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ABSTRACT

This paper presents a new distributed simulation method-
ology for hierarchical Discrete Event System Specifica-
tion(DEVS) models. The DEVS formalism provides a
formal basis for specifying discrete event models in a
modular, hierarchical form. For distributed simulation of
DEVS models, a synchronization mechanism is required
to control the advance of simulation clocks. The proposed
methodology employs the Time Warp mechanism for such
synchronization. However, the Time Warp mechanism
must be modified because DEVS and Time Warp have dif-
ferent simulation semantics. This paper deals with such
issues. The performance of the proposed methodology is
evaluated through a benchmark simulation. Several per-
formance results are presented. The results show that sig-
nificant speedup can be obtained.

Keywords: Distributed/parallel simulation, DEVS for-
malism, Time Warp, Object-oriented modeling and
simulation

1 INTRODUCTION

The Discrete Event Systems Specification (DEVS) for-
malism, developed by Zeigler(Zeigler 1984), specifies dis-
crete event models in a hierarchical, modular form. This
hierarchical modeling offers such advantages as fast model
development, model reuse, and easy model verification
and validation(Sargent 1993). These advantages are very
helpful in modeling and simulation of large, complex sys-
tems.

Parallel simulation of DEVS models differs from tradi-
tional logical process-based parallel simulation(Fujimoto
90) in that: (i) the formalism differentiates external and in-
ternal events of the models, and (ii) as a simulation mech-
anism, the DEVS abstract simulators are used(Zeigler
1984). Owing to these differences, most of parallel DEVS
approaches exploit the specific parallelism of the DEVS
formalism. Such approaches can be broadly classified
intotwo approaches: synchronous and asynchronous ones.

Synchronous approaches use a unique global scheduler
to synchronize the simulation progress across all of the
computer nodes. That is, only events with the same
simulation time are executed in parallel, and thus, the
global scheduler becomes a bottleneck for speedup. Asyn-
chronous approaches allow each computer node to have
different simulation clock. Thus, the bottleneck can be
greatly reduced. As an asynchronous approach, DEVS-
Ada/TW(Christensen and Zeigler 1990) employed the
Time Warp mechanism for global synchronization. How-
ever, it treats all models mapped in one computer node as
one logical process. Thus, the size of a logical process be-
comes larger, and the rollback cost increases. Moreover, in
DEVS-Ada/TW, a hierarchical DEVS model must be par-
titioned only at the top level of its hierarchy. Thus, The
mapping of a hierarchical DEVS model onto parallel com-
puters becomes difficult.

This paper proposes a new distributed simulation
methodology, called the Distributed Optimistic Hier-
archical Simulation (DOHS) scheme, for hierarchical
DEVS models. The DOHS scheme is based on the DEVS
abstract simulators and the Time Warp mechanism.
The combining of DEVS and Time Warp causes some
problems because DEVS and Time Warp have different
simulation semantics. We also refer such issues in this
paper.

The proposed methodology has several advantages
compared to the previous approaches. First, it can uti-
lize both the synchronous and asynchronous parallelism
of DEVS models. Second, it supports flexible partition-
ing and mapping of hierarchical DEVS models. Finally,
it’s rollback algorithm is more efficient than the previous
approaches because each DEVS model can roll back indi-
vidually.

The rest of the paper is organized as follows: Sec-
tion 2 describes an overview of the DEVS formalism and
its abstract simulator. Section 3 presents the proposed
DOHS scheme, including the combining issues of DEVS
and Time Warp. Section 4 presents the realization of
the DOHS scheme. In Section 5, the performance of the




DOHS scheme is measured through benchmark simula-
tion. Section 6 draws the conclusion.

2 DEVS FORMALISM AND ABSTRACT SIMU-
LATORS

The DEVS formalism specifies discrete event models in
a hierarchical, modular form(Zeigler 1984). To hierarchi-
cally construct DEVS models, the formalism specifies two
types of models. One is atomic model and another is cou-
pled model. An atomic model specifies the behavior of the
model by external and internal transition functions. The
external transition function specifies the action for external
inputs from other models, and the internal transition func-
tion specifies the action without external inputs. A coupled
model specifies how to couple several component mod-
els together to form a new model. A coupled model can
be employed as a component in a larger coupled model.
Thus, complex models can be constructed in a hierarchi-
cal, modular form. As an example, Figure 1 (a) shows
a simple queuing node model, Node. Node consists of
coupled model Server and atomic model router; Server is
composed of two atomic models, buffer and proc. Detailed
descriptions for the definitions of the atomic and coupled
DEVS can be found in (Zeigler 1984).

