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Abstract 
 

Smart materials such as Lead Zirconate Titanate (PZT) have been widely used for generating and 

measuring guided waves in solid media for structural health monitoring (SHM) applications. In this 

study, a self-sensing system, composed of self-sensing algorithms and a self-sensing circuit, is 

developed so that a single PZT wafer can be used for simultaneous actuation and sensing. First, a PZT 

wafer is modeled as a single capacitor and a voltage source, and the proposed self-sensing scheme is 

calibrated by applying a probing waveform. Then, the mechanical response of the PZT wafer coupled 

with the target structure is extracted from the measured PZT output voltage when an arbitrary 

excitation is applied to the same PZT wafer. While existing self-sensing techniques focus on vibration 

controls, the proposed self-sensing scheme attempts to improve the accuracy of extracted sensing 

signals in the time domain. The simplicity, adaptability and autonomous nature of the proposed self-

sensing scheme make it attractive for continuous monitoring of structures in field. The effectiveness of 

the proposed self-sensing scheme is investigated through experiments of a cantilever beam.  

 

Introduction 

Structural Health Monitoring (SHM) and Non-Destructive Testing (NDT) is an 

integrated process of sensing, information technology and statistical inference used to 

ensure the safety and performance of a structure and to provide early detection of 

critical damage. Recently, guided waves using wafer-type piezoelectric materials such 

as Lead Zirconate Titanate (PZT) have been widely used for damage detection 

because they have a sensing range, which is in-between of those conventional NDT 

techniques and global SHM techniques (Sohn et al., 2004). One of the important 

characteristics of the PZT materials is that it can be used for simultaneous sensing and 

actuation. This feature of the PZT materials is called self-sensing here, and the 

advantages of a self-sensing scheme include: (1) the pulse-echo time reversal method 

can be achieved using only a single PZT wafer (Fink, 1999), (2) sensor diagnosis 

schemes can be implemented based on self-sensing to monitor sensors’ performance 

and integrity (Lee et al.,2006), (3) a single PZT wafer can be used to suppress 

undesired vibrations (Cole and Clark, 1994; Dosch et al., 1992; Vipperman and Clark, 

1996). The ultimate goal of this study is to apply self-sensing to guided wave 

propagation. Therefore, this study focuses on estimation of the mechanical response in 

the time domain. The proposed self-sensing fully takes advantage of the facts that any 

user-defined input signals can be applied to a structure and the input waveform is 

known. Additional advantages of the proposed approach are its simplicity and 

adaptability. Only additional hardware required is a self-sensing circuit equivalent to a 

charge amplifier, and the self-sensing parameters can be calibrated instantaneously at 

the presence of changing operational and environmental conditions of the system. 

This paper is organized as follows: First, the proposed self-sensing scheme is 

theoretically developed. Then, experimental studies are performed to demonstrate the 
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effectiveness of the proposed self-sensing scheme. Finally, this paper concludes with 

a brief summary and discussions for future work. 
 

Theoretical Development 

This section develops the theoretical framework of the proposed self-sensing scheme. 

Figure 1 shows the schematic of the proposed self-sensing circuit and a cantilever 

beam used in this study and an actual experimental set-up. A single PZT is mounted 

on one surface of the beam near the fixed end. The proposed self-sensing scheme 

consists of two main steps: (1) calibration of the self-sensing circuit by applying a 

probing waveform and (2) extraction of a mechanical response corresponding to an 

arbitrary input waveform. The first step (step I) is to measure a so-called scaling factor, 

which is defined as the ratio of the PZT capacitance to that of the feedback capacitor 

in the self-sensing circuit. The proposed scaling factor is estimated by three different 

algorithms: root mean squares (RMS), least mean squares (LMS) and orthogonality 

algorithms. In the second step (step II), the mechanical response corresponding to an 

arbitrary input signal is estimated using the previously calibrated self-sensing circuit.  
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(a) Schematic of the self-sensing circuit 

 

(b) A prototype of the self-sensing scheme 

Figure 1. A sensor self-sensing and sensor-diagnosis circuit is being developed to 

use a single PZT for simultaneously actuation and sensing  

 

Circuit model with PZT wafer 

The output voltage of the self-sensing circuit is related to the input and mechanical 

response voltages of the PZT. From the circuit diagram shown in figure 1 (a), the 

output of the circuit is related to the input and mechanical voltages of the PZT as:  
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where Cp, R and Cr are the PZT capacitance, the feedback resistance and the feedback 

capacitance of the self-sensing circuit, respectively. When a sinusoidal input 

vi(t)=Vsin(t) is applied to the PZT wafer, the steady-state solution of (2) becomes 

under the assumption that the mechanical response is negligible: 
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As the driving frequency  t 

voltages can be simplified: 
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where the scaling factor of the proposed self-sensing circuit is defined as:  
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The scaling factor can be approximated by computing the amplitude ratio of the 

output voltage to that of the input voltage when the driving frequency is high enough.  

Scaling factor estimation algorithms 

In this subsection, three different algorithms for estimating the scaling factor are 

derived and their susceptibility to Gaussian white noise in the input and output 

voltages is investigated. First, the scaling factor is estimated by computing the ratio of 

the RMS value of the output signal to that of the input signal as follows: 
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where [ ]ov k and [ ]iv k  denote noise-contaminated versions of the discrete input and 

output signals and defined as [ ] [ ] [ ]o o ov k v k e k   and [ ] [ ] [ ]i i iv k v k e k  , respectively. 

eo[k] and ei[k] are output and input Gaussian white noises. m is the total length of the 

measured discrete time signal. Note that, because ei[k] is a Gaussian white noise and 

independent of the input signal, the sum of vi[k]· ei[k] in (6) converges to zero as the 

sample number m increases. However, the RMS terms of the input and output noises 

remain in (6).  

