute an anatomically connected network. Most brain functions require the flexible and rapid reor-
ganization of brain networks in response to behavioral, cognitive, or perceptual demands. Recent studies
have revealed the formation of dynamic and flexible functional brain networks during cognitive or perceptual
tasks'"®, selective attention’’, and working memory'’. A question then arises as to how a neuronal group selects its
communication targets to realize dynamic and flexible communication. Previous studies have suggested that
neuronal communication between different brain areas is mediated by coherence of oscillating neuronal activity
in each area®''"'*. However, the underlying mechanism for selective communication still remains unclear.
Synchronized oscillations are ubiquitously found in the brain and they seem to coordinate various brain
activities at multiple spatial scales, ranging from microscopic neural circuits to macroscopic brain networks.
Previous studies have shown that the synchronization of oscillatory behaviors between distributed regions plays
an important role in selective attention, cognitive function, memory, and neuronal communication".
Synchronized oscillations are known to originate from rhythmic neuronal firing caused by interactions between
excitatory and inhibitory neurons®. A generic neural circuit consists of two major cell types, excitatory principal
neurons and inhibitory interneurons, and they form three types of recurrent connections through chemical
synapses: mutual excitation between excitatory principal neurons (E-E), mutual inhibition between inhibitory
interneurons (I-I), and recurrent inhibition through an excitatory-inhibitory loop (E-I). Recurrent excitatory
connections, such as E-E and I-I, form a positive feedback loop, while recurrent inhibitory connections constitute
a negative feedback loop. The frequency of synchronized oscillations is primarily determined by network topo-
logy. For instance, E-I feedback loops generate gamma oscillations, whereas I-I feedback loops promote high-
frequency oscillations'*"*>. Moreover, it was revealed that local neuronal assemblies with recurrent connections
tend to oscillate with a characteristic frequency, and show resonance phenomena in response to a preferred
stimulus®°. Taken together, previous studies suggest that the different types of recurrent connections might
have a significant influence on the formation of a functional brain network for a given stimulus, and that the
modification of recurrent connections might contribute to selective and flexible communication between distant
neuronal groups.
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In this study, we hypothesize that the combination of different
types of recurrent connections in a local neuronal group has a crucial
role in tuning the resonant frequency of the group and consequently
enables the flexible and selective configuration of neural networks.
To examine this hypothesis, we employed the spike response model
(SRM) and simulated a spiking neural network composed of recur-
rent connections that represents a local neuronal group®. Through
extensive computational simulations with varying synaptic weights
and connectivity ratios, we found that a neuronal group composed of
feedback loops has a topology-dependent resonant frequency, and
that this resonant frequency is differently modulated by E-E and I-I
feedback loops. It was also found that a neuronal group can switch its
communication targets by tuning the resonant frequency, which
suggests that the resonant synchronized oscillation and its modu-
lation by recurrent connections might be a fundamental mechanism
underlying the dynamic and flexible formation of neural networks.

Results

Large-scale simulations were carried out with a spiking neural net-
work model composed of excitatory (E) and inhibitory (I) neurons
based on the SRM. All network structures considered in this study
contain recurrent connections among E- and I- neurons that form
positive (E-E and I-I) or negative (E-I) feedback loops (see Methods
for details on network architectures).

Synchronized oscillations generated by negative feedback loops
between E- and I-cells. Negative feedback loops between excita-
tory and inhibitory neurons are ubiquitously found in cortical
networks and hippocampal subnetworks (e.g., DG, CAl, and
CA3), and such structures have been proposed to contribute to
generating oscillatory behaviors in local networks®*°. To investi-
gate the oscillatory behavior generated by negative feedback loops,
an excitatory-inhibitory recurrent network was constructed, com-
posed of randomly selected pairs of E- and I-neurons with the
connection probability R and the synaptic weight W (Fig. 1(a)). In
response to white noise input ranging from 0 to 0.3 (Iyhite =0.3),
excitatory neurons showed a synchronized oscillation with a
frequency of 34.5 Hz (Fig. 1(b)), whereas the interspike interval
(ISI) distribution showed that individual neurons fired with a
period of about 60 ms, corresponding to 16.7 Hz (Fig. 1(c), right).
As the input signal increased, ISI distributions narrowed, and the
position of the peak approached the period of the network frequency
(40 Hz), indicating that more neurons participated synchronously in
generating the synchronized oscillation. This network frequency was
conserved even when the input (Lynie) was varied over a range
between 0.6 and 1.0, which confirms that this synchronized oscilla-
tion generated by E-I recurrent connections is an emergent property
arising from the network topology (Fig. 1(c), left). We further
investigated how a local neuronal group responds to external
oscillating inputs with varying input frequency and obtained the
output amplitude versus input frequency plot (Fig. 1(d)). The
neuronal group that has the spontaneous frequency of 40 Hz tends
to oscillate with a larger amplitude at the input frequency of 40 Hz
compared to 20 or 80 Hz (Fig. 1(d), right), indicating that the
spontaneous frequency can be referred to as the ‘resonant
frequency’ of a neuronal group.

