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ABSTRACT 
This paper proposes a very accurate and relatively fast 
method of estimating cycle-counts of target applications to 
rapidly find architecture parameters of superscalar 
processors that satisfy user-provided real-time constraints. 
Furthermore, by giving a tight upper bound on the 
estimation error, user can convince himself of the estimation 
result. The method is based on a classification of benchmark 
characteristics into two pieces: architecture independent and 
architecture dependent ones. The speedup comes from the 
fact that we need only one full-simulation to obtain the 
architecture independent information instead of conducting 
simulation whenever parameters change. Moreover, we can 
reduce the simulation time in obtaining architecture-
dependent ones through sampled-data simulation with a 
little loss of accuracy. Experimental results show 86 times of 
speedup against full data simulation with 0.8% estimation 
error on average, if the desired error bound is set to 5%.   
When we set desired error bound to 20%, speedup increases 
to 134 with 2.8% estimation error on average.  
 
 
I.   INTRODUCTION  
 
The demand for high-performance real-time application is 
increasing due to the growth of computing power and user’s 
desire to new and better applications. One of the 
representative applications is the multimedia domain. 
Multimedia now defines a significant portion of the 

computing market, and this is expected to grow 
considerably. As a consequence, the processing demands 
for such applications are rapidly escalating. On the contrary, 
processor design time window is becoming shorter and 
requires an efficient design flow. To meet ever tightening 
requirements of processor development, this paper proposes 
a very accurate and relatively fast method of estimating 
cycle-counts of target applications to rapidly find 
architecture parameters of superscalar processors that 
satisfy user-provided real-time constraints. There are 
numerous technological alternatives that can be 
incorporated into a processor design.   These include 
reservation station design, functional unit duplication, 
processor branch handling strategies, and instruction fetch, 
decode, issue width, and retirement policies. However, there 
are practical shortcomings with these technologies  for 
efficiently culling a huge design space in an early design 
stage. Benchmarks execute billions of instructions to test the 
performance of the proposed system. Therefore, simulation 
time is  getting prohibitive. 
Researchers have proposed several solutions to reduce 
simulation time. One of the earliest studies takes a 
contiguous part of the trace samp le [1]. This paper showed 
that a systematic sampling of contiguous traces could 
estimate processor performance with a relative error of only 
13% and 15 times of speedup against traditional simulation. 
Recently, statistical simulation was proposed to speedup the 
simulation pro cess. In statistical simulation proposed in [3], 
a statistical profile or a set of statistical program 
characteristics is extracted from a program execution, e.g., 
the instruction mix, the distribution of the dependency 
distance between instructions, etc. This statistical profile is 
then used to generate a synthetic trace that is subsequently  
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fed into a trace-driven simulator, which will compute the 
attainable performance for the micro architecture model. 
Thanks to the statistical nature of the technique, 
performance characteristics quickly converge to a steady 
state solution. Therefore, statistical simulation is a useful 
technique for culling huge design spaces in limited time  [4]. 
However this approach shows large error from 6% to 22%. 
All of these approaches have relatively large error and they 
do not provide the error bound on the estimated value.  

This paper proposes faster, more accurate method of 
estimating cycle-counts of high-performance applications, 
especially loop-intensive ones, which supports rapid design 
space e xploration of superscalar processors. Furthermore, by 
giving a tight upper bound on the estimation error, user can 
convince himself of the estimation result. The rest of the 
paper is organized as follows. Section 2 presents an 
overview of the proposed approach, while Section 3 and 4 
describes the details of the framework. After showing the 
experimental results in Section 5, we conclude in Section 6.  
 
