
A Fast, Accurate and Reliable Estimation for
Rapid Design Space Exploration of Superscalar Architecture

Seung Bae Jee, Yeong Geol Kim and Tag Gon Kim

Systems Modeling Simulation Lab.,
Department of Electrical Engineering and Computer Science,
Korea Advanced Institute of Science and Technology (KAIST),

373-1 Kuseong-dong, Yuseong-gu, Daejon 305-701, Republic of Korea

E-mail: {ygkim,sbchi}@smslab.kaist.ac.kr, tkim@ee.kaist.ac.kr
TEL: +82-42-869-5454
FAX: +82-42-869-8054

Keywords
Cycle counts estimation, design space exploration, error
bound, sampled-data simulation

ABSTRACT
This paper proposes a very accurate and relatively fast
method of estimating cycle-counts of target applications to
rapidly find architecture parameters of superscalar
processors that satisfy user-provided real-time constraints.
Furthermore, by giving a tight upper bound on the
estimation error, user can convince himself of the estimation
result. The method is based on a classification of benchmark
characteristics into two pieces: architecture independent and
architecture dependent ones. The speedup comes from the
fact that we need only one full-simulation to obtain the
architecture independent information instead of conducting
simulation whenever parameters change. Moreover, we can
reduce the simulation time in obtaining architecture-
dependent ones through sampled-data simulation with a
little loss of accuracy. Experimental results show 86 times of
speedup against full data simulation with 0.8% estimation
error on average, if the desired error bound is set to 5%.
When we set desired error bound to 20%, speedup increases
to 134 with 2.8% estimation error on average.

I. INTRODUCTION

The demand for high-performance real-time application is
increasing due to the growth of computing power and user’s
desire to new and better applications. One of the
representative applications is the multimedia domain.
Multimedia now defines a significant portion of the

computing market, and this is expected to grow
considerably. As a consequence, the processing demands
for such applications are rapidly escalating. On the contrary,
processor design time window is becoming shorter and
requires an efficient design flow. To meet ever tightening
requirements of processor development, this paper proposes
a very accurate and relatively fast method of estimating
cycle-counts of target applications to rapidly find
architecture parameters of superscalar processors that
satisfy user-provided real-time constraints. There are
numerous technological alternatives that can be
incorporated into a processor design. These include
reservation station design, functional unit duplication,
processor branch handling strategies, and instruction fetch,
decode, issue width, and retirement policies. However, there
are practical shortcomings with these technologies for
efficiently culling a huge design space in an early design
stage. Benchmarks execute billions of instructions to test the
performance of the proposed system. Therefore, simulation
time is getting prohibitive.
Researchers have proposed several solutions to reduce
simulation time. One of the earliest studies takes a
contiguous part of the trace samp le [1]. This paper showed
that a systematic sampling of contiguous traces could
estimate processor performance with a relative error of only
13% and 15 times of speedup against traditional simulation.
Recently, statistical simulation was proposed to speedup the
simulation pro cess. In statistical simulation proposed in [3],
a statistical profile or a set of statistical program
characteristics is extracted from a program execution, e.g.,
the instruction mix, the distribution of the dependency
distance between instructions, etc. This statistical profile is
then used to generate a synthetic trace that is subsequently

ISBN: 1-56555-269-5 585 SPECTS '03

mailto:ygkim@smslab.kaist.ac.kr,sbchi@smslab.kaist.ac.kr
mailto:tkim@ee.kaist.ac.kr

fed into a trace-driven simulator, which will compute the
attainable performance for the micro architecture model.
Thanks to the statistical nature of the technique,
performance characteristics quickly converge to a steady
state solution. Therefore, statistical simulation is a useful
technique for culling huge design spaces in limited time [4].
However this approach shows large error from 6% to 22%.
All of these approaches have relatively large error and they
do not provide the error bound on the estimated value.

This paper proposes faster, more accurate method of
estimating cycle-counts of high-performance applications,
especially loop-intensive ones, which supports rapid design
space e xploration of superscalar processors. Furthermore, by
giving a tight upper bound on the estimation error, user can
convince himself of the estimation result. The rest of the
paper is organized as follows. Section 2 presents an
overview of the proposed approach, while Section 3 and 4
describes the details of the framework. After showing the
experimental results in Section 5, we conclude in Section 6.