To further investigate how E-I couplings influence the synchro-
nized oscillations of neuronal groups, the synchronization index (SI)
and network frequency were measured by varying the connectivity
ratio and the strength of the synaptic weight. The SI was based on the
autocorrelogram for phase synchrony® modified for population syn-
chrony (see Methods for details). Perfect synchronization occurs
when all excitatory neurons periodically fire at the same time, and
low synchronization happens when most neurons fire incoherently.
As E-I recurrent connections were strengthened, the population of
excitatory neurons exhibited more synchronous oscillation patterns

and lower resonant frequencies (Fig. 1(e)). For low R and W, the
activity of neurons correlated little with each other, and therefore
they fired independently, resulting in an unsynchronized oscillation
(see Supplementary Notes and Fig. S2(a)). As R and W increased,
excitatory neurons started to synchronize with other neurons. The
network frequency of the synchronized oscillation decreased with
increasing R and W (Fig. 1(e)). Such enhanced synchronization
and decreased network frequency are driven by inhibitory neurons
that take the initiative in generating a rhythmic pattern. Since inhib-
itory neurons receive both external input and signals from excitatory
neurons, they strongly and rhythmically suppress excitatory neu-
rons. This strong and rhythmical modulation of excitatory neurons
makes excitatory neurons fire synchronously, which leads to strong
synchronization and low network frequencies. However, when R and
W exceed certain levels, excitatory neurons abruptly stop to fire and
thereby show no oscillatory behavior because inhibitory neurons
strongly suppress excitatory neurons (Fig. S2(b)). We excluded such
a regime as it is out of scope of this study. Consequently, it turns out
that the negative feedback structure between E- and I-neurons has its
own resonant frequency determined by the network topology, such
as the connectivity ratio and the synaptic weight.

Network frequency modulation by mutual excitation and inhibi-
tion. A simple negative feedback circuit in biological networks has
the potential to generate sustained oscillations. Intriguingly, it is
known that positive feedback loops coupled to such a negative feed-
back oscillator contribute to adjusting the frequency of a negative
feedback oscillator while maintaining its amplitude®. In addition,
our previous study showed that two types of positive feedback
loops in cellular systems, PP (Positive-Positive) and NN (Negative-
Negative), have different roles in regulating the synchronization of
negative feedback oscillators®. On the basis of these findings, we
hypothesize that two types of positive feedback loops, mutual
excitation (ME) and mutual inhibition (MI), may have different
roles in modulating the resonant frequency of negative feedback
(NF) structures, and that these different modulations may control
information flow between neuronal groups. To examine this hypo-
thesis, we investigated how ME and MI regulate the resonant
frequency of negative feedback structures. An NF network model
was constructed, composed of E-I connections with R = W =
0.05, such that it had a resonant frequency f ~ 21 Hz. When MEs
were introduced by increasing R.. and We., the resonant frequency
of the NF network decreased (Fig. 2(b), top). By contrast, the
resonant frequency increased when R; and Wy of mutual inhibi-
tions increased (Fig. 2(b), bottom). Such different modulations of
the resonant frequency can be explained by competition between
excitatory and inhibitory neurons. Mutual excitation prolongs posi-
tive phases of excitatory neurons against the influence of inhibitory
neurons, leading to a lengthened cycle of synchronized oscillation.
On the other hand, mutual inhibition enhances the power of inhi-
bitory neurons and therefore rapidly resets the phases of excitatory
neurons, which increases the resonant frequency. These different
modulations of the resonant frequency by positive feedback loops
were evident in the oscillation power spectrum (Fig. 2(c)). In
addition to the NF network, two more networks were considered:
the NF network with MEs (Ree = We. =0.25), and that with MIs
(Rji =|Wjy|=0.05). Each network showed one strong peak at f =
16, 21, and 28 Hz, confirming that mutual excitation and inhibi-
tion modulate the resonant frequency of the negative feedback struc-
ture in different ways. This tendency was maintained over a large
range of synaptic delays, suggesting that the different modulation of
resonant frequency by mutual excitation and inhibition is conserved
across structures (see Supplementary Notes and Fig. S3).

