
Automated Generation of Product Use Case Scenarios      

in Product Line Development

Woo-seok Choi †, Sungwon Kang ‡, Hojin Choi ‡ and Jongmoon Baik ‡

†
Platform Laboratory, KT 

wsc@kt.com 
‡
School of Engineering, Information and Communications University 

{kangsw, hjchoi, jbaik}@icu.ac.kr 

Abstract

Use case scenario has been commonly used for 

single products. However, when used for software 

product lines, it raises new issues to consider. In 

software product lines, products share common 

features and additionally have their own unique sets of 

features where the latter can be represented by so 

called variability model. When various combinations 

of variants are selected, they should be selected such 

that they obey the constraints imposed by variability 

model. Therefore, the use cases developed for a 

product line cannot be used straightforwardly for 

products. In this paper, we provide a systematic way to 

mapping the constraints in a variability model called 

OVM to use case scenarios using the notion of tagged 

use case scenario. We also present an algorithm for 

automatically generating product use case scenarios 

based on OVM model and tagged use case scenarios. 

KEY WORDS

Product Line, Use Case Scenario, Variability Model, 
OVM 

1. Introduction 

Use cases are a powerful technique for modeling 
requirements. By elaborating a use case, use case 
scenarios are obtained. Use case scenarios embody use 
cases in that they represent complete execution paths 
of the system for the corresponding use cases.  

Product line is a new paradigm in software 
engineering. In product line, systems share common 
characteristics called common features. In addition, 
each product has its own unique set of features. The 
Orthogonal Variability Model (OVM) is a dedicated 
variability model, and it provides a cross-sectional 
view of the variability across all software development 
artifacts. In OVM, the designated points where such 
unique features can appear are called variability points 

(VP). The unique features in VP are called variants.

When various combinations of variants are selected, 
they should be selected such that they obey the 
constraints imposed by variability model. Therefore, 
the use cases developed for a product line cannot be 
used straightforwardly for products. Several 
approaches [1,3-5,8] tried to solve the problem related 
to using use cases for product line. However, they did 
not handle various variability types and variability 
dependencies in product line. This paper provides a 
systematic way to map the constraints in a variability 
model called OVM to use case scenarios using the 
notion of tagged use case scenario and an algorithm for 
automatically generating product use case scenarios 
based on OVM model and tagged use case scenarios.

The rest of the paper is organized as follows: 
Section 2 discusses related works. Section 3 shows the 
basic concepts of our approach and explains our 
algorithmic approach of automated generation of 
product use case scenarios. Section 4 describes case 
study to show how our approach can be used. Finally, 
Section 5 concludes the paper. 

2. Related Works  

There are three main approaches to deriving use case 
scenarios for product line. First, John et al. [1, 2] and 
Trigaux et al. [3] propose XML-like tag notations to 
represent variability in a textual use case scenario. 
Second, Bertolino et al. [4,5] propose another tag 
notations representing VPs and variants, and extend 
the notation to a formal logic expression to check 
conformance of product scenarios to product line 
constraints. Third, Gomaa [6] proposes approaches to 
represent variability in the UML model, in which all 
the variability information is described in a natural 
language and the variability is listed separately from 
the common functionality of use case scenarios. 

Nebut et al. [7] proposed a requirements-based 
approach to functional testing of product lines, based 
on a formal test generation tool. Requirements are 
documented with high-level sequence diagrams, which 
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are then combined into reusable assets called 
behavioral test patterns and used to automatically 
generate test cases specific to each product. 

Biddle et al. [8] applies the concept of reusing use 
cases to a software product family. The authors 
proposed essential use cases whose characteristic is the 
abstraction of details about the technology involved in 
the interaction between the user and the system.  

However, the proposed methods have certain 
limitations as follows: First, their product line use 
cases do not fully support all the possible types of 
variability. Second, using tags to embed all variability 
information into use case scenarios makes use case 
scenarios get overloaded and very complex, resulting 
in decreased readability. Third, adding tags into a 
particular artifact, e.g. use case scenarios, causes 
variability information to be spread reducing 
traceability [9]. Fourth, manually generated product 
use case scenarios are very error-prone. Nebut et al. [7] 
proposed an approach for automated generation of test 
cases based on sequence diagrams rather than textual 
use case scenarios. Although sequence diagrams can 
be regarded as formalized behavioral requirements, the 
sequence diagram currently standardized does not 
incorporate facilities to capture various variability 
aspects. 

