
Automated Generation of Product Use Case Scenarios

in Product Line Development

Woo-seok Choi †, Sungwon Kang ‡, Hojin Choi ‡ and Jongmoon Baik ‡

†
Platform Laboratory, KT

wsc@kt.com
‡
School of Engineering, Information and Communications University

{kangsw, hjchoi, jbaik}@icu.ac.kr

Abstract

Use case scenario has been commonly used for

single products. However, when used for software

product lines, it raises new issues to consider. In

software product lines, products share common

features and additionally have their own unique sets of

features where the latter can be represented by so

called variability model. When various combinations

of variants are selected, they should be selected such

that they obey the constraints imposed by variability

model. Therefore, the use cases developed for a

product line cannot be used straightforwardly for

products. In this paper, we provide a systematic way to

mapping the constraints in a variability model called

OVM to use case scenarios using the notion of tagged

use case scenario. We also present an algorithm for

automatically generating product use case scenarios

based on OVM model and tagged use case scenarios.

KEY WORDS

Product Line, Use Case Scenario, Variability Model,
OVM

1. Introduction

Use cases are a powerful technique for modeling
requirements. By elaborating a use case, use case
scenarios are obtained. Use case scenarios embody use
cases in that they represent complete execution paths
of the system for the corresponding use cases.

Product line is a new paradigm in software
engineering. In product line, systems share common
characteristics called common features. In addition,
each product has its own unique set of features. The
Orthogonal Variability Model (OVM) is a dedicated
variability model, and it provides a cross-sectional
view of the variability across all software development
artifacts. In OVM, the designated points where such
unique features can appear are called variability points

(VP). The unique features in VP are called variants.

When various combinations of variants are selected,
they should be selected such that they obey the
constraints imposed by variability model. Therefore,
the use cases developed for a product line cannot be
used straightforwardly for products. Several
approaches [1,3-5,8] tried to solve the problem related
to using use cases for product line. However, they did
not handle various variability types and variability
dependencies in product line. This paper provides a
systematic way to map the constraints in a variability
model called OVM to use case scenarios using the
notion of tagged use case scenario and an algorithm for
automatically generating product use case scenarios
based on OVM model and tagged use case scenarios.

The rest of the paper is organized as follows:
Section 2 discusses related works. Section 3 shows the
basic concepts of our approach and explains our
algorithmic approach of automated generation of
product use case scenarios. Section 4 describes case
study to show how our approach can be used. Finally,
Section 5 concludes the paper.

2. Related Works

There are three main approaches to deriving use case
scenarios for product line. First, John et al. [1, 2] and
Trigaux et al. [3] propose XML-like tag notations to
represent variability in a textual use case scenario.
Second, Bertolino et al. [4,5] propose another tag
notations representing VPs and variants, and extend
the notation to a formal logic expression to check
conformance of product scenarios to product line
constraints. Third, Gomaa [6] proposes approaches to
represent variability in the UML model, in which all
the variability information is described in a natural
language and the variability is listed separately from
the common functionality of use case scenarios.

Nebut et al. [7] proposed a requirements-based
approach to functional testing of product lines, based
on a formal test generation tool. Requirements are
documented with high-level sequence diagrams, which

978-1-4244-2358-3/08/$20.00 © 2008 IEEE CIT 2008760

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:48:21 UTC from IEEE Xplore. Restrictions apply.

are then combined into reusable assets called
behavioral test patterns and used to automatically
generate test cases specific to each product.

Biddle et al. [8] applies the concept of reusing use
cases to a software product family. The authors
proposed essential use cases whose characteristic is the
abstraction of details about the technology involved in
the interaction between the user and the system.