Resonant synchronized oscillations in response to an oscillatory
input. To further investigate how a local neuronal group responds to
an external oscillating input, a sinusoidally oscillating input was
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Figure 1| Synchronized oscillation and resonant frequency of negative feedback structures. (a) Diagram of E-I negative feedback connectivity showing
feed-forward external input (black), excitatory synapses of principal cells (red), and inhibitory synapses of interneurons (blue). (b) Raster plot of output
spikes (middle) and output firing rate (bottom) of excitatory neurons evoked by white random noise input (top). (c) Network frequency as a function of
input amplitude (left) and interspike interval (ISI) distributions for various input amplitudes (right). Note that the cutoff value of 0.16 in the left figure is
the minimal input for the firing of a neuron (see Supplementary Fig. S1(a)). The highest ISI peak for each input represents the leading period of the
synchronized oscillation. The first ISI peak for I = 0.8 shows a very fast oscillation caused by burst firing within one cycle of network oscillations (see
Supplementary Fig. S1(b)). Network parameters were as follows: R = W = 0.025 and d = 3 ms. (d) The amplitude of synchronized oscillation as a
function of input frequency (left), and the temporal profiles for input frequencies of 20, 40, and 80 Hz (right). Network parameters were the same as (c),
and various combinations of oscillating inputs (Iosc =0.1 ~ 1.0) and white noise inputs (Iyhite =0.6 ~ 1.0) were considered (1 = 100, error bars represent
thes.e.). (e) Synchronized index (left) and resonant frequency (right) as a function of R and W for I = 0.8 (see Methods for details on the computation of
SI and resonant frequency).
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Figure 2 | Different modulation of resonant frequency by ME and MI. (a) Diagram of E-I negative feedback structures coupled with mutual excitation
(red) and inhibition (blue). (b) Modulation of the resonant frequency by increasing the connectivity ratio and the synaptic weight of E-E couplings (top)
and I-I couplings (bottom). Highly interconnected excitatory neurons greatly increased the network activity and thereby induced a hyperexcitable state.
The frequency of this state was set to 0 Hz (blue region in top). Parameters used were R = W = 0.05 for the E-I negative feedback network.

(c) Power spectrum of synchronized oscillations for NF, NF with ME, and NF with MI networks. Parameters used were R = W = 0.05 for NF,

Ree = W, =0.025 for ME, and Ry =|Wji| =0.05 for MI couplings.

applied with three different frequencies, f = 16,21, and 28 Hz, to the
aforementioned networks. Each network preferentially responded to
the oscillating input having the same frequency as its resonant
frequency (Fig. 3(a)). All of these resonant synchronized oscilla-
tions were phase-locked to the input oscillations and were very
stable, which suggests that this resonance might be essential for
robust and accurate information transfer. For the non-resonant
input frequency, on the other hand, resulting oscillations were not
uniform and the output oscillation frequency was not related to
either the input frequency or the resonant frequency. Such irregu-
lar patterns of resulting oscillations are evidently not appropriate for
any meaningful information processing due to the signal instability.
To examine the shared information between input and output
oscillations, the input frequencies were varied (f = 13 ~ 30 Hz)
and the corresponding mutual information was measured. Various
oscillating inputs with different amplitudes were considered, ranging
from 0.16 to 1.0, and all of the responses obtained from the three
networks were investigated. Mutual information increased near the
resonant frequency of each network (Fig. 3(b)), indicating that a
neuronal group composed of recurrent connections can operate as

a band-pass filter allowing only preferred information to be
transferred. Taking these findings into account, we conclude that a
neuronal group composed of feedback structures has a certain
resonant frequency and can select preferred information by
rewiring the network topology and tuning the resonant frequency.