II.   OVERVIEW OF THE PROPOSED 
METHOD 
 
Before describing the details of the proposed method, let us 
describe some basic terminologies and assumptions. A 
program structure is a directed graph whose node and edge 
represent the basic block and control flow of the program, 
respectively. A basic block is a sequence of consecutive 
statements in which flow of control enters at the beginning 
and leaves at the end without halt or possibility of branching 
except at the end. The proposed method is based on an 
assumption that the program structure does not change 
even though the architecture configuration changes. This 
assumption holds for our framework thanks to the nature of 
the run-time instruction scheduling feature of superscalar 
architecture. In other words, there is no need to recompile 
the benchmark program even when the parameters' values 
change. Furthermore, the number of each basic block being 
visited remains constant across parameter value change 
because the control flow of the program does no depend on 
the machine configuration. To summarize, the number of 
execution counts for each block is architecture-independent 
information. On the contrary, the execution cycle counts of 
basic block is  surely architecture-dependent. For example, 
cycle counts taken for executing each basic block varies  with 
change of parameters, such as number of functional units, 
branch prediction strategy, decode/issue width, and so on.  

Finally, there is a popular saying that most programs 
spend ninety percent of their execution time in ten percent of 
the code [5]. While the actual percentages may vary, it is 
often the case that a small fraction of a program accounts for 
most of the running time. Especially, a loop that contains no 
other loop is called an inner loop.  These loops make 
execution of the same basic block over and over again. 
Therefore, we need not to repeatedly simulate same basic 

blocks again and again to obtain the execution cycle counts 
of basic blocks. In general, it can be obtained with negligible 
error by sampled data simulation, as our experimental results 
show. The estimation is done through following three-steps.  

 
l Step 1: Full data simulation to obtain exact  execution 

counts of basic blocks.  
l Step 2: Sample data simulation to estimate cycle counts  

of basic blocks.  
l Step 3: Estimate total execution cycle counts from 

these two information.  
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Figure 1. Basic concept of estimation (a) Result of full-data 
simulation (b) Basic block cost table 

Fig. 1 (a) shows execution counts and cost information of 
basic blocks obtained by full-data simulation. In this figure, 
BBi is  the basic block identifier, Ni is the basic block 
execution counts, Ci is the execution cycles of basic blocks. 
The BBi and Ni are architecture independent parts. And Ci is  
architecture dependent part. Fig.1(b) shows the flow of 
estimation to obtain total execution cycles using sampled-
data simulation. The left side of Fig.1 (b) represents  
architecture independent information which is obtained by 
full-data simulation just once. And the right side of Fig.1 (b) 
represents architecture dependent information which is 
obtained by sampled-data simulation. We reconstruct Fig. 
1(a) from (b) with following equation. 

#basic blocks

i=1

Total Execution Cycles = i iC N×∑  (1) 

When processor configurations vary, the Ni information will 
be reused. And Ci will be obtained from simulation using 
sample data which is much smaller than full-data. Therefore, 
we can reduce simulation time  to obtain total execution 
cycles on various processor configurations. The problem is 
how we can obtain accurate estimation of total execution 
cycles with basic block cost obtained through sampled-data 
simulation.  
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III. BASIC BLOCK COST ESTIMATION 
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Figure 2. Basic block cost (a) Pipeline status when a 
program is executed (b) Control flow between preceding  and 
current basic block  (c) Small basic block cost (d) Large 
basic block cost 

Firstly, we define the cost of basic block before describing 
the process of total cycle counts estimation. Since 
superscalar architecture is pipelined, we need to consider 
overlapping effects of instructions between consecutive 
basic blocks in defining the basic block cost. Therefore, we 
define the cost of a basic block as  the number of cycles 
taken from the last instruction of a preceding basic block 
being retired to the last instruction of current basic block 
being retired. To see Fig. 2(a) for example, the first 
instruction I1 of basic block B2 enter into pipeline stage at C1, 
while the last instruction I3 of basic block B2 is retired at C7. 
However, the instructions of the preceding basic block B1 
remain in the stage from C1 to C3. Therefore, the execution 
cycles purely devoted to the basic block B2 can be thought 
of as C4 to C7, which are 3 cycles.  Fig. 2 (b)-(d) shows that 
cost of the same basic block can vary for each preceding 
basic block. The current basic block B2 has many 
predecessors. If predecessor B1 has large execution cycles 
and many instructions of B2 are overlapped into B1, the 
execution cycles of B2 will be small (Fig. 2 (c)). If predecessor 
B3 has small execution cycles and a few instructions of B2 are 
overlapped into B1, the execution cycles of B2 will be larger 
than previous case (Fig. 2 (d)). 
 