II. OVERVIEW OF THE PROPOSED
METHOD

Before describing the details of the proposed method, let us
describe some basic terminologies and assumptions. A
program structure is a directed graph whose node and edge
represent the basic block and control flow of the program,
respectively. A basic block is a sequence of consecutive
statements in which flow of control enters at the beginning
and leaves at the end without halt or possibility of branching
except at the end. The proposed method is based on an
assumption that the program structure does not change
even though the architecture configuration changes. This
assumption holds for our framework thanks to the nature of
the run-time instruction scheduling feature of superscalar
architecture. In other words, there is no need to recompile
the benchmark program even when the parameters' values
change. Furthermore, the number of each basic block being
visited remains constant across parameter value change
because the control flow of the program does no depend on
the machine configuration. To summarize, the number of
execution counts for each block is architecture-independent
information. On the contrary, the execution cycle counts of
basic block is surely architecture-dependent. For example,
cycle counts taken for executing each basic block varies with
change of parameters, such as number of functional units,
branch prediction strategy, decode/issue width, and so on.

Finally, there is a popular saying that most programs
spend ninety percent of their execution time in ten percent of
the code [5]. While the actual percentages may vary, it is
often the case that a small fraction of a program accounts for
most of the running time. Especially, a loop that contains no
other loop is called an inner loop. These loops make
execution of the same basic block over and over again.
Therefore, we need not to repeatedly simulate same basic

blocks again and again to obtain the execution cycle counts
of basic blocks. In general, it can be obtained with negligible
error by sampled data simulation, as our experimental results
show. The estimation is done through following three-steps.

l Step 1: Full data simulation to obtain exact execution

counts of basic blocks.
l Step 2: Sample data simulation to estimate cycle counts

of basic blocks.
l Step 3: Estimate total execution cycle counts from

these two information.

Architecture Independent Parts
: simulate once

Architecture Dependent Parts
: simulate every time

 Ni Ci

Bi

Ni+3 Ci+3

Bi+3

Ni+2 Ci + 2

Bi+2

Ni+1 Ci+1

Bi+1

it h basic block : Bi
Execution Counts of B

i
 : N

i
Execution Cost of Bi : Ci

 Ni

N
i+1

N
i+2

 Ni+3

Ci

Ci+1 Ci+2

Ci+3

Total Execution Cycles

basic blocks

i
i = root

N iC
∀

×∑

(a) (b)

Figure 1. Basic concept of estimation (a) Result of full-data
simulation (b) Basic block cost table

Fig. 1 (a) shows execution counts and cost information of
basic blocks obtained by full-data simulation. In this figure,
BBi is the basic block identifier, Ni is the basic block
execution counts, Ci is the execution cycles of basic blocks.
The BBi and Ni are architecture independent parts. And Ci is
architecture dependent part. Fig.1(b) shows the flow of
estimation to obtain total execution cycles using sampled-
data simulation. The left side of Fig.1 (b) represents
architecture independent information which is obtained by
full-data simulation just once. And the right side of Fig.1 (b)
represents architecture dependent information which is
obtained by sampled-data simulation. We reconstruct Fig.
1(a) from (b) with following equation.

#basic blocks

i=1

Total Execution Cycles = i iC N×∑ (1)

When processor configurations vary, the Ni information will
be reused. And Ci will be obtained from simulation using
sample data which is much smaller than full-data. Therefore,
we can reduce simulation time to obtain total execution
cycles on various processor configurations. The problem is
how we can obtain accurate estimation of total execution
cycles with basic block cost obtained through sampled-data
simulation.

ISBN: 1-56555-269-5 586 SPECTS '03

III. BASIC BLOCK COST ESTIMATION

IF ID EX WB RS

B2,I1 B1,I4 B1,I3 B1,I2 B1,I1

B2,I2 B2,I1 B1,I4 B1,I3 B1,I2

B2,I3 B2,I2 B2,I1 B1,I4 B1,I3

B3,I1 B2,I3 B2,I2 B2,I1 B1,I4

B3,I2 B3,I1 B2,I3 B2,I2 B2,I1

B3,I3 B3,I2 B3,I1 B2,I3 B2,I2

B3,I4 B3,I3 B3,I2 B3,I1 B2,I3

C1

C2

C3

C4

C5

C6

C7 Time

B1 B3

B2

(a)

(b)

(c)

B1

(d)