Frequency-dependent selective communication. Based on the
foregoing results, we postulate that a neuronal group operating as
a band-pass filter can select its communication target group by
changing the recurrent connectivity. To examine this, we first gene-
rated three different neuronal groups composed of E-I negative
feedback loops (Fig. 3(c)). Different values of R and W were
chosen for each group, such that each one had a distinct resonant
frequency, fGroup 2> fGroup 1 >fGroup 3> @ shown in Fig. 3(d). All
neurons in Groups 2 and 3 had constant input currents with
random Gaussian variations, and all neurons in Group 1 had
signaling inputs from the excitatory neurons in Groups 2 and 3.
To determine the synaptic efficacy from Groups 2 or 3 to Group 1,
it was assumed that there was reliable signal propagation, without
signal failure or explosions, from a sender group to a receiver group.
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Figure 3 | Frequency-dependent selective communication. (a) Spike histograms of NF, NF with ME, and NF with MI networks in response to oscillating
inputs. Parameters used for these three networks were the same as those of Fig. 2(c). Each network shows a resonant synchronized oscillation (red) when
the input frequency is close to the resonant frequency of the network. The blue color indicates non-resonant oscillations. (b) Mutual information between
oscillating inputs and resultant oscillations of three networks as a function of input frequency. Various combinations of oscillating inputs

(Iose =0.16 ~ 1.0) and white noise inputs (Iyhie =0.16 ~ 1.0) were considered. White lines denote the average values over 100 combinatorial inputs.
(c) Two sender groups and one receiver group. Each group is composed of E-I negative feedback loops with different connectivity ratios (R;,»/3) and
synaptic weights (Wy5/3). Group 1 has additional recurrent connections, such as ME, and MI. R; and W, denote the connectivity ratio and the synaptic
weight of global synapses from sender groups to a receiver group, respectively. Further details on network structures and inputs are described in Methods.
(d) Resonant frequencies of three groups. Network parameters were determined as Ry,,/3 and Wy,/3, such that each group had a distinct resonant
frequency fGroup 2 > fGroup 1 > fGroup 3- (€) Frequency modulation (bottom) and mutual information between Group 1 and Groups 2 or 3 (top) mediated by
mutual excitation and inhibition. Initially, Group 1 without mutual excitation nor inhibition received less information from both sender groups (Region
I). Mutual information between Groups 1 and 2 (blue) increased with the increase of R;; and Wi, since fgroup 1 is close to froup 2 (Region II). By contrast, as
Ree and W, increase, faroup 1 gets close to fgroup 3 (Region III), resulting in the maximal mutual information between Groups 1 and 3 (red). (f) Schematic
diagram illustrating a neuronal tuner for frequency-dependent selective communication between neuronal groups. The gauge needle (colored in red) in a
receiver group points to the resonant frequency, which is tuned by E-E and I-I couplings. Adjusting the frequency to one of the sender groups opens a
communication channel (green) that information can flow through the channel (red).
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To achieve such stable signal propagation, a spike gain representing
the ratio of the average number of neurons firing in a sender group
and that in a receiver group should be near unity when the avalanche
model is applied***. Hence, we determined the synaptic weight, W,
~ 0.0016, while keeping R, = 1 for simplicity (see Supplementary
Notes and Fig. S4). All of the details on the network architectures are
described in Methods.

Next, it was investigated whether selective communication can be
achieved by modulating mutual excitation and inhibition. We varied
the connectivity ratio and the synaptic weight of mutual excitation or
inhibition, and set Ree =W, and Ry =|Wj| for simplicity. In res-
ponse to an input signal, excitatory neurons of Groups 2 and 3
showed oscillatory activity with the resonant frequencies of
JGroup 2 ~25Hz and fgroup 3 ~ 19.6Hz, respectively. When these sig-
nals from the sender groups were delivered to Group 1, the output
frequency of Group 1 could be modulated by additional recurrent
connections (Fig. 3(e), bottom). Adding mutual inhibition raised the
oscillation frequency of Group 1 to that of Group 2, 25 Hz. In this
case (Region II in Fig. 3(e)), the mutual information between Group 1
and 2, MI(1,2), was significantly higher than MI(1,3), which indi-
cates that Group 1 can open a communication channel from Group 2
and concurrently block the channel from Group 3. On the contrary,
an increase in mutual excitation in Group 1 shifted the oscillation
frequency of Group 1 to that of Group 3, ~19 Hz, which approaches
Region III, where resonant synchronized oscillations between
Groups 1 and 3 were strongly enhanced. In Region I, however, the
oscillation frequency of Group 1 was highly variable across random
trials. In other words, Group 1 could not produce reliable synchro-
nized oscillations for between-area communication. Moreover, both
MI(1,2) and MI(1,3) were relatively too small to open a commun-
ication channel, which implies that Region I represents the ‘OFF
state for communication. These findings demonstrated that recur-
rent excitation facilitates selective communication by tuning the res-
onant frequency. This suggests that recurrent excitation in neural
networks is an essential building block for selective communication
and, consequently, might play a role as a neuronal tuner that deter-
mines the characteristic frequency of a local neuronal group and
controls information flow (Fig. 3(f)).