3.1 Cost Classifier 
The basic block cost defined above is affected by following 
factors. 
 
l All execution paths from the root to current basic block 

in the program structure. 
l Number of c a c h e / b r a n c h  p r e d i c t i o n  m i s s e s  

for every basic block in the execution path. 
 
However, considering all of these factors for accurate cost 
calculation becomes impractical due to its  large overhead. 
Through many experiment, we found that following 
simplified version suffices for the calculation of the basic 
block cost while maintaining high accuracy. 

Predecessor Current basic block Miss flag Execution cycles

Branch
prediction miss

#of L2 data
cache read

misses

# of L1 data
cache read

misses

# of Data
TLB misses

# of L2 inst.
cache misses

# of L1 inst.
cache misses

# of inst.
TLB

misses

(a)

(b)

 

Figure 3. Data structure for basic block cost (a) Cost 
classifier and cost (b) Miss flag field 

l An execution path from the immediately preceding 
basic block to the current basic block. 

l Number of cache / branch prediction misses in the curr
ent basic block. 

 
We define these pair of information as a cost classifier  in a 
sense that the cost of the basic block is uniquely determined 
by them. In other words, a basic block can have different 
values of cost by the number of distinct cost classifiers. 
Since the cache and branch prediction miss information 
affects the basic block cost, we need to conduct full-data sim
ulation whenever the cache/branch prediction parameter 
changes. In spite of this  limitation, we can reuse architecture 
independent information when all other processor configurat
ions vary, whose number is much larger as will be shown in 
our experimental results. 
 
IV.    DETAILS OF THE ESTIMATION 
METHOD 
 
This section describes the details of the proposed cycle-
counts estimation methodology. After brief presentation of 
the data structures used for estimation, actual estimation 
scheme is explained. 
 
4.1 Data structure for Estimation 
Fig. 3(a) shows the cost structure for a basic block 
consisting of the cost classifier and associated cost. As 
previously said, the cost classifier is a triple (preceding basic 
block id, current basic block id, miss flag). The miss flag 
includes the number of instruction cache/TLB misses, data 
cache/TLB read misses and branch prediction miss in the 
current basic block as shown in Fig. 3(b). This miss flag 
largely affects execution cycles of a basic block, because the 
cache and branch prediction miss penalty stall the pipeline 
stages of a processor. For example, the instruction cache 
miss stall the fetch stage in the pipeline and data cache read 
miss delay issue of the instruction, and branch prediction 
miss stall the fetch stage and flush pipeline during penalty 
cycles. Now, we define a data structure for basic block 
execution counts, which is filled in after full-data simulation. 
As shown in Fig. 4(a), there are two fields for every cost 
classifier. 
 
l # of execution : number of occurrences of (preceding 

basic block id, current basic block id, miss flag) 
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l resource usage : number of resource usage to execute all 
instructions in the current basic block 

 
As will be described later in detail, the resource usage field is 
useful to calculate worst-case maximum execution cycles of 
the basic block when there is no matching classifier in the 
sampled-data simulation result. 
 

Predecessor Current basic block Miss flag Execution counts Resource usage

# of long latency
floating point
computation
instructions

# of long
latency integer
computation
instructions

# of
floating point
computation
instructions

# of memory
access instructions

# of instruction
computation
and control
instructions

(a)

(b)  

Figure 4.   Data structure for basic block execution counts 
(a) Overall fields  (b) Resource usage field 

4.2    Estimation of Total Cycle Counts 
Fig. 5 shows the overall flow of estimating total cycle counts 
with the data structures described previously. While we 
obtain execution counts table using the execution counts 
and cost filed after the full-data simulation, the execution 
cost table is constructed after the sampled-data simulation, 
as shown in  Fig. 5(a) and (b), respectively. Therefore, we can 
estimate execution cycles of a program from them by joining 
table to apply Equation (1), as shown in Fig. 5(c). 

We need to obtain execution counts table again only 
when the structures of cache/branch predictor vary. To see 
Fig. 5(b) and (c) again, we can observe that the costs for 
BID2's are not found in the tables . Note that this  is hard-to-
avoid consequence due to the nature of sampled-data 
simulation. This kind of situation requires worst-case 
analysis, which will be described in detail in the following 
subsection. 