However, the proposed methods have certain
limitations as follows: First, their product line use
cases do not fully support all the possible types of
variability. Second, using tags to embed all variability
information into use case scenarios makes use case
scenarios get overloaded and very complex, resulting
in decreased readability. Third, adding tags into a
particular artifact, e.g. use case scenarios, causes
variability information to be spread reducing
traceability [9]. Fourth, manually generated product
use case scenarios are very error-prone. Nebut et al. [7]
proposed an approach for automated generation of test
cases based on sequence diagrams rather than textual
use case scenarios. Although sequence diagrams can
be regarded as formalized behavioral requirements, the
sequence diagram currently standardized does not
incorporate facilities to capture various variability
aspects.

Our approach in this paper solves the problems
mentioned above in two ways. First, it proposes a
simpler tag notation than the previous approaches. By
mapping tags in use case scenarios to the OVM model,
we can keep variability information consistent through
the whole development life cycle. Second, it provides
an algorithmic mechanism for automated variant
selection from the OVM, thereby reducing human
effort to check consistency of product use case
scenarios significantly.

3. Automated Generation of Product Use

Case Scenarios

To generate product use case scenarios, valid sets of
variants must be selected. This process is performed by
‘Set-Based Selection’. With selected sets, product use
case scenarios can be generated.

3.1. Basic Concepts for Set-Based Selection

Our approach is based on two main concepts. The first
one is the tagged use case scenarios, which is
described in Section 3.1.1. The second one is the Set-
based Variability Expression described in Section 3.1.2.
The automated selection algorithm and the product use
case scenario generation method will be presented in
Section 4 based on the two concepts

3.1.1 Tagged Use Case Scenarios for Product

Lines

The variability information embedded in use case
scenarios can get overloaded and complicated as
scenarios contain more and more information. The
OVM model collects variability information separately
from various artifacts and allows us to manage them
effectively. Our approach maps use case scenarios to
the OVM, rather than embedding all the variability
information in use case scenarios. The approach of
Bertlino et al. [5] is complicated by adding several
types of tags, such as alternative, parametric, and
optional, to the use case scenario. Our idea is to adopt
the OVM model to manage variability so that tags
become much simpler than before.

To make tagged use case scenarios, the inputs in
this step are the OVM and the textual description of
functional requirements. One of the inputs, the OVM
model, needs to be transformed to textual formal
description that can be understood by the system.

Next, variation points to be mapped to the OVM in
the text-based functional requirements should be found.
Actually, identifying variabilities from text-based
functional requirements involves human intervention.
Therefore it is not easy to apply formal methods to
variability identification. We suggest the following
empirical technique. Figure 1 shows part of textual
description of a system that appears in the paper [6].

Because the oven is to be sold around the world, it

must be able to vary the display language. The default

language is English, but other possible languages are

French, Spanish, German, and Italian. The basic oven

has a one-line display; more-advanced ovens can have

multi-line displays.

Figure 1. System description example

By carefully analyzing textual description, we can
find variable options of the system, alternative choices
of functionality, and mandatory functions.

[Language] Language1: English
 Language2: French
 Language3: Spanish
 Langauge4: German
 Language5: Italian
[Display] Display1: a one-line display
 Display2: multi-line displays

Figure 2. Two variability examples extracted

from requirements specification of Figure 1

On the basis of the variability information in Figure
1, VPs in the common scenario are expressed as in
Figure 2. According to Figure 2, the microwave oven
displays messages in a variant language of the VP

761

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:48:21 UTC from IEEE Xplore. Restrictions apply.

[Language]. The display type of microwave oven is
indicated through the [Display] VP. In contrast to [4],
these tags are used only for marking VPs in use case
scenarios of product line. In our approach, we just
adopt the basic tag notation from [4] for that purpose.
In our usage of tags, it has some variability
information and is mapped to the VPs or variants of
the OVM model. For this reason, it is not necessary to
have all kinds of tags. Furthermore, a complicated
logical expression to check conformance as used by
Bertilino et al. [5] is not necessary because in our
approach the OVM model has all the variability
information.

3.1.2. Set-Based Variability Expression

To handle VPs and variants with an algorithmic way,
variability information of the OVM model need be
abstracted. Jaring et al. [10] proposed taxonomy of
variability dependencies based on a set representation.
Mannion [11] showed how to represent features using
logic expressions but it is not optimized for the OVM
model and did not provide any automated approach.
By using Z notation [12], we can represent VPs and
variants in a more formal way.