B3

B2
B2

B2 cost
B2 cost

IF ID EX WB RSIF ID EX WB RS

B2,I1 B1,I4 B1,I3 B1,I2 B1,I1

B2,I2 B2,I1 B1,I4 B1,I3 B1,I2

B2,I3 B2,I2 B2,I1 B1,I4 B1,I3

B3,I1 B2,I3 B2,I2 B2,I1 B1,I4

B3,I2 B3,I1 B2,I3 B2,I2 B2,I1

B3,I3 B3,I2 B3,I1 B2,I3 B2,I2

B3,I4 B3,I3 B3,I2 B3,I1 B2,I3

C1

C2

C3

C4

C5

C6

C7 Time

B1 B3

B2

(a)

(b)

(c)

B1

(d)

B3

B2
B2

B2 cost
B2 cost

Figure 2. Basic block cost (a) Pipeline status when a
program is executed (b) Control flow between preceding and
current basic block (c) Small basic block cost (d) Large
basic block cost

Firstly, we define the cost of basic block before describing
the process of total cycle counts estimation. Since
superscalar architecture is pipelined, we need to consider
overlapping effects of instructions between consecutive
basic blocks in defining the basic block cost. Therefore, we
define the cost of a basic block as the number of cycles
taken from the last instruction of a preceding basic block
being retired to the last instruction of current basic block
being retired. To see Fig. 2(a) for example, the first
instruction I1 of basic block B2 enter into pipeline stage at C1,
while the last instruction I3 of basic block B2 is retired at C7.
However, the instructions of the preceding basic block B1
remain in the stage from C1 to C3. Therefore, the execution
cycles purely devoted to the basic block B2 can be thought
of as C4 to C7, which are 3 cycles. Fig. 2 (b)-(d) shows that
cost of the same basic block can vary for each preceding
basic block. The current basic block B2 has many
predecessors. If predecessor B1 has large execution cycles
and many instructions of B2 are overlapped into B1, the
execution cycles of B2 will be small (Fig. 2 (c)). If predecessor
B3 has small execution cycles and a few instructions of B2 are
overlapped into B1, the execution cycles of B2 will be larger
than previous case (Fig. 2 (d)).

3.1 Cost Classifier
The basic block cost defined above is affected by following
factors.

l All execution paths from the root to current basic block

in the program structure.
l Number of c a c h e / b r a n c h p r e d i c t i o n m i s s e s

for every basic block in the execution path.

However, considering all of these factors for accurate cost
calculation becomes impractical due to its large overhead.
Through many experiment, we found that following
simplified version suffices for the calculation of the basic
block cost while maintaining high accuracy.

Predecessor Current basic block Miss flag Execution cycles

Branch
prediction miss

#of L2 data
cache read

misses

of L1 data
cache read

misses

of Data
TLB misses

of L2 inst.
cache misses

of L1 inst.
cache misses

of inst.
TLB

misses

(a)

(b)

Figure 3. Data structure for basic block cost (a) Cost
classifier and cost (b) Miss flag field

l An execution path from the immediately preceding
basic block to the current basic block.

l Number of cache / branch prediction misses in the curr
ent basic block.

We define these pair of information as a cost classifier in a
sense that the cost of the basic block is uniquely determined
by them. In other words, a basic block can have different
values of cost by the number of distinct cost classifiers.
Since the cache and branch prediction miss information
affects the basic block cost, we need to conduct full-data sim
ulation whenever the cache/branch prediction parameter
changes. In spite of this limitation, we can reuse architecture
independent information when all other processor configurat
ions vary, whose number is much larger as will be shown in
our experimental results.

IV. DETAILS OF THE ESTIMATION
METHOD

This section describes the details of the proposed cycle-
counts estimation methodology. After brief presentation of
the data structures used for estimation, actual estimation
scheme is explained.

4.1 Data structure for Estimation
Fig. 3(a) shows the cost structure for a basic block
consisting of the cost classifier and associated cost. As
previously said, the cost classifier is a triple (preceding basic
block id, current basic block id, miss flag). The miss flag
includes the number of instruction cache/TLB misses, data
cache/TLB read misses and branch prediction miss in the
current basic block as shown in Fig. 3(b). This miss flag
largely affects execution cycles of a basic block, because the
cache and branch prediction miss penalty stall the pipeline
stages of a processor. For example, the instruction cache
miss stall the fetch stage in the pipeline and data cache read
miss delay issue of the instruction, and branch prediction
miss stall the fetch stage and flush pipeline during penalty
cycles. Now, we define a data structure for basic block
execution counts, which is filled in after full-data simulation.
As shown in Fig. 4(a), there are two fields for every cost
classifier.

l # of execution : number of occurrences of (preceding

basic block id, current basic block id, miss flag)

ISBN: 1-56555-269-5 587 SPECTS '03

l resource usage : number of resource usage to execute all
instructions in the current basic block

As will be described later in detail, the resource usage field is
useful to calculate worst-case maximum execution cycles of
the basic block when there is no matching classifier in the
sampled-data simulation result.

