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Abstract 
 
A comprehensive study has been made for the investigation of the convergence characteristics of the 
LU scheme for the Euler equations using Von Neumann stability analysis. The stability results 
indicate that the convergence rate is governed by a specific parameter combination. Based on this 
insight, it is shown that the LU scheme will not suffer convergence deterioration at any grid aspect 
ratios if the local time step is defined using an appropriate parameter combination. The numerical 
results demonstrate that this time step definition gives uniform convergence for grid aspect ratios from 
one to million. 
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1. Introduction 
 

Most of implicit schemes for computational fluid dynamics(CFD) rely on approximate inversion 
methods for solving the linear system of equations resulting from the local time linearization of the 
governing equations. Currently, several popular approximate inversion methods are available 
including the alternating-direction implicit(ADI) scheme, the line Gauss—Seidel(LGS) scheme, and 
the lower-upper(LU) scheme. The LU scheme was initially proposed by Jameson and Turkel[1] and 
has been widely used over past couple of decades. This scheme is particularly efficient for 
unstructured mesh topologies because it does not require spatial coordinate direction splitting[2, 3].  

There are five independent CFD parameters for the Euler equations for which govern the 
convergence characteristics of the LU scheme: grid aspect ratio, flow angle, Mach number, CFL 
number, and number of sub-iteration. Several researches have been made to investigate the 
characteristics of the LU scheme, but for only one or two parameters[4, 5]. In the present study, the 
characteristics  is assessed for all parameters except Mach number using a Von Neumann stability 
analysis. Verification is made for simple free stream flow with a point disturbance. 
 
2. Numerical Algorithm 

 
The governing two-dimensional Euler equations are spatially discretized by using a node-based finite-
volume method. The control volume is constructed from median dual cells surrounding each node[6]. 
The convective flux vector is computed using the flux-difference splitting scheme of Roe. For a high-
order scheme, estimation of the primitive variables at each control volume face is achieved by 
interpolating the solution around the central node by using a Taylor series expansion. The solution 
gradient in Taylor series expansion is calculated by using an unweighted least-squares procedure[6]. 
This high-order scheme corresponds with a second-order upwind biased MUSCL scheme in structured 
grid[7].  

The discretized governing equation can be factorized into the following LU form[5]: 
 

( ) ( ) n
iRQTDDTD −=Δ++ −

2
1

1                                                   (1) 
 
Here, D represents the diagonal part of the linear system of equations, and T1 and T2 represent the 
lower and upper parts, respectively. It is customary with the LU scheme to perform several sub-
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iterations at each time step. The corresponding multi-sweep LU scheme may be expressed as 
follows[5]: 
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1                    (2) 

 
where n and k represent sub-iteration and outer-iteration counter, respectively. 
 
3. Stability Analysis 
 

The multi-sweep LU scheme in equation (2) may be rearranged as follows to investigate the LU 
scheme systematically: 
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In the above equation, the first term in left hand side correspond with the direct inversion scheme. 
Also, the second term represents the approximate factorization(AF) error for the LU scheme. 
Therefore, for the complete analysis of the LU scheme, the contribution from each of the direct 
inversion and the AF error needs to be examined separately. 
 
3.1 Direct Inversion Scheme 
3.1.1 Scalar convection equation 

Before the analysis for the Euler equations, a scalar model equation of the hyperbolic type is 
considered for the simplicity. The equation studied here is 
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where a and b are positive and negative values, respectively. By taking different signs for the 
convection speeds in equation (4), the equation can be used meaningfully as model equation for the 
Euler equations with both positive and negative eigenvalues. The Von Neumann analysis for the direct 
inversion and second order upwind spatial accuracy schemes results in the amplification factor: 
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where Φ and Ψ are defined in terms of the two spatial frequencies: 
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The CFL number in equation (6) are defined as follows: 
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Also, the flow angle, θ = b/a and grid aspect ratio, AR = Δx/Δy. 
The amplification factor G shows a different behavior according to the magnitude of θAR. In 

order to analyze this behavior, it is a convenient approach to represent the amplification factor in 
purely x-directional wave of φy=0 and y-directional wave of φx =0 separately. If the θAR has a very 
large value(θAR 1), the equation (5) can be written with some algebraic manipulation as 
 

Purely x-directional wave: )(
AR

CFLfG =                                                 (8) 

  
Purely y-directional wave: )(CFLfG =                                                  (9) 

 
Also, if the θAR has a very small value(θAR 1), it can be written as 
 

Purely x-directional wave: )(CFLfG =                                                 (10) 
  

Purely y-directional wave: )( ARCFLfG ×=                                        (11) 
 