 
4.3    Calculation of estimation-error bounds 
We need all execution costs for basic blocks to estimate total 
execution cycles. However, C3, C4, and C5 are left blank at 
the fourth column in Fig. 5(c).  Actually, there can be two 
kinds of missing in the cost table obtained through sample 
data simulation – no cost for MF or BID. Fig. 6 (a) and (b) 
show these two cases, respectively. These two kinds of 
missing make an error and there is a chance to decrease 
reliability of estimation. Therefore, we consider execution 
cost bounds of missing basic blocks, and find the worst-
case error from it. Consequently, a designer can obtain total 
execution cycles of a program within the desired error. 
 
- Bounds of Execution Cycles in the absence of MF  
Fig. 6(a) shows the case that there is  identical BID but no 
identical MF (Miss Flag) between execution counts table 
and cost table. Even in this case, neighboring cost 
information with the same BID and similar MF can exist in 

the cost table. Therefore, it is possible to find either 
maximum execution cycles or minimum execution cycles  
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BID1 MF1 C1
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... ... ...

BIDn MFm-2 Cm - 2
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Sampled-data simulation

T1Basic Block
 ID

Miss
flag

Execution
cycles

BID 1 MF 1 C1

BID 3 MF 6 C6
... ... ...

BID n MF m-2 Cm-2

MF 2 C2

MF m-1 Cm-1
MFm Cm

Figure 5. Total cycle counts estimation (a) Execution counts 
table (b) Execution cost table (C) Joined table for estimation 
 
about the missing cost. For example, Fig.7 (a) shows the case 
that there are missing MF, and we can find maximum 
execution cycles in the basic block cost table. Let us assume 
that the L2 cache miss penalty is 32 cycles and the L1 cache 
miss penalty is 6 cycles. The MF, 0x00010130, represent that 
there were one L1 data cache read miss, L2 instruction cache 
miss and three L1 instruction cache misses in executing this 
basic block. 
 

BID1 MF2 Execution cyclesBID1 MF1 Execution counts Resource usage

BID1 MF2 Execution cyclesBID2 MF1 Execution counts Resource usage

X

X

(a)

(b)

Basic block execution cost tableBasic block execution counts table

Basic block execution counts table Basic block execution cost table

Figure 6. Two kinds of missing in estimating execution 
cycles (a) No identical MF in execution cost table (b) No 

identical BID in execution cost table. 
 

The execution cycles of {BID1, 0x00010130} is smaller than 
that of {BID1, 0x00000210} because, when the BID is 
identical, the execution cycles only depends on 
cache/branch prediction miss penalty. Therefore, the 
maximum execution cycles of {BID1, 0x00000210} will be C1. 
The execution cycles of {BID1, 0x00100310} and {BID1, 
0x0011032} may become the candidates of the maximum 
execution cycles. However, it is excluded to get the tight 
bounds of execution cycles. The minimum execution cycles 
will be 0 because, if the execution cycles of the predecessor 
block is large and that of the current basic block is  small, the 
last instruction of these two basic blocks may be retired 
simultaneously. In Fig. 7(b), we can only find minimum 
execution cycle counts to the contrary. In this case, we use 
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resource usage information to calculate the maximum 
execution cycles. Therefore, if we know the resource usage 
information to execute all instructions of the current basic 
block and the latency of resources, the maximum execution 
cycles will be the form of weighted sum between resource 
usage counts and its  latency, because all instructions will be 
executed sequentially in the worst case. In addition, the 
cache/branch prediction penalty will be added. The minimum 
execution cycles will be 0, because the last instruction of the 
current basic block may be retired with the last instruction of 
the predecessor at the same time. 
 

0x00000210 C
1

BID10x00010130 Execution counts Resource usageBID1
0x00100310 C2BID1
0x00110320 C3BID1

0x01000010 C4
BID1

0x01000130 C5BID1
0x01001130 C6BID10x01100210 Execution counts Resource usageBID1

x 0BID1Min.

Max

Min.

Max

(a)

(b)

?