Discussion

We have described a novel mechanism by which distant neuronal
groups communicate selectively and flexibly with each other. The
routing mechanism suggested in this study has two important impli-
cations. First, neuronal communication through resonant synchro-
nized oscillations allows distributed neuronal assemblies to form a
coherent functional brain network. Since resonance-based commun-
ication is more stable than a simple gating mechanism based on a
“detailed balance” scheme?, the proposed mechanism is suitable for
reliable signal transduction and information transfer in a functional
brain network. Second, recurrent connections such as mutual excita-
tion and inhibition within a neuronal group modulate the resonant
frequency, which permits selective and flexible communication. A
recurrent connection in a functional brain network can be consid-
ered as a radio tuner that adjusts a radio frequency to a preferred
radio station to receive desired information. In other words, the
recurrent connection modulates the resonant frequency and keeps
a communication channel open to receive any necessary information
(Fig. 3(f)).

Recent studies have proposed routing mechanisms based on a
detailed balance scheme® or band-pass filtering® using a simple
feed-forward structure. Such a detailed balance mechanism provides
one possible way for a receiver group to selectively extract a target
signal from multiple inputs by disturbing the balance between excit-
atory and inhibitory synaptic activity. Akam et al. introduced an
oscillatory gating mechanism with which band-pass filtering can
be achieved by a simple network consisting of excitatory and

inhibitory neurons that exploits a network-level resonance phenom-
enon, as in our model. However, the resonance phenomenon
described here is different from that of Akam et al., since they sug-
gested a feed-forward circuit for band-pass filtering and not the
recurrent connections suggested in this study. Moreover, recurrent
excitation modulates the resonant frequency by tuning the synaptic
weight or connectivity ratio, while the feed-forward structure mod-
ulates it by varying the conduction delay of inhibitory synapses. It
should be noted, however, that the efficacy of synaptic connections
needs to be rapidly adjusted for the dynamic control of information
flow. For instance, the coherence between neuronal oscillations of
various subregions of the hippocampus varies rapidly during explor-
atory behavior and spatial tasks>~*. Such a rapid change of synaptic
efficacy can be achieved by the regulation of neuromodulatory
substances. For example, the neurotransmitter acetylcholine modu-
lates hippocampal circuitry, giving rise to an abrupt and stable trans-
ition between different patterns of oscillations*. Our model seems
more biologically plausible than the feed-forward model, since chan-
ging the synaptic weight is presumably easier than changing the
conduction delay. This also implies that our model might have a
potential advantage for dynamic neuronal communication com-
pared to the feed-forward routing mechanism.

Most brain functions require the flexible routing of signals
throughout the brain. In other words, a neuronal group needs to
flexibly switch among its communication targets in response to
demands, such as cognitive or behavioral tasks. A recent study has
shown frequency-dependent switching between subregions in the
entorhinal cortex (EC) - hippocampal network*'. The hippocampal
area CAl can synchronize with area CA3, a hippocampal subregion
for the storage of spatial memory, at relatively low gamma frequen-
cies (25-50 Hz), or with the medial entorhinal cortex, an area that
provides information about spatial position, at relatively high
gamma frequencies (65-140 Hz). A question still remains as to what
triggers this frequency-dependent switching. The CA1l circuit is
composed of excitatory pyramidal neurons and several other classes
of inhibitory interneurons, such as basket cells, bistratified cells,
oriens-lacunosum-moleculare cells, and axo-axonic cells. Interes-
tingly, those distinct types of interneurons are recurrently connected
with pyramidal cells and contribute differently to the temporal coor-
dination of pyramidal cells during spindle, theta, and gamma oscilla-
tions*”. We infer that this heterogeneity in cell types may permit the
CA1 network to flexibly tune its resonant frequency from the theta-
to the gamma- band by combining different types of recurrent con-
nections. As a result, this tuning capability could enable the CAl
region to switch between synchronizing with CA3 and with EC in
a frequency-dependent manner. Although a detailed analysis of all of
the possible combinations of different types of recurrent connections
is not within the scope of this study, the proposed mechanism can be
used as a vehicle for understanding frequency-dependent selective
communication.