The quantity of θAR can be represented as the required times for the error propagation: 
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where Δtx is the required time to move across the x-directional grid spacing, Δx , with x-directional 
wave speed, a, and similarly for Δty. If the θAR is unity, the required times for the x- and y-directions 
have same values. For θAR 1, the required time for the x-direction is greater than that for the y-
direction, therefore it is certain that the x-directional wave is poorly damped compared with y-
directional wave. Thus, it can be concluded that the damping rate for the x-directional wave dominate 
the overall convergence rate in the case for θAR 1: 
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AR
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If θAR 1, the y-directional wave is poorly damped, and the y-directional damping rate dominate the 
overall convergence rate: 
 

ARforARCFLfG /1)( <<×= θ                                        (14) 
 
In equation (13) and (14), it is shown that the convergence rate in each grid having different grid 
aspect ratios is governed by a single parameter, which has different form according to the magnitude 
of the flow angle. 

The amplification factors are determined by cycling through a fixed number of each of the spatial 
frequencies, in this case, 101 frequencies, for each CFL number, AR, and θ. The norm of amplification 
factor(NAF), which is a scalar value, is calculated as 
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where CFLf means fixed CFL number, and 1020 is used in the present calculation. The NAF , therefore, 
approaches machine zero, as CFL increases. 

Fig. 1-(a) and (b) show the NAF calculated for grids with several aspect ratios for θAR 1 and 
θAR 1, respectively. The flow angle of 100 is used in the case for θAR 1 and the value of 0.00001 in 
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the case for θAR 1. In Fig. 1-(a), it is shown that, for a fixed value of CFL/AR, the values of the NAF 
are similar for all aspect ratio grids in the case for large flow angle. Also, Fig. 1-(b) shows that the 
values of the NAF are approximately same for all aspect ratio grids for a fixed value of CFL×AR in the 
case for small flow angle. These behaviors correctly agree with the results of equations (13) and (14). 
Fig. 2 shows the details of the amplification factor for θ=100 and CFL/AR=103. It is shown that the 
details for each of the spatial frequencies are approximately same for all aspect ratio grids. Additional 
calculations for a different value of CFL/AR showed very similar trends, not included here. These 
behaviors were also observed in the cases for small flow angle. Thus, it can be said that when the NAF 
has similar value for each grid having different grid aspect ratios, the amplification factors show 
approximately same features. 

The results in Figs. 1 and 2 show that the behavior of amplification factor is well predicted by the 
equations (13) and (14) even in details. Thus, it can be concluded that the direct inversion scheme for 
the scalar convection equation will not suffer convergence deterioration at any grid aspect ratios if the 
CFL number is chosen carefully using the equations (13) or (14) according to the magnitude of the 
flow angle. 
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                (a) θAR 1                                                  (b) θAR 1 
 

Fig. 1. Norms of Amplification Factor(NAF) of the scalar equation for θ=100 and θ=0.00001. 
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(a) Purely x-directional wave                               (b) Purely y-directional wave 

 
Fig. 2. Modulus of amplification factor of the scalar equation for θ=100 and CFL/AR=103. 
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3.1.2 Euler equations 

In the preceding chapter, it is seen that the amplification factor for the scalar equation show a 
different behavior according to the magnitude of the flow angle. The flow angle is regarded as the 
direction of the wave speed. For the Euler eqations, three wave speeds, u, u+c, and u-c, are present, 
therefore nine flow angles can be constructed. Generally, particle wave speeds, u and v, are used for 
the definition of flow angle for the Euler equations analyses: θ≡v/u. However, it can be defined other 
flow angles such as maximum flow angle, θmax, and minimum flow angle, θmin, as follows: 
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In equation (16), it may be shown that the θmaxAR is always less than the θAR and the θminAR is greater 
than the θAR. Therefore, it is obvious that, even for a very large θAR, a small flow angle can be 
present for any other wave speeds. Also, it is clear that a large flow angle can be presented even for a 
very small θ. 

The NAF for the Euler equations at Mach number of 0.5 is shown in Fig. 3. Here, each figure in 
Fig. 3 is calculated for the same value of θAR: θAR=10-2 in Fig. 3-(a) and θAR=100 in Fig. 3-(b). For 
the Euler equations, the meaningful results can be obtained for the same value of θAR. These figures 
show that the values of the NAF are approximately same for all aspect ratio grids for a fixed value of 
CFL/AR irrespective of flow angles. The NAF for the Euler equations does not show a different 
behavior according to the magnitude of flow angle as the scalar equation does. Therefore, it can be 
concluded that the direct inversion scheme for the Euler equations will not suffer convergence 
deterioration at any grid aspect ratios if the CFL number is chosen as CFL/AR for grids with different 
aspect ratio. 
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(a) θAR=10-2                                                  (b) θAR=100 

 
Fig. 3. Norms of Amplification Factor (NAF) of the Euler equations for θAR=10-2 and θAR=100. 
 