Our approach in this paper solves the problems 
mentioned above in two ways. First, it proposes a 
simpler tag notation than the previous approaches. By 
mapping tags in use case scenarios to the OVM model,
we can keep variability information consistent through 
the whole development life cycle. Second, it provides 
an algorithmic mechanism for automated variant 
selection from the OVM, thereby reducing human 
effort to check consistency of product use case 
scenarios significantly. 

3. Automated Generation of Product Use 

Case Scenarios 

To generate product use case scenarios, valid sets of 
variants must be selected. This process is performed by 
‘Set-Based Selection’. With selected sets, product use 
case scenarios can be generated.

3.1. Basic Concepts for Set-Based Selection 

Our approach is based on two main concepts. The first 
one is the tagged use case scenarios, which is 
described in Section 3.1.1. The second one is the Set-
based Variability Expression described in Section 3.1.2. 
The automated selection algorithm and the product use 
case scenario generation method will be presented in 
Section 4 based on the two concepts 

3.1.1 Tagged Use Case Scenarios for Product 

Lines

The variability information embedded in use case 
scenarios can get overloaded and complicated as 
scenarios contain more and more information. The 
OVM model collects variability information separately 
from various artifacts and allows us to manage them 
effectively. Our approach maps use case scenarios to 
the OVM, rather than embedding all the variability 
information in use case scenarios. The approach of 
Bertlino et al. [5] is complicated by adding several 
types of tags, such as alternative, parametric, and 
optional, to the use case scenario. Our idea is to adopt 
the OVM model to manage variability so that tags 
become much simpler than before. 

To make tagged use case scenarios, the inputs in 
this step are the OVM and the textual description of 
functional requirements. One of the inputs, the OVM 
model, needs to be transformed to textual formal 
description that can be understood by the system. 

Next, variation points to be mapped to the OVM in 
the text-based functional requirements should be found. 
Actually, identifying variabilities from text-based 
functional requirements involves human intervention. 
Therefore it is not easy to apply formal methods to 
variability identification. We suggest the following 
empirical technique. Figure 1 shows part of textual 
description of a system that appears in the paper [6].  

Because the oven is to be sold around the world, it 

must be able to vary the display language. The default 

language is English, but other possible languages are 

French, Spanish, German, and Italian. The basic oven 

has a one-line display; more-advanced ovens can have 

multi-line displays. 

Figure 1. System description example 

By carefully analyzing textual description, we can 
find variable options of the system, alternative choices 
of functionality, and mandatory functions.  

[Language] Language1: English 
  Language2: French 
  Language3: Spanish 
  Langauge4: German 
  Language5: Italian 
[Display]                 Display1: a one-line display 
  Display2: multi-line displays

Figure 2. Two variability examples extracted 

from requirements specification of Figure 1 

On the basis of the variability information in Figure 
1, VPs in the common scenario are expressed as in 
Figure 2. According to Figure 2, the microwave oven 
displays messages in a variant language of the VP 
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[Language]. The display type of microwave oven is 
indicated through the [Display] VP. In contrast to [4], 
these tags are used only for marking VPs in use case 
scenarios of product line. In our approach, we just 
adopt the basic tag notation from [4] for that purpose. 
In our usage of tags, it has some variability 
information and is mapped to the VPs or variants of 
the OVM model. For this reason, it is not necessary to 
have all kinds of tags. Furthermore, a complicated 
logical expression to check conformance as used by 
Bertilino et al. [5] is not necessary because in our 
approach the OVM model has all the variability 
information. 

3.1.2. Set-Based Variability Expression 

To handle VPs and variants with an algorithmic way, 
variability information of the OVM model need be 
abstracted. Jaring et al. [10] proposed taxonomy of 
variability dependencies based on a set representation. 
Mannion [11] showed how to represent features using 
logic expressions but it is not optimized for the OVM 
model and did not provide any automated approach. 
By using Z notation [12], we can represent VPs and 
variants in a more formal way.  

OVM contains several notations for representing 
dependencies between variabilities. When representing 
VPs and variants with a set-based expression of Z, 
dependency types must be considered. There are three 
kinds of dependencies: variability dependency, artifact 
dependency and constraint dependency. Figure 3 
shows an OVM model that has alternative choices. In 
Figure 3, ‘[1..2]’ means that at least one but no more 
than two variants need be selected.  