Predecessor Current basic block Miss flag Execution counts Resource usage

of long latency
floating point
computation
instructions

of long
latency integer
computation
instructions

of
floating point
computation
instructions

of memory
access instructions

of instruction
computation
and control
instructions

(a)

(b)

Figure 4. Data structure for basic block execution counts
(a) Overall fields (b) Resource usage field

4.2 Estimation of Total Cycle Counts
Fig. 5 shows the overall flow of estimating total cycle counts
with the data structures described previously. While we
obtain execution counts table using the execution counts
and cost filed after the full-data simulation, the execution
cost table is constructed after the sampled-data simulation,
as shown in Fig. 5(a) and (b), respectively. Therefore, we can
estimate execution cycles of a program from them by joining
table to apply Equation (1), as shown in Fig. 5(c).

We need to obtain execution counts table again only
when the structures of cache/branch predictor vary. To see
Fig. 5(b) and (c) again, we can observe that the costs for
BID2's are not found in the tables . Note that this is hard-to-
avoid consequence due to the nature of sampled-data
simulation. This kind of situation requires worst-case
analysis, which will be described in detail in the following
subsection.

4.3 Calculation of estimation-error bounds
We need all execution costs for basic blocks to estimate total
execution cycles. However, C3, C4, and C5 are left blank at
the fourth column in Fig. 5(c). Actually, there can be two
kinds of missing in the cost table obtained through sample
data simulation – no cost for MF or BID. Fig. 6 (a) and (b)
show these two cases, respectively. These two kinds of
missing make an error and there is a chance to decrease
reliability of estimation. Therefore, we consider execution
cost bounds of missing basic blocks, and find the worst-
case error from it. Consequently, a designer can obtain total
execution cycles of a program within the desired error.

- Bounds of Execution Cycles in the absence of MF
Fig. 6(a) shows the case that there is identical BID but no
identical MF (Miss Flag) between execution counts table
and cost table. Even in this case, neighboring cost
information with the same BID and similar MF can exist in

the cost table. Therefore, it is possible to find either
maximum execution cycles or minimum execution cycles

Basic Block
 ID

Miss
flag

Execution
counts

BID1 MF1 N1

BID2 MF4 N4

BID3 MF6 N6
...

BIDn MFm-2 Nm-2

MF3 N3

MF2 N2

MF5 N5

MFm-1 Nm-1
MF m Nm

Resource
usage flag

RU1
RU2
RU3
RU4
RU5
RU6

RUm-2
RUm-1
RUm

Full-data simulation

Basic Block
 ID

Miss
flag

BID 1 MF 1

BID 2 MF 4

BID
3

MF
6

... ...
BID n MF m-2

MF 3

MF 2

MF 5

MF m-1
MF

m

of
execution

N1
N2
N3
N4
N5
N

6
...

Nm-2
Nm-1
N

m

Execution
cycles

C1

C6
...

Cm - 2

C2

Cm - 1
Cm

T Basic Block
 ID

Miss
flag

Execution
cycles

BID1 MF1 C1

BID3 MF6 C6
...

BIDn MFm-2 Cm - 2

MF2 C2

MFm-1 Cm - 1
MF m Cm

T2

Sampled-data simulation

T1Basic Block
 ID

Miss
flag

Execution
cycles

BID 1 MF 1 C1

BID 3 MF 6 C6
...

BID n MF m-2 Cm-2

MF 2 C2

MF m-1 Cm-1
MFm Cm

Figure 5. Total cycle counts estimation (a) Execution counts
table (b) Execution cost table (C) Joined table for estimation

about the missing cost. For example, Fig.7 (a) shows the case
that there are missing MF, and we can find maximum
execution cycles in the basic block cost table. Let us assume
that the L2 cache miss penalty is 32 cycles and the L1 cache
miss penalty is 6 cycles. The MF, 0x00010130, represent that
there were one L1 data cache read miss, L2 instruction cache
miss and three L1 instruction cache misses in executing this
basic block.