3.2 AF Error 
3.2.1 Scalar convection equation 

The approximate factorization form of the multi-sweep LU scheme(equation (3)) shows that the 
AF error in this scheme is 
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Application of the Von Neumann stability analysis leads to 
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ij

I QeerrorAF yx ΔΠ= −− φφ                                            (18) 
 
where  
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Large CFL number( 1) is usually used for the LU scheme, and, in this case, the equation (19) can be 
approximated as 
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Equation (20) represents the magnitude of the AF error. Therefore, it seems reasonable to consider the 
behavior of equation (20) to examine the characteristics of the AF error.  

The equation (20) shows a different behavior as the magnitude of of θAR as the direct inversion 
scheme. If the θAR has a very large value(θAR 1), the equation (20) can be written as  
 

ARfor
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CFLf /1)( >>=Π θ                                            (21) 

Also, if the θAR has a very small value(θAR 1), it can be written as 
 

ARforARCFLf /1)( <<×=Π θ                                       (22) 
 
In equation (21) and (22), it is shown that the AF error in each grid having different grid aspect ratios 
is governed by a single parameter, which has different form according to the magnitude of the flow 
angle. 
 
3.2.2 Euler equations 

The AF error may be regarded conceptually as the difference between the direct inversion and 
LU schemes. Therefore, it seems reasonable to use the norm of the amplification factor defined as this 
difference to examine the AF error. 
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where Gij,direct and Gij,LU  are the amplification factors of the direct inversion and LU schemes, 
respectively. As the value of the NAF-AF approaches machine zero, the AF error decreases and the 
performance of the LU scheme approximates that of the direct inversion scheme more closely. 

The convergence rate of the direct inversion scheme for the Euler equations, as we have seen in 
chapter 3.1.2, is governed by a single parameter, CFL/AR, irrespective of the magnitude of flow angle. 
The AF error shows similar trend. In Fig. 4, the NAF-AF after the first sub-iteration is presented for 
the case of θAR=100, irrespective of the magnitude of flow angel. The figure also indicates that the AF 
error remains unchanged even for very large CFL numbers.  

Next, the behavior of the AF error during subsequent sub-iteration can be represented by the 
spectral radius to indicate the relative convergence rate. 
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In Fig. 5, the spectral radii of the NAF-AF are presented. The results show that the spectral radii are 
similar for all aspect ratio grids for a fixed value of CFL/AR. Therefore, it is seen that the magnitude 
of the AF error can be made independent to the grid aspect ratios if the CFL number is chosen as 
CFL/AR for grids with different aspect ratio. 
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4. Numerical Results 
 
4.1 Uniform flow with a pressure disturbance 

The findings from the stability analyses are now 
investigated by considering the solution of the Euler 
equations for uniform flow in a straight domain. By 
varying the aspect ratios of the domain while 
maintaining a fixed grid size(101×101), the local grid 
aspect ratio is arbitrarily increased from unity to 
1×104. The initial condition used for all calculations is 
uniform flow plus a 10% pressure perturbation at one 
point in the center of the domain and the freestream 
Mach number is 0.5. Fig. 6 presents the number of 
iterations required for the error norm to fall 10 orders 
of magnitude. It is seen that the convergence rate is 
approximately same for all aspect ratio grids for a 
fixed CFL/AR. Also, it is seen that the LU scheme 
does not suffer convergence deterioration at any grid 
aspect ratios if large CFL numbers are used. 

 
5.  Conclusions 
 

A comprehensive study has been made for the investigation of the convergence characteristics of 
the LU scheme for the Euler equations using Von Neumann stability analysis. From the analysis of the 
scalar equation, it was found that the convergence rate is governed by a specific parameter 

Fig. 4. Norms of Amplification 
Factor(NAF) of the AF error after the 
first sub-iteration for the Euler 
equations with θAR=100. 

Fig. 5. Spectral Radius of the AF error 
during sub-iteration for the Euler 
equations with θAR=100. 
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combination, which is CFL/AR for the case of large flow angle and CFL×AR for the case of small flow 
angle. Also, it was found that the convergence rate for the Euler equations is governed by only one 
parameter, CFL/AR, irrespective of the magnitude of flow angle. This suggests that if the local time 
step is defined based on CFL/AR for grids with different aspect ratios, the LU scheme for the Euler 
equations will not suffer convergence deterioration at any grid aspect ratios. The numerical results 
demonstrate that this time step definition gives uniform convergence for grid aspect ratios from one to 
million.   
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