Basic block execution counts table

Basic block execution cost table

Basic block execution counts table

Basic block execution cost table

 

Figure 7. Bounds of execution cycles when there is no MF 
(a) Maximum execution cycles are found (b) Minimum 
execution cycles are found. 

As a result, all of the execution cost of {BIDi, MFi}s which 
are included in the execution counts table will be determined 
with execution cost. We finally reconstruct the table having 
all Ci to estimate total execution cycles of a program. We can 
easily estimate the bounds of the total execution cycle 
counts from this table as follows. 

m
min max

1 i=1

 Total Execution Cycle Counts  
m

i i i i
i

N C N C
=

× ≤ ≤ ×∑ ∑  (2) 

The actual execution cycles of a program exist between the 
estimated minimum total execution cycles and the estimated 
maximum total execution cycles. Therefore, the total 
execution cycles of the estimation result will be 
 

l Total Execution Cycles estimation =  

min maxTotal Execution Cycles Total Execution Cycles

2

+
 (3) 

From Eq. (2) and(3), we can obtain the worst-case error as 
follows. 

l Worst-case error(%) =  
estimation min

min

Total Execution Cycles  Total Execution Cycles
100

Total Execution Cycles 

−
×

 (4) 

 
If we measure the actual cycle counts by full-simulation to 
verify the quality of the proposed method, the measured 
error becomes the difference between the actual execution 
cycles and the estimated total execution cycles as follows. It 

is easy to show that this  measured error is always smaller 
than the worst-case error, hence the latter being the error 
bounds. Therefore, a designer can obtain the estimation 
result within the desired error by using the worst-case error. 
 

x x x x x

+All cache misses latency Branch prediction
miss penalty

latency

Maximum execution cycles

Minimum execution cycles 0

# of long latency
floating point
computation
instructions

# of long
latency integer
computation
instructions

# of
floating point
computation
instructions

# of memory
access instructions

# of instruction
computation
and control
instructions

latencylatencylatencylatency

 

Figure 8. Calculation of Maximum Execution Cycles with 
resource usage information 

 
l Measured error (%) =  

estimation actual

actual 

Total Execution Cycles Total Execution Cycles
100

Total Execution Cycles

−
×

 (5) 

 
4.4    Adaptive Sample Size Determination 
Since sampled-data size is closely related to the speedup and 
estimation error, sample size determination strategy is 
important. As the size of the sample gets larger, estimation 
error is reduced with the sacrifice of speedup. Moreover, the 
size of sample satisfying the desired error bound is  different 
according to applications. Therefore, we propose a n efficient 
heuristic  to determine the sample data size. We define the 
sample size set as follow. 

 
k k-1 kS = {S |  0 N, S S }k≺ ≺ ≺  

l Sk : size of kth sample data 
l N : number of admissible sample data 
 

First of all, designer need to prepare the sample size set 
which is divided into equal space or user defined space. For 
example, if there are 512KB input data, a designer can divide 
it into equal space with 0.1KB. In this case, the number of 
element becomes 5120 in the sample size set. However, for 
some application such as EPIC, the sample size must be 
power of two. In this case, designer needs to prepare only 
feasible sampled-data set. After this sampled-data set is 
given, we use binary search to determine best-fit size of 
sample data through the design space exploration. Note that 
the purpose of this procedure is trying to make the sample 
size converge to the best-fit one, as soon as possible, where 
the speedup is maximized while maintaining the estimation 
error under the desired error bounds. This can be practically 
important because even a single target application would 
require lots of simulations by changing the parameter 
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configuration, in which case the gross speedup over the 
design space exploration would be largely dependent upon 
the chosen size of sampled-data. 