To simulate a DEVS model, the abstract simulator was
developed(Zeigler 1984). The abstract simulator inter-
prets the behavior of its associated DEVS model. There
are two kinds of abstract simulators, simulator for atomic
models and coordinator for coupled models. The simu-
lators and coordinators are linked by the coupling infor-
mation of the corresponding coupled models, thus forming
the same hierarchical structure as that of the models. As an
example, Figure 1 (b) shows the hierarchical abstract sim-
ulators of model Node. The simulation progress is man-
aged by the global scheduler, named root-coordinator.

An abstract simulator communicates with the external
world by explicitly typed messages, i.e. (x), (x), (), and
(done). A (*) message indicates when an internal transi-
tion function needs to be activated. When a simulator re-
ceives a (*) message, it generates output messages, (y)’s,
by the output function of its associated model, and ex-
ecutes the internal transition function. Note that in the
DEVS formalism, output messages can be produced only
while executing internal events. An (x) message indicates
that an external event x from other simulator is arriving.
Thus, when receiving an (x) message, a simulator exe-
cutes the external event transition function of its associated
model. Finally, after the execution of a (*) or (x) message,
a simulator (or coordinator) notifies the parent coordina-
tor of its next scheduled time, ty, by a (done) message.

(a) A queuing node model, Node

root-coordinator R:Node
cvordinator C:Node
goupled-model Node
simulator S:router
atomic-model router

simulator S:buffer simulator S:proc
atomic-model buffer atomic-model proc

coordinator C:Server
oupled-model Serve

(b) Abstract simulators of model Node

Figure 1: A hierarchical queuing node model and its asso-
ciated abstract simulator

3 DISTRIBUTED OPTIMISTIC HIERARCHICAL
SIMULATION OF DEVS MODELS

This section presents the proposed distributed simula-
tion methodology, the Distributed Optimistic Hierarchical
Simulation (DOHS) scheme. This methodology is based
on the existing hierarchical simulation mechanism given
in the previous section and the Time Warp mechanism.
The hierarchical simulation mechanism should be modi-
fied to fit into the parallel simulation environment. A Time
Warp algorithm is devised to be incorporated into the hier-
archical simulation mechanism.

Before describing the DOHS scheme, we first discuss
the problems occurring from the semantic differences of
Time Warp and DEVS.

3.1 Combining Issues of Time Warp and DEVS

Basically, the simulation time advance mechanism of
DEVS differs from that of Time Warp. In Time Warp, the
simulation time advances during a message transmission,
not in a logical process. Thus, a message has send and
receive time-stamps for advancing the simulation time.
However, in the DEVS semantics, the simulation time ad-
vances in an abstract simulator (or its associated model),
not during a message transmission. Thus, a message has
only one time-stamp, and instead, an abstract simulator
holds an elapsed-time-stamp which holds the time elapsed
since the last event. On receiving an external event mes-
sage, an abstract simulator emits output event messages
when the elapsed-time advances to ta(s), the time advance
value specified by the formalism. Figure 2 depicts this dif-
ference.

The causality error is a kind of error that the future af-
fects the past. The requirement not to commit such errors
is called the global causality constraint. For satisfying this




(a) Simulation time advance in Time Warp

abstract simulator

(b) Simulation time advance in DEVS

Figure 2: Simulation time advance mechanism

constraint, the Time Warp mechanism demands the fol-
lowing two semantic rules:

Rule 1. For each logical process, each incoming message
has a distinct receive time-stamp.

Rule 2. The receive time-stamp of a message must be
larger than its send time-stamp.

To employ the Time Warp mechanism in the DEVS sim-
ulation, the above two rules must be satisfied. However,
the DEVS formalism does not preserve the rules because
the formalism is a general discrete event system specifica-
tion. DEVS admits that multiple external events with the
same simulation time may arrive to one influencee simula-
tor, as shown in Figure 3. This leads to the disagreement of
the above Rule 1, since (xac,t) and (xgc,t) have the same
time-stamp, ?.