OVM contains several notations for representing
dependencies between variabilities. When representing
VPs and variants with a set-based expression of Z,
dependency types must be considered. There are three
kinds of dependencies: variability dependency, artifact
dependency and constraint dependency. Figure 3
shows an OVM model that has alternative choices. In
Figure 3, ‘[1..2]’ means that at least one but no more
than two variants need be selected.

Figure 3. Alternative choices in OVM

Therefore, the possible variants from the OVM are:
{v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}

Using Z notation, we define a partial power set of a set
X as follows:

�[X]�������������������
��[min..max] : �X � �X

�����������������
�	s : �X ; min :
 ; max :
 � �[min..max] X

�� #s
 min � #s � max

����������������������
Then,
� [0..n] VP <=> � VP (n is the number of variants in VP)

Now the possible variants in Figure 3 can be

represented as follows:
� [1..2] VP = {{v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}}

Since this dependency is related to the relationship
between VPs or between VP and variant, they do not
affect the representation of variability directly.
However, this information is critical when a Set-based
Variability Expression (SVE) is expanded, which will
be explained in Section 3.2.

We consider six kinds of constraint dependencies:
‘variant requires variant’, ‘VP requires VP’,
‘variant requires VP’, ‘variant excludes variant’,
‘VP excludes VP’, ‘variant excludes VP’. The
constraint relation represents these six kinds of
constraint dependencies in the form of a relation.
Source and Target are sets of variants which are,
respectively, sources and targets of the dependency.

Furthermore, in order to represent those constraints
with other variants, the ‘!’ operator for excludes is
defined. With the standard definitions of dom, we
define ‘ !’ operator for exclusion as follows:

�[X]��������������������
�_ !_: �X � (X �X) � �X

�����������������
�	R : X �X ; d : dom R � X!R

� = {s : �X | d � s � f d � s}

�����������������������

If A is {{1},{2},{2,3},{1,2},{1,2,3}} and B is
{1,2}, then A!B is {{1},{2},{2,3}}. Elements
containing both 1 and 2 were excluded from � A.

We define ‘$’ operator for requires dependency
as follows:

�[X]��������������������
�_ $_: �X � (X �X) � �X

�����������������
�	R : X �X ; d : dom R � X$R

� = {s : �X | d � s � f d � s}

�����������������������

Then if A is {{1},{2},{2,3},{1,2},{1,2,3}}, and B
is {1,2}, A$B is {{2},{2,3},{1,2},{1,2,3}}.

3.2. Set-Based Selection Algorithm

The pseudo algorithm for automated selection of
valid sets of variants is presented in Figure 4. To
apply set-based selection algorithm, we need two
inputs: the set-based representation of the OVM and
the dependency table for product line constrains. The
general form of the set-based representation of the
OVM is:
((�*VP1��*VP2�... � �* VPi) $ requires) ! excludes

where VPi is a set of variants in i-th VP

762

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:48:21 UTC from IEEE Xplore. Restrictions apply.

1. Create the initial SVE
2. Search dependencies to be applied to the SVE

A. If found, update the SVE and go back to 2
B. If not,

i. If the expansion of the SVE is complete
d, stop this process

ii. If the expansion of the SVE isn’t comple
ted, expand it and go back to 2

Figure 4. Selection algorithm

In this case, several different types of dependencies
can be embedded in the OVM model. We use the
example in Figure 5 to explain the proposed algorithm.

Figure 5. An OVM example

Before starting automated selection, an assumption
we make is that a user just chooses which VP will be
part of the product line application regardless of
dependencies in the OVM. Once VPs are selected, all
the dependencies are considered automatically. In this
case, let’s assume that a user chooses only VP ‘A’.