Finally, the mechanism described here can provide important
insights into cross-frequency coupling (CFC), a regulatory mech-
anism between low- and high-frequency brain oscillations®.
Recent studies have suggested that CFC might serve as a mech-
anism for transferring information from a large-scale brain net-
work to a local cortical processing network**’. Robust coupling
between low- and high-frequency bands requires multiple res-
onant frequencies in a single neuronal group. If we associate local
feedback loops in our model with long-range feedback loops
between distant brain subregions, such as thalamocortical or cor-
ticocortical connections, we can explain the coexistence of
low- and high-frequency resonance in a local group, thereby elu-
cidating the mechanism of information transfer from a large-scale
to a local brain network. In addition, the CFC has been considered
as a putative mechanism involved in cognitive dysfunctions**.
Thus, the mechanism proposed in this study can provide a useful
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basis for understanding how a CFC disturbance contributes to
cognitive dysfunctions.

Different brain rhythms are thought to be associated with different
functions of the brain. Gamma frequency rhythms in the cortex are
considered to regulate the responses to visual stimuli and convey
information about the visual scene*>*. Theta oscillations in the hip-
pocampus are known to carry information about the position and
heading in space of the animal®***. Therefore, the neuronal circuits of
the brain should have a wide range of resonant frequencies to capture
all the necessary information from a broad band input stimuli.
Although our simulation results were limited to the beta band res-
onant frequency, this study can be extended to lower or higher band
frequencies by considering the relevant parameter values for the
threshold voltage of excitatory and inhibitory neurons, membrane
time constant, refractory time constant, synaptic time delay, etc (see
Fig. S5 as an example of mutual information analysis for the broad
band resonant frequency).

Methods

Neuron model. All neurons were described by the spike response model*. The
membrane potential of neuron i at time ¢ obeys the following equation:

u(t)= Z not—£7)+ Z wij Z co(tft;f))Jr J Ko ()T (t—s)ds,
7 TR ]
)
Ui

where ¢ is the firing time of a presynaptic neuron j, wj; is the synaptic efficacy from a

presynaptic neuron j to a postsynaptic neuron i, and I (t) denotes the external input
current to neuron i. The postsynaptic potentials are influenced by inputs from
adjacent neurons (&-kernel), as well as the external input current (x-kernel), and
accumulate until the firing threshold is reached. In the simulations performed, a
constant threshold was assumed. After firing an output spike, the postsynaptic
potential is reset to a value below the resting potential, which is referred to as a
hyperpolarizing spike after-potential (17-kernel). Response kernels are described by:
o(s)= — (3 —u,) exp <7 i) O(s),

re

g(s)= é J exp <— :—/> o(s—s')ds'O(s),

0

Ko9)= exp(— Ti) o),

where &, Uy, Tre, T, and C denote the firing threshold, resting potential, refractory
time constant, membrane time constant, and capacitance, respectively. ©(t) is the
Heaviside step function with @(¢)=1 for t> 0 and O(t) =0 otherwise. As the
postsynaptic current should have a finite duration, a-function was adopted for the
postsynaptic current o(s) =q/ 7, exp(—s/7;)O(s) with electric charge g and time
constant t,. With g=C=1, ¢-kernel becomes:

1 _Aax _Aax
go(s)= o {exp<f : - > — exp<7 ST)} O(s),

where A, is the axonal transmission delay. All neurons were assumed to have an
identical parameter set {7, Ty, Aax,Tres Tref +3, 14y } = { 1mms,10ms,3ms,40ms,2ms,1,0},
where T, is the absolute refractory time. Using this parameter set, the gain function
of a neuron was determined, and the corresponding feasible input range was
estimated by extensive simulations (see Supplementary Notes and Fig. S1(a)).