Furthermore, the DEVS formalism does not guarantee
the Rule 2. The formalism allows that the time advance
function, ta(s), may return zero value. As an example,
let’s consider the case that ta(s) = O for some state s,
as shown in Figure 4. There are three simulators, A, B,
and C. At 12, simulator B generates external event mes-
sages, (xpa,2) and (xpc,t2); the messages are transmit-
ted to simulator A and C respectively. After executing the
received message (xp4,2), simulator A sees that ta(s) =
0 and thus, immediately issues external event message
(xac,2) to simulator C. Therefore, simulator C receives
two external event messages, (xpc,#2) and (xac,t2), hav-
ing the same time-stamp ¢2. Even if the two messages have
the same time-stamp, (xpc,?2) must be executed earlier
than (xac,#2). This is a causality relation. However, sim-
ulator C cannot know which one is to be processed first;
thus, a causality error occurs.

To satisfy the above two semantic rules, the time-and-
priority-stamp and the causality requirement are devised
in the DOHS scheme. First, for rule (a), all (x) and (*)
messages are assigned a time-and-priority-stamp. For a
simulator, input (x) and (x) messages are ordered by the
lexicographic ordering of their time-and-priority-stamps,
as shown in the following definition.
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Figure 3: A conflict in input message ordering
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Figure 4: An example of a causality relation

Definition 1 Let both m; and m; be either (x) or () mes-
sages, and let tp; =< t,p; > and tp; =< 1z,p2 > be
the time-and-priority-stamps of m; and m; respectively.
Then, tp, < tp,, if and only if (i) 1y <1y, or (ii) 1y = 12
and p; < pa2.

By using the time-and-priority-stamp, all (x) and () mes-
sages in a simulator can be strictly ordered.

The priority in the time-and-priority—stamp can be ob-
tained from the DEVS formalism’s select function. The
select function gives a unique priority to each atomic
DEVS model (or its associated simulator). That is, the
priority-stamp of an (x) message is the priority of the mes-
sage’s source simulator. The (*) message’s priority-stamp
is smaller than any of the received (x) messages in a re-
ceiving simulator. This is because the internal event tran-
sition must occur before any external event transition with
the same simulation time. Thus, all input (x) and (*) mes-
sages can get a distinct time-and-priority stamp in a receiv-
ing simulator. As an example, let’s consider the case in
Figure 3. Let’s assume that simulator A has smaller pri-
ority than simulator B. Then, (xac,tp;) will be processed
first than (xpc, tp2), because tp; < tp2

Second, for semantic rule (b), we assert the causality re-
quirement. The causality requirement asserts that the time
advance function, ta(s), must result in a positive value for
all states:

ta(s) > 0, for all states s.

The causality requirement can prevent the causality errors.

However, the causality requirement might restrict the
modeling flexibility of the DEVS formalism. Also, this
makes sequential DEVS models to be translated for paral-
lel simulation, because DEVS models can have zero time



advance value in the sequential simulation. The DOHS
scheme solves this problem by substituting € for a zero
time advance value, where € is a minimum positive time
advance value, such that:
€xA < K, for any positive constant A,

where K is the minimum of any explicitly specified pos-
itive time advance value for all models. That is, in the
modeling perspective, models can have zero time advance
value; during a simulation, the zero value is substituted by
€, thus satisfying the causality requirement. By employing
this mechanism, all sequential DEVS models can be simu-
lated in the DOHS scheme. As an example, let’s consider
the case in Figure 4. The zero time advance value of simu-
lator A will be substituted by €. Thus, (xac,p2) will have
larger time-and-priority-stamp than (xpc,tp1) by €.

3.2 Overview of DOHS scheme

Figure 5 shows the global structure of the DOHS scheme.
In each computer node, the DOHS scheme consists of
node-coordinator, distributed abstract simulators, DOHS-
manager, and DOHS-queue. The node-coordinator
schedules the distributed abstract simulators.  The
DOHS-manager and DOHS-queue manage the global
synchronization by the Time Warp mechanism. They
handle all messages from/to the distributed abstract
simulators. The distributed abstract simulators perform
actual simulation for DEVS models.