First, a VP selected by the user is expressed by a
set representation. So for VPs ‘A’ and 'B' in Figure 5,

� [1..1] A = {{a1},{a2}}

� B = {�, b1, b2, {b1, b2}}

When building a dependency table for the OVM, we
can get the following relation:

Source = = {A, a1}, Target = = {B, b2}.
requires = { A � B}, excludes = { a1 � b2}

The dependency table representing dependency
constraints in product line is established based on the
requires and excludes relation. In order to expand
the SVE, we start from the initial SVE, {a1, a2}. Once
the initial SVE is acquired, the next thing to do is
looking up the dependency table. According to the
current SVE, the VP ‘A’ is found in the source of the
requires relation, and VP ‘B’ is found in the target
of the requires relation. The requires dependency
is found between A and B, we applied the dependency
to theSVE by using Cartesian product. Also, the
excludes dependency is found, the tuple that has the
same VP or variant as the one in the source of the
excludes relation is excluded from the SVE. Until no
more dependencies can be found, this procedure is
repeated. We call this procedure a constraint lookup.
After this procedure, we get the following SVE:

� [1..1] A $ requires

Based on the definition of ‘$’, there are two options
to choose from to calculate the above expression. One
is to remove the element which violates ‘$’ condition.
Another is to make the left hand side of the above
formula conform to ‘$’ condition. Since the main
purpose is to extract all the possible variants from the
OVM, in the case of requires, the second option is
preferred. To apply ‘$’ operator with the second
option, we add targeted variability by using Cartesian
product. As a result, we obtain the following SVE:

� [1..1] A � �* B (in this case, �* B = = � B)

As long as there is no more dependency within the
current SVE, we get

{{a1},{a2}} � {�,{b1},{b2},{b1,b2}},

which is
{{a1},{a1,b1},{a1,b2},{a1,b1,b2},{a2},{a2,b1},{a2,b2},{
a2,b1,b2}}

With the above SVE, constraint lookup is performed
again until there is no more constraint for this SVE in
the table. In this case, ‘a1 excludes b2’ is found,
resulting in adding a new element to the SVE.
Continuing with the new expression, finally we get

((� [1..1] A � �* B) $ requires) ! excludes

and its valid sets of variants for are
{a1}, {a1,b1}, {a2}, {a2,b1}, {a2,b2}, {a2,b1,b2}.

3.3. Generation of Product Use Case Scenarios

At this point, we have valid sets of variants. Now it
remains to replace tags in use case scenarios with
appropriate variants according to the mapping table.
From the result of the example in the previous section,
the solution of

((� [1..1] A � � B) $ requires) ! excludes

is mapped to tags in use case scenarios. Because the
number of variant sets is six, i.e. {a1}, {a1, b1}, {a2},
{a2,b1}, {a2,b2}, and {a2,b1,b2}, a total of six
product line applications can be derived, which means
that six sets of use case scenarios are needed. Let’s
consider Table 1, which corresponds to the OVM in
Figure 5.

Table 1. A mapping table

OVM Scenario

VPs Variants Tag in scenario Related

scenarios

A tag0 Scenario A
 a1 tag0.1 Scenario A
 a2 tag0.2 Scenario B

B tag1 Scenario B
 b1 tag1.1 Scenario A,

Scenario B
 b2 tag1.2 Scenario A,

Scenario B

763

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:48:21 UTC from IEEE Xplore. Restrictions apply.

Based on the selected variants and the mapping
table, six types of product line applications and use
case scenarios are generated:

{a1} => ({Scenario A} , {tag0=tag0.1})
{a1,b1} => ({Scenario A,B},{tag0=tag0.1,tag1=tag1.1})
{a2} => ({Scenario B}, {tag0=tag0.2})
{a2,b1} => ({Scenario A,B} , {tag=tag0.2, tag1=tag1.1})
{a2,b2} => ({Scenario A,B,C} ,

{tag0=tag0.2, tag1=tag1.2})
{a2,b1,b2} => ({Scenario A,B,C}, {tag0=tag0.2,

 tag1=tag1.1 | tag1=tag1.2})

We represent generated product use case scenarios as
X => (a set of scenarios, a set of tags). For example,
Scenario A => {(tag0.1)}, means that if a variant ‘a1’
is selected, ‘Scenario A’ is generated by replacing a
VP tag ‘tag0’ with the contents of tag0.1.