Network architecture. A neural network composed of 8,000 excitatory principal
neurons and 2,000 inhibitory interneurons was considered. The network response of
a neuronal group is limited to the collective behavior of only excitatory neurons, since
pyramidal neurons mostly contribute to the generation of local field potentials (LFPs)
in cortex and the hippocampus®. Synchronized oscillations are generated by complex
interactions between neurons rather than a simple summation of individual firings.
This study focused only on the network-based oscillation patterns that are primarily
determined by network structure parameters: connectivity ratio R, synaptic weight
W, and conduction delay d. In a negative feedback structure (Fig. 1(a)), all excitatory
(inhibitory) neurons are randomly connected with inhibitory (excitatory) neurons
with a connection probability of R;. (Re;) and a synaptic efficacy of Wi, (W;). For
simplicity, Rie = Re; = Rand Wi = |W;| =W were set for all simulations. For mutual
excitation and inhibition (Fig. 2(a)), Rec and R;; were used for the corresponding
connectivity ratios, and W, and Wj; for the corresponding synaptic weights. A total
of 10,000 cells were used, as this is the most suitable network size for a realizable
computation time. Previous studies have shown that the activity of a network
becomes independent of the network size beyond about 10,000 neurons®”*®, Twenty

trials of each simulation were carried out. To investigate selective communication
between groups (Fig. 3(c)), three groups were considered, each composed of 2,000
excitatory and 500 inhibitory neurons. The values of R and W were set to 0.1, so that
the resonant frequency would be equivalent to that of the previous network (N =
10,000), in which R = W = 0.05. The total output from a neuron is determined by the
product of the total number of outgoing synapses N'R and synaptic weight W, i.e.,
N-R'W. If the value of N'‘R-W is conserved, e.g., N'-R"'W =N/4-2R-2W, then the
resonant frequency should also be preserved.

External inputs. Three types of input signals were used, including uniform white
noise, sinusoidally oscillating input, and constant input with Gaussian white noise. In
all simulations, it was assumed that both excitatory and inhibitory neurons receive
external inputs. To find the resonant frequency of NF, ME, and MI network
structures, uniform white noise ranging from 0 to 0.8 (Iyhite =0.8) was used and a
resonant frequency was found that is not influenced by any small perturbation of
input strength (Fig. 1(c)). To investigate the response of each structure to oscillating
inputs, the strength of the uniform white noise and the oscillation amplitude was
varied between 0.16 and 1.0, and the simulation was repeated over 100 combinatory
inputs (Fig. 3(b)). In the last part of the Results section (Fig. 3(c)), the case was
considered in which two sender groups receive both external input and background
noise input while a receiver group receives only background noise input, except for
signals from excitatory neurons in the sender groups. Hence, a constant input

Istatic = 0.5 was used with a random Gaussian variation (SD = 0.05) for sender groups
and uniform white noise input Iypie =0.2 for the receiver group.

Synchronization index. To measure the degree of synchrony of a neuronal
population, a synchronization index (SI) based on the autocorrelogram was used™.
All spikes from excitatory neurons in a group were compiled in 1 ms bins, which
resulted in a spike-time histogram, as shown in Supplementary Fig. S2(a). As this
histogram is highly autocorrelated, the autocorrelation function (AC) follows a cosine
pattern, giving rise to a maximal inner product of AC and cosine function with a
period of Tpay. After normalization, the SI becomes:

nAt

>~ cos <2n T >AC(nAt)

max
SI= R

S~ AC(nAD)

with At = 1ms. An SI value of unity occurs when neurons fire at time intervals that are
multiples of a period T and zero when neurons fire incoherently. This index measures
the rhythmicity of the synchronized oscillation. However, if every spike occurs exactly
at the same time with the same period, it results in the perfect synchronization with SI
= 1, irrespective of how many neurons fire. Thus, the SI was modified for population
synchrony by multiplying the ratio of the average instantaneous firing rate (computed
in 1 ms bins) and the maximum firing rate of excitatory neurons,
A

>
Ntol

SI'=SI-

where Ny is the total number of neurons and A is the amplitude of synchronized
oscillations. Perfect synchronization occurs when all excitatory neurons fire at the
same periodic time, and low synchronization when either few neurons fire or neurons
fire incoherently.
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