BID1 MF2 Execution cyclesBID1 MF1 Execution counts Resource usage

BID1 MF2 Execution cyclesBID2 MF1 Execution counts Resource usage

X

X

(a)

(b)

Basic block execution cost tableBasic block execution counts table

Basic block execution counts table Basic block execution cost table

Figure 6. Two kinds of missing in estimating execution
cycles (a) No identical MF in execution cost table (b) No

identical BID in execution cost table.

The execution cycles of {BID1, 0x00010130} is smaller than
that of {BID1, 0x00000210} because, when the BID is
identical, the execution cycles only depends on
cache/branch prediction miss penalty. Therefore, the
maximum execution cycles of {BID1, 0x00000210} will be C1.
The execution cycles of {BID1, 0x00100310} and {BID1,
0x0011032} may become the candidates of the maximum
execution cycles. However, it is excluded to get the tight
bounds of execution cycles. The minimum execution cycles
will be 0 because, if the execution cycles of the predecessor
block is large and that of the current basic block is small, the
last instruction of these two basic blocks may be retired
simultaneously. In Fig. 7(b), we can only find minimum
execution cycle counts to the contrary. In this case, we use

ISBN: 1-56555-269-5 588 SPECTS '03

resource usage information to calculate the maximum
execution cycles. Therefore, if we know the resource usage
information to execute all instructions of the current basic
block and the latency of resources, the maximum execution
cycles will be the form of weighted sum between resource
usage counts and its latency, because all instructions will be
executed sequentially in the worst case. In addition, the
cache/branch prediction penalty will be added. The minimum
execution cycles will be 0, because the last instruction of the
current basic block may be retired with the last instruction of
the predecessor at the same time.

0x00000210 C
1

BID10x00010130 Execution counts Resource usageBID1
0x00100310 C2BID1
0x00110320 C3BID1

0x01000010 C4
BID1

0x01000130 C5BID1
0x01001130 C6BID10x01100210 Execution counts Resource usageBID1

x 0BID1Min.

Max

Min.

Max

(a)

(b)

?

Basic block execution counts table

Basic block execution cost table

Basic block execution counts table

Basic block execution cost table

Figure 7. Bounds of execution cycles when there is no MF
(a) Maximum execution cycles are found (b) Minimum
execution cycles are found.

As a result, all of the execution cost of {BIDi, MFi}s which
are included in the execution counts table will be determined
with execution cost. We finally reconstruct the table having
all Ci to estimate total execution cycles of a program. We can
easily estimate the bounds of the total execution cycle
counts from this table as follows.

m
min max

1 i=1

 Total Execution Cycle Counts
m

i i i i
i

N C N C
=

× ≤ ≤ ×∑ ∑ (2)

The actual execution cycles of a program exist between the
estimated minimum total execution cycles and the estimated
maximum total execution cycles. Therefore, the total
execution cycles of the estimation result will be

l Total Execution Cycles estimation =

min maxTotal Execution Cycles Total Execution Cycles

2

+
 (3)

From Eq. (2) and(3), we can obtain the worst-case error as
follows.

l Worst-case error(%) =
estimation min

min

Total Execution Cycles Total Execution Cycles
100

Total Execution Cycles

−
×

 (4)

If we measure the actual cycle counts by full-simulation to
verify the quality of the proposed method, the measured
error becomes the difference between the actual execution
cycles and the estimated total execution cycles as follows. It

is easy to show that this measured error is always smaller
than the worst-case error, hence the latter being the error
bounds. Therefore, a designer can obtain the estimation
result within the desired error by using the worst-case error.

x x x x x

+All cache misses latency Branch prediction
miss penalty

latency

Maximum execution cycles

Minimum execution cycles 0

of long latency
floating point
computation
instructions

of long
latency integer
computation
instructions

of
floating point
computation
instructions

of memory
access instructions

of instruction
computation
and control
instructions

latencylatencylatencylatency

Figure 8. Calculation of Maximum Execution Cycles with
resource usage information

l Measured error (%) =

estimation actual

actual

Total Execution Cycles Total Execution Cycles
100

Total Execution Cycles

−
×

 (5)

4.4 Adaptive Sample Size Determination
Since sampled-data size is closely related to the speedup and
estimation error, sample size determination strategy is
important. As the size of the sample gets larger, estimation
error is reduced with the sacrifice of speedup. Moreover, the
size of sample satisfying the desired error bound is different
according to applications. Therefore, we propose a n efficient
heuristic to determine the sample data size. We define the
sample size set as follow.