Table 1. Baseline architecture configurations 

 
 
 
V.   EXPERIMENTAL RESULTS 
 
We use the SimpleScalar simulator environment [2] as a 
basic tool-set upon which the estimation capability is built. 
Table 1 shows the baseline architecture configurations, 
selected from 37 parameters provided by SimpleScalar, to 
verify the performance of the proposed method. 
Furthermore, we selected Mediabench [6] as target 
applications for the experiment because it is most popular 
and well-organized benchmarks for various media 
applications, ranging from signal and image processing to 
cryptography. We estimated total execution cycles of 
Mediabench applications on various processor 
configurations using the proposed method. Mediabench 
includes a set of media applications and associated reference 
data. However, the size of input data is closely related to 
simulation time, hence the speedup. A skillful designer 
would use a part of reference data which is enough to 
represent the performance of a processor. Generally, the CPI 
(cycle per instruction) is well-known metric for performance 
evaluation. When we simulate a program with reference data, 
the CPI will converge to the steady state value. Therefore, 
we can obtain the CPI characteristics by simulating the data 
until the CPI goes into the steady state region. Therefore, we 
determine the actual input data size as the value at which the 
CPI just goes into the steady state region with 1% stable 
margin. For example, the reference data size of the RASTA 
application is 256KB, and its CPI is approximately 0.862 on 
the baseline architecture. However, we can obtain the 

approximate CPI value of this application with only 32KB 
input data. Table 2 shows the size of original reference data 
and actual input data according to the applications. 

Table 2. Comparison of reference and reduced input data size. 

Applications Reference data (KB) Input data (KB) 

JPEG 100 43 

GSM 289 5 

G.721 100 22 

RASTA 256 32 

EPIC 256 256 

ADPCM  289 51 

 

Table 3.  Comparison of Speedup with the 5% desired error 

Applications Reference data (KB) Input data (KB) 

JPEG 5.43 3.63 
GSM 54.26 1.22 

G.721 1886.05 434.6 
RASTA 28.15 4.09 

EPIC 8.16 8.16 
ADPCM 212.86 64.88 

Average  632.9 86.1 

 
The reason why we reduce the reference data this way is  to 
fairly compare the speedup of the proposed method to 
others as much as possible . The rest of reference data except 
for the actual input data will be the redundant part which 
increases speed up. Table 3 compares the speedup when we 
use reference data and reduced input data for estimation 
with the 5% desired error. In the rest of this  paper, we will 
regard the speedup with reduced input data as the speedup 
of this approach. This metric will represent the usefulness of 
the proposed method with the measured error. 
 
5.1    Performance measurement through design 
space exploration 
From now on, lots of graphs are going to be presented to 
show the worst-case error and actually measured error for 
the result of the proposed estimation method when 
processor configurations vary. Note that the measured error 
(distance between the true cycle counts and estimated value 
by the proposed tool) is always less than the worst-case 
error, i.e., reported error bound. We followed the procedure 
described in Section V, and gather the estimation results 
with converged sample size and 5% desired error.  
 
- Variation in the degree of parallelism 
There are four parameters in charge of the degree of 
parallelism (instruction fetch queue size, decode width, issue 
width, commit width). From the baseline parameter (4, 4, 4, 4), 
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we estimate the execution cycles of two different 
configurations using sampled-data simulation. Fig. 9(a) and 
(b) show the estimation results including the worst-case 
error and the measured error. 
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Figure 9. Variation of Instruction fetch size, 
decode/issue/commit width  (a) (2,2,2,2) (b) (16,8,8,8) 

- Variation of Reorder Buffer: RUU, LSQ 

We consider a pair of RUU and LSQ size for design space 
exploration, varying from the baseline parameter (16, 8) to (4, 
4) and (32, 16). Fig. 10 (a) and (b) show the estimation results. 
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Figure 10. Variation of RUU, LSQ size  

- Variation of Memory & FU latency 
There are various memory and functional units with different 
latency.  
l Memory latency group 

(Branch prediction penalty, L2 data cache hit latency, 
L1 data cache hit latency, L2 instruction cache hit 
latency, TLB hit latency, TLB miss latency, Memory 
access latency) 

l Functional units latency group 
(IALU latency, IMUL latency, FALU latency, FMUL 
latency) 

 
The memory latency group varies from (3,6,1,6,1,1,30,8) to 
(7,12,1,12,1,1,25,64). And the functional unit latency group is 
varied from (1,3,1,4) to (3,6,5,8). Fig. 11 (a) and (b) show the 
estimation result with errors for each group, respectively. 
 