Figure 6. Use case model for the case study [6]

Based on the use case model and system
requirements in [6], the OVM can be also created as in
Figure 7, which can be transformed to the textual
representation in Figure 8.

Figure 7. OVM for Cook Food use case

4. A Case Study

This section investigates the efficacy of the proposed
approach with a Microwave Oven Software Product
Line case study. Details of the project can be found in
[6]. Figure 6 shows the use case model. The case study
focuses only on the Cook Food use case with reduced
variations.

[vp:core] [v:ws:mandatory]

 [v:he:mandatory]
 [v:pl:optional]
 [v:mp:optional]
[vp:wst] [v:analog:alternative0] 1-1
 [v:boolean:alternative0] 1-1
[vp:het] [v:one-lh:alternative0] 1-1
 [v:multi-lh:alternative0] 1-1
[vp:plt] [v:alternative0:one-lp] 1-1
 [v:alternative0:multi-lp] 1-1
[requires] [v:ws] - [vp:wst]
 [v:he] - [vp:het]
 [v:pl] - [vp:plt]
[excludes][v:multi-lp] - [v:one-lh]
 [v:analog] - [v:mp]

Figure 8. Textual OVM

Figure 9 describes the product line use case
scenario mapped to the OVM in Figure 7. For space
limitation, some VPs were omitted. The textual use
case includes four kinds of tags. Each tag is expanded
in the variation section in the use case scenario.

Use case name: Cook Food.
...
Description:
1. User opens the door, puts food in the oven, and closes the
door. Cooking is prohibited if [WST] detects no items in
the oven.
2. User selects power level within [PLT]. {User presses the
Cooking Time button following [MP] procedure.}
3. System prompts for cooking time.
4. User enters the cooking time on the numeric keypad and
presses Start.
...
Variations:
[WST] WST1: Analog Sensor
 WST2: Digital Sensor
[PLT] PLT1: One-level
 PLT2: Multi-level
[MP] If selected, then it results in one minute being added to

the cooking time. If the cooking time was
previously zero, cooking is started.

[HET] HET1: One-level
 HET2: Multi-level

Figure 9. A tagged use case

764

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:48:21 UTC from IEEE Xplore. Restrictions apply.

Based on the tagged use case and the OVM, the
initial SVE can be obtained as follows:

�* Core = � [2..2] {WS,HE}��{PL,MP}

= {{WS,HE},{WS,HE,PL},{WS,HE,MP},{WS,HE,PL,MP}}

and the relations for PL constraints are represented as:
Source = = {WS, HE, PL, Multi-LP, Analog}.
Target = = {WST, HET, PLT, One-LH, MP}.
requires = { WS� WST, HE� HET, PL� PLT}

excludes = { Multi-LP� One-LH, Analog� MP}

The initial SVE is expanded with requires. So
{{WS,HE},{WS,HE,PL},{WS,HE,MP},{WS,HE,PL,MP
}} $ requires
={{WS,HE}��[1..1]WST�� [1..1]HET,{WS,HE,PL}��
[1..1]WST�� [1..1]HET�� [1..1]PLT,{WS,HE,MP}��
[1..1]WST�� [1..1]HET,{WS,HE,PL,MP}��
[1..1]WST�� [1..1]HET�� [1..1]PLT }

After the above process is repeated, 15 sets of variants
are finally obtained. Since the variants in SVE were
already mapped to tags in the tagged use case scenario,
product use case scenario can be automatically
generated by replacing variant names with actual tags.
For example, the set

{WS,HE,PL,One-LP,Analog,One-LH}

can be represented as actual tags instantiated by
'PLT=PLT1,WST=WST1,HET=HET1'.