The node-coordinator is a distributed version of the
global root-coordinator. For asynchronous distributed
simulation, each computer node must schedule by itself.
That is, the global scheduler, root-coordinator, must be
distributed to each node. In each computer node, a node-
coordinator schedules the abstract simulators mapped in
the node.

Since each computer node can have different local
clock, messages with different time-stamps arrive from
other computer nodes. Thus, to manage them, the DOHS-
manager and DOHS-queue are developed. They perform
three functions. First, they manage simulation progress by
handling all messages from/to the distributed abstract sim-
ulators. The DOHS-queue is basically a priority queue, in
which all messages are inserted by their time-stamps order.
The DOHS-manager fetches the first message from the
DOHS-queue and sends it to its destination abstract simu-
lator. Second, when a straggler message arrives, they find
it and initiate rollbacks. Finally, they perform the global
control mechanism, which will be described later.

The distributed abstract simulators perform actual sim-
ulation. In the DOHS scheme, the abstract simulator al-
gorithms must be modified to support a rollback. For
this, parallel versions of simulator and coordinator are de-
veloped, named as p-simulator and p-coordinator respec-
tively. When a straggler message arrives, a p-simulator

Node 0

Figure 5: The Overview of the DOHS scheme

rolls back to the previous state and recomputes the re-
ordered messages. After a rollback, the p-simulator is
rescheduled hierarchically by its parent p-coordinators.

The DOHS scheme can be divided into two major parts:
the local control mechanism and the global control mech-
anism. The local control mechanism ensures that mes-
sages are eventually executed in correct order. The mech-
anism allows out-of-order execution of messages; such
causality errors are corrected by using rollbacks and re-
computations. The global control mechanism is concerned
with global issues, such as I/O handling, termination de-
tection, memory management, and flow control.

3.3 Local Control Mechanism

The local control mechanism uses rollbacks and re-
computations for recovering the causality errors. For a
rollback, each p-simulator manages three data structures:
an input history, a state history, and an output history. The
input history stores incoming (x) or (*) messages in in-
creasing time-and-priority-stamp order. The state history
saves state snapshots whenever an input message is pro-
cessed. The output history contains the inverse image of
the output messages sent.

The rollback operation of the DOHS scheme is more
complex than that of the traditional Time Warp mecha-



nism. This is because p-simulators are scheduled hierar-
chically by several p-coordinators. Thus, scheduling in-
formations are distributed across several p-coordinators.

The rollback operation consists of three steps. First, cur-
rent hierarchical schedules must be cancelled, since the
straggler message will make a new schedule. For such
cancelling. a schedule cancelation algorithm is devel-
oped. The algorithms cancels the scheduling informations
in several p-coordinators. After the schedule cancela-
tion, the DOHS-manager transmits the straggler message
to the affected p-simulators. The second step of the roll-
back occurs in the affected p-simulators. The p-simulators
roll back their state and recompute the reordered mes-
sages by the developed rollback algorithm. Finally, after
this re-computation, the p-simulators are re-scheduled by
their parent p-coordinators, since their local clocks were
changed.

3.4 Global Control Mechanism

The global control mechanism is performed by the DOHS-
manager. The basic algorithm for the GVT calculation
is the same as Time Warp, except the definition of GVT
which is modified as follows.

Definition 2 Let min(DOHS-queue) be the minimum
time-stamp value of all messages in DOHS-queue. Then,
the Local Virtual Time (LVT) of a computer node is
defined as the lowest value between min(DOHS-queue)
and the last event time, t;, of the node-coordinator. The
Global Virtual Time (GVT) is the minimum of LVT’s of
all computer nodes.

After the calculation of GVT, DOHS-manager collects
fossils in all simulators, such as useless memories. When
GVT becomes infinity, DOHS-manager terminates the
simulation.

4 REALIZATION OF DOHS SCHEME

The DOHS scheme developed in the previous section
serves as a distributed simulation methodology of DEVS
models. It remains to show how the DOHS scheme
can be implemented on the parallel machine. The
DOHS scheme is realized in D-DEVSim++ by C++.
D-DEVSim++ is a parallel extension of DEVSim++,
a sequential DEVS modeling and simulation environ-
ment(Kim and Park 1992). Thus, D-DEVSim++ inher-
its all features of DEVSim++. D-DEVSim++ is imple-
mented on KAICUBES60, which is a 5-dimensional hy-
percube parallel machine developed at KAIST. Each com-
puter node contains a 40 MHz i860 microprocessor and
5 communication channels which employ the store-and-
forward routing scheme.