k k-1 kS = {S | 0 N, S S }k≺ ≺ ≺

l Sk : size of kth sample data
l N : number of admissible sample data

First of all, designer need to prepare the sample size set
which is divided into equal space or user defined space. For
example, if there are 512KB input data, a designer can divide
it into equal space with 0.1KB. In this case, the number of
element becomes 5120 in the sample size set. However, for
some application such as EPIC, the sample size must be
power of two. In this case, designer needs to prepare only
feasible sampled-data set. After this sampled-data set is
given, we use binary search to determine best-fit size of
sample data through the design space exploration. Note that
the purpose of this procedure is trying to make the sample
size converge to the best-fit one, as soon as possible, where
the speedup is maximized while maintaining the estimation
error under the desired error bounds. This can be practically
important because even a single target application would
require lots of simulations by changing the parameter

ISBN: 1-56555-269-5 589 SPECTS '03

configuration, in which case the gross speedup over the
design space exploration would be largely dependent upon
the chosen size of sampled-data.

Table 1. Baseline architecture configurations

V. EXPERIMENTAL RESULTS

We use the SimpleScalar simulator environment [2] as a
basic tool-set upon which the estimation capability is built.
Table 1 shows the baseline architecture configurations,
selected from 37 parameters provided by SimpleScalar, to
verify the performance of the proposed method.
Furthermore, we selected Mediabench [6] as target
applications for the experiment because it is most popular
and well-organized benchmarks for various media
applications, ranging from signal and image processing to
cryptography. We estimated total execution cycles of
Mediabench applications on various processor
configurations using the proposed method. Mediabench
includes a set of media applications and associated reference
data. However, the size of input data is closely related to
simulation time, hence the speedup. A skillful designer
would use a part of reference data which is enough to
represent the performance of a processor. Generally, the CPI
(cycle per instruction) is well-known metric for performance
evaluation. When we simulate a program with reference data,
the CPI will converge to the steady state value. Therefore,
we can obtain the CPI characteristics by simulating the data
until the CPI goes into the steady state region. Therefore, we
determine the actual input data size as the value at which the
CPI just goes into the steady state region with 1% stable
margin. For example, the reference data size of the RASTA
application is 256KB, and its CPI is approximately 0.862 on
the baseline architecture. However, we can obtain the

approximate CPI value of this application with only 32KB
input data. Table 2 shows the size of original reference data
and actual input data according to the applications.

Table 2. Comparison of reference and reduced input data size.

Applications Reference data (KB) Input data (KB)

JPEG 100 43

GSM 289 5

G.721 100 22

RASTA 256 32

EPIC 256 256

ADPCM 289 51

Table 3. Comparison of Speedup with the 5% desired error

Applications Reference data (KB) Input data (KB)

JPEG 5.43 3.63
GSM 54.26 1.22

G.721 1886.05 434.6
RASTA 28.15 4.09

EPIC 8.16 8.16
ADPCM 212.86 64.88

Average 632.9 86.1

The reason why we reduce the reference data this way is to
fairly compare the speedup of the proposed method to
others as much as possible . The rest of reference data except
for the actual input data will be the redundant part which
increases speed up. Table 3 compares the speedup when we
use reference data and reduced input data for estimation
with the 5% desired error. In the rest of this paper, we will
regard the speedup with reduced input data as the speedup
of this approach. This metric will represent the usefulness of
the proposed method with the measured error.

5.1 Performance measurement through design
space exploration
From now on, lots of graphs are going to be presented to
show the worst-case error and actually measured error for
the result of the proposed estimation method when
processor configurations vary. Note that the measured error
(distance between the true cycle counts and estimated value
by the proposed tool) is always less than the worst-case
error, i.e., reported error bound. We followed the procedure
described in Section V, and gather the estimation results
with converged sample size and 5% desired error.

- Variation in the degree of parallelism
There are four parameters in charge of the degree of
parallelism (instruction fetch queue size, decode width, issue
width, commit width). From the baseline parameter (4, 4, 4, 4),

ISBN: 1-56555-269-5 590 SPECTS '03

we estimate the execution cycles of two different
configurations using sampled-data simulation. Fig. 9(a) and
(b) show the estimation results including the worst-case
error and the measured error.