The product use case scenario finally derived from this
instantiated tags is shown in Figure 10.

Use case name: Cook Food.
...
Description:
1. User opens the door, puts food in the oven, and closes

the door. Cooking is prohibited if [Analog Sensor]
detects no items in the oven.

2. User selects power level within [One-level].
3. System prompts for cooking time.
4. User enters the cooking time on the numeric keypad

and presses Start.
5. System shows {[one-level] selection} screen. System

starts cooking the food.
...

Figure 10. Product use case scenario

5. Conclusion and Future Works

In order to support generating product use case
scenarios, we proposed a systematic procedure of
automated generation of use case scenarios for product
lines. Our approach provided (1) the mapping
mechanism with simplified tagged use case scenarios
for product lines, (2) automated selection of valid sets
of variants, and (3) automated generation of product
use case scenarios.

Our approach has made two contributions to
product use case scenarios derivation: First, this
approach makes a product use case selection

automated. By using a selection algorithm and
mapping tags in use case scenarios to the OVM model,
generating product use case scenarios becomes very
simple and fast because we just choose the appropriate
scenario sets for a specific product. Second, the
proposed approach helps product use case scenarios
represent all the information on variability including
the hidden dependencies among scenarios. Because
tags in the tagged use case scenario are mapped to the
OVM, the tags can be combined with all possible
variability sets . Dependency of variants can raise new
dependencies among use case scenarios. These hidden
dependencies can be caught as early as possible by
starting the use case selection with the OVM because
the OVM gives the full information on variability
dependency.

References
[1] John, I., Muthig, D., "Modeling Variability With Use
Cases", Fraunhofer IESE-Report, 063.02/E, Nov. 2002.
[2] John, I., Muthig, D., "Product Line Modeling with
Generic Use Cases," Proc. Workshop on Techniques for

Exploiting Commonality Through Variability Management,
2nd Software Product Line Conf., 2002.
[3] Trigaux, J.C., Heymans, P. "Modeling variability
requirements in Software Product Lines: A comparative
survey," Technical report PLENTY project, Institut
d’Informatique FUNDP, Nov. 2003.
[4] Bertolino, A., Fantechi, A., Gnesi, S., Lami, G., “Product
Line Use Cases: Scenario-Based Specification and Testing of
Requirements,” Ch. 11 of Software Product Lines: Research

Issues in Engineering and Management, (Eds.) T. Käkölä
and J. C. Duenas, Springer, 2006.
[5] Bertolino, A., Mantechi, A., Gnesi, S., Lamir, G.,
Maccari, A., “Use Case Description of Requirements for
Product Lines,” Proc. Workshop on Requirements

Engineering for Product Lines, 2002.
[6] Gomaa, H., Designing Software Product Lines with

UML: From Use Cases to Pattern-Based Software

Architectures, Addison Wesley, July 2007.
[7] Nebut, C., Pickin, S., Le Traon, Y., Jezequel, J.M.,
"Automated requirements-based generation of test cases for
product families," Proc. 18th IEEE Int’l Conference on

Automated Software Engineering,, 2003.
[8] Biddle, R., Noble, J., Tempero, E., “Supporting Reusable
Use Cases, Software Reuse: Methods, Techniques, and
Tools,” Proc. 7th Int’l Conf on Software Reuse: Methods,

Techniques, and Tools, Springer, LNCS 2319, 2002.
[9] Pohl, K., Böckle G., Frank van der Linden. Software

Product Line Engineering, Springer, 2005
[10] Jaring, M., Bosch, J. "Variability Dependencies in
Product Family Engineering," 5th Workshop on Product

Family Engineering, Springer, 2003.
[11] Mannion, M., "Using first-order logic for product line
model validation," Proc. 2nd Int’l Conf. on Software Product

Lines, Springer, 2002.
[12] Woodcock, J., Davies J., Using Z Specification,

Refinement, and Proof, Prentice Hall Europe, 1996.

765

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:48:21 UTC from IEEE Xplore. Restrictions apply.