Figure 3. Alternative choices in OVM 

Therefore, the possible variants from the OVM are: 
{v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}

Using Z notation, we define a partial power set of a set 
X as follows: 

�[X]�������������������
��[min..max] : �X � �X

�����������������
�	s : �X ; min : 
 ; max : 
 � �[min..max] X  

�� #s 
 min � #s � max 

����������������������
Then,  
� [0..n] VP <=> � VP   (n is the number of variants in VP) 

Now the possible variants in Figure 3 can be 

represented as follows: 
� [1..2] VP = {{v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}}

Since this dependency is related to the relationship 
between VPs or between VP and variant, they do not 
affect the representation of variability directly. 
However, this information is critical when a Set-based 
Variability Expression (SVE) is expanded, which will 
be explained in Section 3.2.  

We consider six kinds of constraint dependencies: 
‘variant requires variant’, ‘VP requires VP’, 
‘variant requires VP’, ‘variant excludes variant’, 
‘VP excludes VP’, ‘variant excludes VP’. The 
constraint relation represents these six kinds of 
constraint dependencies in the form of a relation. 
Source and Target are sets of variants which are, 
respectively, sources and targets of the dependency. 

Furthermore, in order to represent those constraints 
with other variants, the ‘!’ operator for excludes is 
defined. With the standard definitions of dom, we 
define ‘ !’ operator for exclusion as follows: 

�[X]��������������������
�_ !_: �X � (X �X) � �X

�����������������
�	R : X �X ; d : dom R � X!R  

�  = {s : �X | d � s � f d � s} 

�����������������������

If A is {{1},{2},{2,3},{1,2},{1,2,3}} and B is 
{1,2}, then A!B is {{1},{2},{2,3}}. Elements 
containing both 1 and 2 were excluded from � A.

We define ‘$’ operator for requires dependency 
as follows: 

�[X]��������������������
�_ $_: �X � (X �X) � �X

�����������������
�	R : X �X ; d : dom R � X$R  

�  = {s : �X | d � s � f d � s} 

�����������������������

Then if  A is  {{1},{2},{2,3},{1,2},{1,2,3}}, and B 
is {1,2}, A$B is {{2},{2,3},{1,2},{1,2,3}}. 

3.2. Set-Based Selection Algorithm 

The pseudo algorithm for automated selection of 
valid sets of variants is presented in  Figure 4. To 
apply set-based selection algorithm, we need two 
inputs: the set-based representation of the OVM and 
the dependency table for product line constrains. The 
general form of the set-based representation of the 
OVM is:
((�*VP1��*VP2�... � �* VPi ) $ requires) ! excludes

where VPi is a set of variants in i-th VP
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1. Create the initial SVE 
2. Search dependencies to be applied to the SVE 

A. If found, update the SVE and go back to 2 
B. If not, 

i. If the expansion of the SVE is complete
d, stop this process 

ii. If the expansion of the SVE isn’t comple
ted, expand it and go back to 2

Figure 4. Selection algorithm 

In this case, several different types of dependencies 
can be embedded in the OVM model. We use the 
example in Figure 5 to explain the proposed algorithm.

Figure 5. An OVM example

Before starting automated selection, an assumption 
we make is that a user just chooses which VP will be 
part of the product line application regardless of 
dependencies in the OVM. Once VPs are selected, all 
the dependencies are considered automatically. In this 
case, let’s assume that a user chooses only VP ‘A’. 

First, a VP selected by the user is expressed by a 
set representation. So for VPs ‘A’ and 'B' in Figure 5,  

� [1..1] A = {{a1},{a2}} 

� B = {�, b1, b2, {b1, b2}} 

When building a dependency table for the OVM, we 
can get the following relation: 

Source = = {A, a1}, Target = = {B, b2}. 
requires = { A � B},  excludes = { a1 � b2}

The dependency table representing dependency 
constraints in product line is established based on the
requires and excludes relation. In order to expand 
the SVE, we start from the initial SVE, {a1, a2}. Once 
the initial SVE is acquired, the next thing to do is 
looking up the dependency table. According to the 
current SVE, the VP ‘A’ is found in the source of the 
requires relation, and VP ‘B’ is found in the target 
of the requires relation. The requires dependency 
is found between A and B, we applied the dependency 
to theSVE by using Cartesian product. Also, the 
excludes dependency is found, the tuple that has the 
same VP or variant as the one in the source of the 
excludes relation is excluded from the SVE. Until no 
more dependencies can be found, this procedure is 
repeated. We call this procedure a constraint lookup.
After this procedure, we get the following SVE: 