0

0.5

1

1.5

2

2.5

3

3.5

4

JPEG GSM G.721 RASTA EPIC ADPCM

Benchmarks

| E
rr

or
 (

%
)

|

Worst-case Error
Measured Error

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

JPEG GSM G.721 RASTA EPIC ADPCM

Benchmarks

| E
rr

or
 (%

) | Worst-case Error
Measured Error

Figure 9. Variation of Instruction fetch size,
decode/issue/commit width (a) (2,2,2,2) (b) (16,8,8,8)

- Variation of Reorder Buffer: RUU, LSQ

We consider a pair of RUU and LSQ size for design space
exploration, varying from the baseline parameter (16, 8) to (4,
4) and (32, 16). Fig. 10 (a) and (b) show the estimation results.

0

0.5

1

1.5

2

2.5

JPEG GSM G.721 RASTA EPIC ADPCM

Benchmarks

| E
rr

or
 (

%
)

| Worst-case Error

Measured Error

0

0.5

1

1.5

2

2.5

3

3.5

4

JPEG GSM G.721 RASTA EPIC ADPCM

Benchmarks

| E
rr

or
 (

%
)

|

Worst-case Error

Measured Error

Figure 10. Variation of RUU, LSQ size

- Variation of Memory & FU latency
There are various memory and functional units with different
latency.
l Memory latency group

(Branch prediction penalty, L2 data cache hit latency,
L1 data cache hit latency, L2 instruction cache hit
latency, TLB hit latency, TLB miss latency, Memory
access latency)

l Functional units latency group
(IALU latency, IMUL latency, FALU latency, FMUL
latency)

The memory latency group varies from (3,6,1,6,1,1,30,8) to
(7,12,1,12,1,1,25,64). And the functional unit latency group is
varied from (1,3,1,4) to (3,6,5,8). Fig. 11 (a) and (b) show the
estimation result with errors for each group, respectively.

- Functional Unit Duplication
The number of functional unit is directly related to the
execution cycles. However, it is not always proportional to
execution cycles. Therefore, a designer should carefully
consider the number of functional units, too. We grouped
four kinds of functional units as follows.

l (# of Integer ALUs, # of Integer Multipliers, # of Floatin

g point ALUs, # of Floating point Multipliers)

0

0.5

1

1.5

2

2.5

3

3.5

JPEG GSM G.721 RASTA EPIC ADPCM

Benchmarks

| E
rr

or
 (%

) |

Worst-case Error

Measured Error

0

0.5

1

1.5

2

2.5

3

JPEG GSM G.721 RASTA EPIC ADPCM

Benchmarks

| E
rr

or
 (

%
)

|

Worst-case Error

Measured Error

Figure 11. Variation of memory latency and functional unit
latency

We estimate the execution cycles from the base parameters
(4,1,4,1) to two other parameter group, (1,1,1,1) and (8,2,4,2).
Fig.12 shows the estimation results .

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

JPEG GSM G.721 RASTA EPIC ADPCM

Benchmarks

| E
rr

or
 (

%
)

|

Worst-case Error

Measured Error

0

0.5

1

1.5

2

2.5

3

3.5

4

JPEG GSM G.721 RASTA EPIC ADPCM

Benchmarks

| E
rr

or
 (

%
)

|

Worst-case Error

Measured Error

Figure 12. Functional unit duplication

5.2. Speedup and Measured Estimation Error
In previous subsection, we looked at the worst-case and the
measured error assuming 5% desired error. If a designer sets
the desired error larger, the size of sampled-data will
decrease. As a result, we obtain large speed up and the
measured error. We summarize all of the estimation results
according to the user-defined desired error and show the
loop information which is useful to partially guess the
complexity of the programs in Table 4. Average measured
error represents average of the difference between the total
execution cycles and the estimated total execution cycles on
the nine configurations, which is actual error by using this
estimation method. The speed up and the measured error are
dependent on applications, because the complexity of a
program structure is different. If the program structure is
simple like as ADPCM or G.721, we can obtain high speed up
and small measured errors through the proposed estimation
method. JPEG and RASTA applications are just the
opposite. The measured error is very small in spite of
estimation with large desired error. The average speed up is
86 times faster than full data simulation, and average of all
measured error is 0.8% with the 5% desired error. When we
set the 20% desired error, average speed up is 134 times
faster and average of all measured error is 2.79%. All of the
estimation results are satisfactory in speedup and measured
estimation error compared to previous research works. For
comparison, in the related work, the average speed up is 15
times faster and the average error is approximately 13% in
trace sampling method. Also, the result of statistical
simulation show 13% error, 6% error and 22% error in JPEG,
GSM and G.721 applications, respectively. Lastly, note that

ISBN: 1-56555-269-5 591 SPECTS '03

the speedup in table 4 is the result when the input data size
is reduced from the original reference data. To see the table 3
again, we have speedup of 632.9 on average instead of 86.1
for the desired error of 5%.