[ o P g

(a) Hierarchically constructed CHCS model

(b) Partitioned abstract simulators of CHCS model

Figure 6: The hierarchical model of the Columbian health
care system

5 EXPERIMENTAL RESULTS

In this section, the proposed DOHS scheme is evaluated by
experiments. For performance evaluation, the Columbian
Health Care System(CHCS) queuing benchmark model is
used. This model has been used to analyze the perfor-
mance of various researches(Baezner et al. 1988). The
model is one of a multi-tiered health care system of vil-
lages and health centers. There is one health center for
each village. When villagers become ill, they travel to
their local health center for assessment and are treated
when possible. If they cannot be treated locally, pa-
tients are referred up the hierarchy to a next health cen-
ter, where the assessment/treatment/referral process is re-
peated. Upon arriving at a health center, a patient is en-
queued until one of health care worker becomes available.
It is assumed that patients can always be treated at the top
level hospital of the health care system.

Figure 6 (a) depicts the hierarchically constructed
CHCS model. The model is designed by the hierar-
chical modeling methodology. The highest level cou-
pled model is LARGE-HC. LARGE-HC is decomposed
into 4 MEDIUM-HC’ which are also decomposed into 4
SMALL-HC’. Each HC has two atomic models: Hospi-
tal and Village. As an experimental frame, each village
is a source which generates a fixed number of patients.
Each hospital becomes a server which contains a wait-
ing queue and a set of doctors. It is assumed that each
first/second/third-level hospital has 16/4/1 doctors respec-
tively. For parallel simulation, the CHCS model is par-
titioned. Figure 6 (b) shows one possible partition for 4
computer nodes.

For performance evaluation of the DOHS scheme, the
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simulation time for the CHCS model is measured while
the number of computer nodes is varied from 1 to 16.
Note that when the number of computer nodes is 1, D-
DEVSim++ runs in the sequential mode. In the sequen-
tial mode, D-DEVSim++ performs no operation related
to global synchronization such as, GVT calculation, fos-
sil collection, state saving, and rollback. Experimental re-
sults are shown in Figure 7. In addition to the total simu-
lation time, the simulation time taken by each part of the
DOHS scheme is also measured: that is, the time taken
by p-simulators, p-coordinators, node-coordinator, and
DOHS-manager. The corresponding speedups of the re-
sults are shown in Figure 8.

The slope of the total speedup curve declines at 8 and
16 nodes. This is mostly due to unbalanced load distri-
bution. Most early ended computer nodes wait until the
simulation in the latest computer node is done. Such wait-
ing time is included in the DOHS-manager curve of Fig-
ure 7. Since we partitioned the CHCS model intuitively,
this waiting time becomes dominant as the number of com-
puter nodes increases. The DOHS-manager curve also in-
cludes the message handling time of DOHS-queue. This
time is very small compared to the time spent in the p-
coordinators and node-coordinator, as shown in Figure 7.
That is, when the number of computer nodes is 1, this time
is just 1.5% of the total simulation time.

The p-simulators curve shows very high speedup as
shown in Figure 8. Since atomic models express the be-
havior of a system, this time can be considered as the mini-

mum simulation time. By reducing the waiting time due to
the unbalanced load, significant speedup can be obtained.

6 CONCLUSION

This paper proposed a new distributed simulation method-
ology for hierarchical DEVS models, the Distributed Op-
timistic Hierarchical Simulation (DOHS) scheme. The
DOHS scheme is based on the DEVS abstract simula-
tors and the Time Warp mechanism. DEVS and Time
Warp have different simulation semantics. To compensate
this differences, the time-and-priority-stamp and causal-
ity requirement were devised. The DOHS scheme was
described. To distribute the global scheduler, the node-
coordinator was developed. To manage the simulation
and synchronization in each computer node, the DOHS-
manager and DOHS-queue were developed. Also, to sup-
port a rollback, parallel abstract simulator algorithms for
atomic and coupled models were devised. The perfor-
mance of the DOHS scheme was evaluated through the
simulation of Columbian health care benchmark models.
We confirmed that significant speedup can be obtained by
the DOHS scheme.
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