- Functional Unit Duplication 
The number of functional unit is directly related to the 
execution cycles. However, it is not always proportional to 
execution cycles. Therefore, a designer should carefully 
consider the number of functional units, too. We grouped 
four kinds of functional units as follows. 
 
l (# of Integer ALUs, # of Integer Multipliers, # of Floatin

g point ALUs, # of Floating point Multipliers) 
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Figure 11. Variation of memory latency and  functional unit 
latency  

We estimate the execution cycles from the base parameters 
(4,1,4,1) to two other parameter group, (1,1,1,1) and (8,2,4,2). 
Fig.12 shows the estimation results . 
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Figure 12. Functional unit duplication  

5.2. Speedup and Measured Estimation Error 
In previous subsection, we looked at the worst-case and the 
measured error assuming 5% desired error. If a designer sets 
the desired error larger, the size of sampled-data will 
decrease. As a result, we obtain large speed up and the 
measured error. We summarize all of the estimation results 
according to the user-defined desired error and show the 
loop information which is useful to partially guess the 
complexity of the programs in Table 4. Average measured 
error represents average of the difference between the total 
execution cycles and the estimated total execution cycles on 
the nine configurations, which is actual error by using this 
estimation method. The speed up and the measured error are 
dependent on applications, because the complexity of a 
program structure is  different. If the program structure is 
simple like as ADPCM or G.721, we can obtain high speed up 
and small measured errors through the proposed estimation 
method. JPEG and RASTA applications are just the 
opposite. The measured error is very small in spite of 
estimation with large desired error. The average speed up is 
86 times faster than full data simulation, and average of all 
measured error is 0.8% with the 5% desired error. When we 
set the 20% desired error, average speed up is 134 times 
faster and average of all measured error is 2.79%. All of the 
estimation results are satisfactory in speedup and measured 
estimation error compared to previous research works. For 
comparison, in the related work, the average speed up is 15 
times faster and the average error is approximately 13%  in 
trace sampling method. Also, the result of statistical 
simulation show 13% error, 6% error and 22% error in JPEG, 
GSM and G.721 applications, respectively. Lastly, note that 
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the speedup in table 4 is the result when the input data size 
is reduced from the original reference data. To see the table 3 
again, we have speedup of 632.9 on average instead of 86.1 
for the desired error of 5%. 
 

Table 4. Speed Up and Measured Error  

 
 

There can be some argues which data size is practically 
reasonable. One thing we can tell is that the size of the input 
data should be determined according to the objectives of the 
simulation. If one of the design objectives is related to check 
the system behavior against some constraints on peak 
values, such as peak power, it would be better not to reduce 
the size of the data. In this case, the speedup achievable by 
proposed framework would increase as table 3 implies.  
 
VI.   CONCLUSION 
 

This paper proposed a very accurate, significantly fast 
method of estimating cycle-counts of high-performance 
applications, especially loop-intensive ones, which supports 
rapid design space exploration of superscalar processors. 
Furthermore, by giving a tight upper bound on the 
estimation error, user can convince himself of the estimation 
result. In the proposed method, architecture independent 
information, such as numb er of execution counts for every 
basic block, is obtained with a full-data simulation. This 
information is reused over and over again when the 
architectural parameters change in the course of design 
space exploration, during which sampled-data simulation is 
sufficient to obtain the architecture-dependent information, 
namely basic block cost. The only exception to this 
statement is the cache/branch prediction parameters. 
Although full-data simulation is needed for such parameters 
change, this is acceptable because there are much more 
parameters requiring only sampled-data simulation, as 
shown in Section V. After applying the proposed method to 
Mediabench applications, the results showed 86 times of 
speedup against full-data simulation with 0.8% estimation 
error on average, when the desired error bound was set to 
5%. With desired error bound of 20%, speedup increased to 

134 with 2.8% estimation error on average. The results were 
much more promising than those of previous research works 
such as trace samp ling method and statistical method, in 
terms of speedup, accuracy and reliability. Future works 
include developing more accurate basic block cost model 
related to execution path and cache/branch prediction 
misses characteristics. In addition, the power/area estimation 
scheme will be integrated to extend the applicability of the 
proposed framework. 
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