 

Second, from the previous work by Cole and Clark (1994), a LMS algorithm is 

applied to estimate the scaling factor by calculating the ratio of the cross correlation 

between the output and input signals to the autocorrelation of the input signal as: 
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where E{} is the expectation operator. Because the input and output noises are 

assumed to be Gaussian white noises, they are independent of the output and input 

voltages as well as each other. Furthermore, by choosing a high-frequency input 

signal, the mechanical response can be minimized and the error due to the cross 

correlation term E{vi[k]vp[k]} becomes negligible. Therefore, only the error due to the 

Gaussian input white noise remains in the denominator of (7). 

 

Third, in the orthogonality method, the numerator and denominator in (5) are first 

multiplied by a sinusoidal wave at the input frequency. Then, the numerator and 



The 8th International Conference on Motion and Vibration Control (MOVIC 2006) 

denominator are summed over the entire length of the signal as follows: 
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Since the orthogonality algorithm uses the ideal sinusoidal signal that doesn’t have a 

noise term, the orthogonality method is expected to be less susceptible to input and 

output noises. The cross correlation term E{vp[k]·sin(kΔt)} in (8) remains 

insignificant as long as the amplitude of vp[k] at the driving frequency is negligible. 

Note that the response component of vp[k] outside the driving frequency is cancelled 

out through the orthogonality of trigonometric signals. The theoretical analysis 

suggests that the orthogonality algorithm has the best performance among the above 

three algorithms.  

Experiments 

To verify the theoretical development, experimental tests are performed in this section. 

The performances of the three self-sensing algorithms are compared. As for step I, a 

±4V 10kHz sine wave is used as the input signal and the scaling factor is estimated by 

the three different algorithms. As for step II, the mechanical response in the time 

domain and the corresponding frequency spectrum are estimated. To show the effect 

of the scaling factor estimate error on the accuracy of the extracted mechanical 

response, different levels of the scaling factor estimate error are examined. Figure 1 

(b) shows the actual experimental set-up except for the data acquisition system. To 

verify the results of the scaling factor estimate, the capacitance values of the PZT 

wafer and the feedback capacitor were measured by a commercial LCR meter, which 

had 0.05% accuracy. The dimension of the aluminum beam and the PZT wafer are 

510mm x 19mm x 3mm and 72.5mm x 19mm x 0.508mm, respectively. Table 1 shows 

the errors between the scaling factor measured from the LCR meter and the ones 

estimated from three different algorithms. As expected from the theoretical analysis, 

the orthogonality algorithm produces the smallest error.   

 

Estimation Algorithm SF  Relative Error (%)a  

RMS algorithm -0.82745 0.122  

LMS algorithm -0.82739 0.115   

Orthogonality algorithm -0.82677 0.041 
a Note that SF  is the scaling factor estimated from the self-sensing circuit. And the SF value 

estimated from the commercial LCR meter is used as the reference and its value is -0.82644. 

Table 1. Comparison of the three different self-sensing algorithms 

 

In step II, a ±4V low-frequency chirp signal was used as the input signal. Figure 2 (a) 

and (b) show the input chirp signal in the time and frequency domains. In figure 2 (c) 

and (d), the output signal in the time and frequency domains from the self-sensing 

circuit is shown. Next, the scaling factor estimated from the LCR meter is perturbed 



The 8th International Conference on Motion and Vibration Control (MOVIC 2006) 

to examine the effect of the scaling factor on the extracted mechanical response. The 

resonance frequencies of the test structure were clearly identified from the extracted 

mechanical response as shown in figure 2 (f). The error in the scaling factor estimate 

shifted the anti-resonance frequencies of the system horizontally. On the other hand, 

the resonance frequencies of the system were estimated properly. 

 

 

(a) A chirp input signal (0-400Hz) in the 

time domain 

 

(b) The frequency content of the chirp 

signal 

 

(c) The measured output voltage in the 

time domain 

 

(d) The frequency spectrum of the output 

voltage 

 

(e) The extracted mechanical time 

response    

 

(f) The frequency spectrum of the extracted 

mechanical response 

Figure 2. Estimated responses in the time and frequency domains when a chirp signal 

(0~400Hz) is applied and the error level of the scaling factor is varied ±2.5%.  
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Conclusions 

In this study, a combination of self-sensing algorithms and a self-sensing circuit is 

developed particularly for active sensing devices used for guided wave generation and 

measurement. The goal of the proposed self-sensing is to use a single active sensing 

device such as PZT for simultaneous excitation and sensing of guided waves. A circuit 

analysis is performed to describe the relation between the PZT input and output 

voltages and the corresponding mechanical response voltage. In the first step, a 

specific probing input signal is applied to the PZT wafer to calibrate the self-sensing 

algorithm and to estimate the scaling factor. Then, the mechanical time response 

corresponding to an arbitrary input signal is extracted in the second step using the 

previously calibrated self-sensing algorithm. The feasibility of the proposed self-

sensing scheme is demonstrated through experimental tests. The mechanical response 

of the system was successfully extracted in the time and frequency domains. Contrast 

to the previous self-sensing studies, the proposed self-sensing scheme emphasizes on 

accurate extraction of the mechanical response in the time domain. An ongoing 

research is underway to take advantage of the proposed self-sensing for developing 

sensor self-diagnosis schemes and structural damage diagnosis.  
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