Table 4. Speed Up and Measured Error

There can be some argues which data size is practically
reasonable. One thing we can tell is that the size of the input
data should be determined according to the objectives of the
simulation. If one of the design objectives is related to check
the system behavior against some constraints on peak
values, such as peak power, it would be better not to reduce
the size of the data. In this case, the speedup achievable by
proposed framework would increase as table 3 implies.

VI. CONCLUSION

This paper proposed a very accurate, significantly fast
method of estimating cycle-counts of high-performance
applications, especially loop-intensive ones, which supports
rapid design space exploration of superscalar processors.
Furthermore, by giving a tight upper bound on the
estimation error, user can convince himself of the estimation
result. In the proposed method, architecture independent
information, such as numb er of execution counts for every
basic block, is obtained with a full-data simulation. This
information is reused over and over again when the
architectural parameters change in the course of design
space exploration, during which sampled-data simulation is
sufficient to obtain the architecture-dependent information,
namely basic block cost. The only exception to this
statement is the cache/branch prediction parameters.
Although full-data simulation is needed for such parameters
change, this is acceptable because there are much more
parameters requiring only sampled-data simulation, as
shown in Section V. After applying the proposed method to
Mediabench applications, the results showed 86 times of
speedup against full-data simulation with 0.8% estimation
error on average, when the desired error bound was set to
5%. With desired error bound of 20%, speedup increased to

134 with 2.8% estimation error on average. The results were
much more promising than those of previous research works
such as trace samp ling method and statistical method, in
terms of speedup, accuracy and reliability. Future works
include developing more accurate basic block cost model
related to execution path and cache/branch prediction
misses characteristics. In addition, the power/area estimation
scheme will be integrated to extend the applicability of the
proposed framework.

REFERENCE

[1] T.M. Conte, M.A. Hirsch, and K.N. Menezos. Reducing

state loss for effective trace sampling of superscalar
processors. In Proceeding of the 1996 International
Conference on Computer Design (ICCD-96), pages 468-
477, October, 1996.

[2] T.M. Austin. A User's and Hacker's Guide to the
SimpleScalar Architectural Research Tool Set, January,
1997

[3] M. Oskin, F.T. Chong, and M. Farrens. HLS: Combining
statistical and symbolic simulation to guide
microprocessor design. In Proceedings of the 27th
Annual International Symposium on Computer
Architecture (ISCA-27). pages 71-82, June. 2000.

[4] L. Eeckhout, K.D. Bosschere, Increasing the accuracy of
statistical simulation for modeling superscalar
processors. Performance, Computing, and
Communications, 2001. IEEE International Conference
on. , pages 196-204, 2001

[5] J.D. Ullman, Compilers - Princip les, Techniques, and
Tools, Addison-Wesley, 1986.

[6] Chunho Lee, Miodrag Potkonjak, William H. Mangione-
Smith, MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems . In Proceedings of
MICRO'97, pages 330-335, December 1997.

[7] Victor V. Zyuban. Inherently Lower-power High-
Performance Superscalar Architectures. PhD paper,
Department of Computer and Science Engineering, Notre
Dame, Indiana, 2000.

[8] Subbarao Palacharla, Norman P.Jouppi and J.E. Smith.
Complexity-Effective Superscalar Processors. In
Proceedings of the 24th Annual International Symposium
on Computer Architecture(ISCA-24). pages 206-218, June.
1997

ISBN: 1-56555-269-5 592 SPECTS '03

	TITLE PAGE
	SPECTS Table of Contents
	ACROBAT HELP
	A Fast, Accurate and Reliable Estimation for Rapid Design Space Exploration of Superscalar Architecture
	Keywords
	ABSTRACT
	I. INTRODUCTION
	II. OVERVIEW OF THE PROPOSED METHOD
	III. BASIC BLOCK COST ESTIMATION
	3.1 Cost Classifier

	IV. DETAILS OF THE ESTIMATION METHOD
	4.1 Data structure for Estimation
	4.2 Estimation of Total Cycle Counts
	4.3 Calculation of estimation-error bounds
	4.4 Adaptive Sample Size Determination

	V. EXPERIMENTAL RESULTS
	5.1 Performance measurement through design space exploration
	5.2. Speedup and Measured Estimation Error

	VI. CONCLUSION
	REFERENCE