� [1..1] A $ requires

Based on the definition of ‘$’, there are two options 
to choose from to calculate the above expression. One 
is to remove the element which violates ‘$’ condition. 
Another is to make the left hand side of the above 
formula conform to ‘$’ condition. Since the main 
purpose is to extract all the possible variants from the 
OVM, in the case of requires, the second option is 
preferred. To apply ‘$’ operator with the second 
option, we add targeted variability by using Cartesian 
product. As a result, we obtain the following SVE: 

� [1..1] A � �* B (in this case, �* B = = � B) 

As long as there is no more dependency within the 
current SVE, we get  

{{a1},{a2}} � {�,{b1},{b2},{b1,b2}},

which is  
{{a1},{a1,b1},{a1,b2},{a1,b1,b2},{a2},{a2,b1},{a2,b2},{
a2,b1,b2}}

With the above SVE, constraint lookup is performed 
again until there is no more constraint for this SVE in 
the table. In this case, ‘a1 excludes b2’ is found, 
resulting in adding a new element to the SVE. 
Continuing with the new expression, finally we get 

((� [1..1] A � �* B) $ requires) ! excludes

and its valid sets of variants for are  
{a1}, {a1,b1}, {a2}, {a2,b1}, {a2,b2}, {a2,b1,b2}. 

3.3. Generation of Product Use Case Scenarios 

At this point, we have valid sets of variants. Now it 
remains to replace tags in use case scenarios with 
appropriate variants according to the mapping table. 
From the result of the example in the previous section, 
the solution of  

((� [1..1] A � � B) $ requires ) ! excludes

is mapped to tags in use case scenarios. Because the 
number of variant sets is six, i.e. {a1}, {a1, b1}, {a2}, 
{a2,b1}, {a2,b2}, and {a2,b1,b2}, a total of six 
product line applications can be derived, which means 
that six sets of use case scenarios are needed. Let’s 
consider Table 1, which corresponds to the OVM in 
Figure 5. 

Table 1. A mapping table  

OVM Scenario 

VPs Variants Tag in scenario Related 

scenarios 

A  tag0 Scenario A 
 a1 tag0.1 Scenario A 
 a2 tag0.2 Scenario B 

B  tag1 Scenario B 
 b1 tag1.1 Scenario A, 

Scenario B
 b2 tag1.2 Scenario A, 

Scenario B
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Based on the selected variants and the mapping 
table, six types of product line applications and use 
case scenarios are generated: 

{a1} => ({Scenario A} , {tag0=tag0.1}) 
{a1,b1} => ({Scenario A,B},{tag0=tag0.1,tag1=tag1.1}) 
{a2} => ({Scenario B}, {tag0=tag0.2}) 
{a2,b1} => ({Scenario A,B} , {tag=tag0.2, tag1=tag1.1}) 
{a2,b2} => ({Scenario A,B,C} ,   

{tag0=tag0.2, tag1=tag1.2}) 
{a2,b1,b2} => ({Scenario A,B,C},  {tag0=tag0.2, 

 tag1=tag1.1 | tag1=tag1.2}) 

We represent generated product use case scenarios as 
X => (a set of scenarios, a set of tags). For example, 
Scenario A => {(tag0.1)}, means that if a variant ‘a1’ 
is selected, ‘Scenario A’ is generated by replacing a 
VP tag ‘tag0’ with the contents of tag0.1. 

Figure 6. Use case model for the case study [6]

Based on the use case model and system 
requirements in [6], the OVM can be also created as in 
Figure 7, which can be transformed to the textual 
representation in Figure 8. 

Figure 7. OVM for Cook Food use case 

4. A Case Study 

This section investigates the efficacy of the proposed 
approach with a Microwave Oven Software Product 
Line case study. Details of the project can be found in 
[6]. Figure 6 shows the use case model. The case study 
focuses only on the Cook Food use case with reduced 
variations.  

[vp:core] [v:ws:mandatory] 

 [v:he:mandatory] 
 [v:pl:optional] 
 [v:mp:optional] 
[vp:wst] [v:analog:alternative0] 1-1 
 [v:boolean:alternative0] 1-1 
[vp:het] [v:one-lh:alternative0] 1-1 
 [v:multi-lh:alternative0] 1-1 
[vp:plt] [v:alternative0:one-lp] 1-1 
 [v:alternative0:multi-lp] 1-1 
[requires] [v:ws] - [vp:wst] 
 [v:he] - [vp:het] 
 [v:pl] - [vp:plt] 
[excludes][v:multi-lp] - [v:one-lh] 
 [v:analog] - [v:mp]

Figure 8. Textual OVM 

Figure 9 describes the product line use case 
scenario mapped to the OVM in Figure 7. For space 
limitation, some VPs were omitted. The textual use 
case includes four kinds of tags. Each tag is expanded 
in the variation section in the use case scenario.  

Use case name: Cook Food. 
...
Description:
1. User opens the door, puts food in the oven, and closes the 
door. Cooking is prohibited if [WST] detects no items in 
the oven. 
2. User selects power level within [PLT]. {User presses the 
Cooking Time button following [MP] procedure.} 
3. System prompts for cooking time. 
4. User enters the cooking time on the numeric keypad and 
presses Start. 
...
Variations:
[WST] WST1: Analog Sensor 
 WST2: Digital Sensor 
[PLT] PLT1: One-level 
 PLT2: Multi-level 
[MP] If selected, then it results in one minute being added to 

the cooking time. If the cooking time was 
previously zero, cooking is started. 

[HET] HET1: One-level 
 HET2: Multi-level

Figure 9. A tagged use case 

764

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:48:21 UTC from IEEE Xplore.  Restrictions apply. 



Based on the tagged use case and the OVM, the 
initial SVE can be obtained as follows: 

�* Core = � [2..2] {WS,HE}��{PL,MP} 

= {{WS,HE},{WS,HE,PL},{WS,HE,MP},{WS,HE,PL,MP}}

and the  relations for PL constraints are represented as: 
Source = = {WS, HE, PL, Multi-LP, Analog}. 
Target = = {WST, HET, PLT, One-LH, MP}. 
requires = { WS� WST, HE� HET, PL� PLT} 

excludes = { Multi-LP� One-LH, Analog� MP}

The initial SVE is expanded with requires. So 
{{WS,HE},{WS,HE,PL},{WS,HE,MP},{WS,HE,PL,MP
}} $ requires
={{WS,HE}��[1..1]WST�� [1..1]HET,{WS,HE,PL}��
[1..1]WST�� [1..1]HET�� [1..1]PLT,{WS,HE,MP}��
[1..1]WST�� [1..1]HET,{WS,HE,PL,MP}��
[1..1]WST�� [1..1]HET�� [1..1]PLT }

After the above process is repeated, 15 sets of variants 
are finally obtained. Since the variants in SVE were 
already mapped to tags in the tagged use case scenario, 
product use case scenario can be automatically 
generated by replacing variant names with actual tags. 
For example, the set  

{WS,HE,PL,One-LP,Analog,One-LH}

can be represented as actual tags instantiated by 
'PLT=PLT1,WST=WST1,HET=HET1'. 

The product use case scenario finally derived from this 
instantiated tags is shown in Figure 10. 

Use case name: Cook Food. 
... 
Description:
1. User opens the door, puts food in the oven, and closes 

the door. Cooking is prohibited if [Analog Sensor] 
detects no items in the oven. 

2. User selects power level within [One-level]. 
3. System prompts for cooking time. 
4. User enters the cooking time on the numeric keypad 

and presses Start. 
5. System shows {[one-level] selection} screen.  System 

starts cooking the food. 
...

Figure 10. Product use case scenario 

5. Conclusion and Future Works 

In order to support generating product use case 
scenarios, we proposed a systematic procedure of 
automated generation of use case scenarios for product 
lines. Our approach provided (1) the mapping 
mechanism with simplified tagged use case scenarios 
for product lines, (2) automated selection of valid sets 
of variants, and (3) automated generation of product 
use case scenarios.  

Our approach has made two contributions to 
product use case scenarios derivation: First, this 
approach makes a product use case selection 

automated. By using a selection algorithm and 
mapping tags in use case scenarios to the OVM model, 
generating product use case scenarios becomes very 
simple and fast because we just choose the appropriate 
scenario sets for a specific product. Second, the 
proposed approach helps product use case scenarios 
represent all the information on variability including 
the hidden dependencies among scenarios. Because 
tags in the tagged use case scenario are mapped to the 
OVM, the tags can be combined with all possible 
variability sets . Dependency of variants can raise new 
dependencies among use case scenarios. These hidden 
dependencies can be caught as early as possible by 
starting the use case selection with the OVM because 
the OVM gives the full information on variability 
dependency. 
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