Architecture Decision within Value-Based Softwar e Engineering
concepts

Jin-Gyu Kim
Information and Communications University
MunJi-Dong, YouSeong-Ku,

DaeJeon, South Korea
82-042-866-6215

jinlooks@icu.ac.kr

ABSTRACT

Architectures in software intensive systems argaificant field of

study while it is representing static structure,taflaw, and

relationships among subsystems or components. Alsbjtectures
could be considered an artifact as blueprint ofvefe system to
make sure that design approach will yield an aet#ptsystem in
early system analysis. As the complexity of sysieaneases, there
will be several approaches to design or select compts to

improve qualities, namely performance, modificatiand security,
and there are many stakeholders involved in thashitectural

concerns such as implementors, testers, maintaiaedsmanagers.
To select right and workable architectural appreacharchitects
firstly need to recognize the values among stakigre] how to
affect them, and how to lead negotiated architettagecisions
against the value-neutral approach that focusesriy technical

issues. In this paper, we primarily propose a nubthtbat

systematically derives architectural decision frenmk to reflect

both economical and technical issues in contextamhitecture

processes.

Categoriesand Subject Descriptors
K.6.3 [Management of Computing and Information Sy]:

Software Management -Software Selection, software
development, software maintenance.

General Terms

Management, Measurement, Performance, Design, an
Economics.

Keywords

Architecture Decision, Weighed Sum Technique, Besin
and technical issue, Decision Framework.

1. INTRODUCTION

Software might be the first thing to bridge betwesistomers and
products or services, and growing competitive e@mrinent in

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa finst page. To copy
otherwise, or republish, to post on servers oreistribute to lists,
requires prior specific permission and/or a fee.

Conference’04Month 1-2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

Sungwon Kang
Information and Communications University
MunJi-Dong, YouSeong-Ku,

DaeJeon, South Korea
82-042-866-6215

kangsw@icu.ac.kr

market requires a high-quality, flexible and adbfgasoftware
system to support its particular services. To radpd®o such
environment, to understand software architecturd &m select
suitable software architecture are the most sicpnifi steps to
develop a software product while architecture [esenting static
structure, dataflow, and relationships among subsys or
components [1].

There are growing issues in developing softwarg¢esys such as
low productivity, low quality, and high maintenancest, and many
organizations adapt software process, such as CEMMI, Six-
Sigma, and ISO, to optimize development and maimea
activities. Even though these methods increase ugtidty and
quality of software systems, it is not the ultimatelution to
maximize the values of software systems and toaedhe cost of
maintenance without strong architecture reflectimgustrial
requirement [5]. As the complexity of system irages, there will
be several approaches to design or select componerimprove
qualities, namely performance, modification, anccusigy [1].
Software architects traditionally had an architestudecision
process with the fundamental understanding of wéaftware
architecture should be, and architects could then questions of
how to create architecture into good, right andceasful technical
supports. The primary intent of this paper is tialgésh a strategy to
help understanding the full nature of software #ecture process.
Then it explores a case study of Message Transl&istem with
specific architectural approaches through valueethaschitecting
hat involves further trade-offs of the system objes with
chievable architectural solutions [3]. Finallysitggests a method
to generate an architecture decision framework the#iects both
economical and technical issues in context of &chire processes.

2. RELATED WORKS

The most commonly accepted and well-known conceptaVBSE
(Value-Based Software Engineering) is that enabkmgnificant
improvements in software design and engineeringoutin

economical reasoning about software system is t@imize its

benefits in not only present values, but also fitualues [6]. In
comparing past works, we focused on developmentscoather
than considering other economical and environnhdatdors, and
we had believed that improving the performance gisting

functions or creating high technologies providesrerous benefits.
However, recently, we have realized even high teldgy or new
functionality itself does not satisfy objectives afystem
development until putting economical issues intthtecal issues.
The VBSE concept is very strong at maximizing valoé related
issues by the principle of separation of concepnayiding practical
plan and supported environment, and trade-off amalamong

stakeholders [7]. But, we still need to progress vatue-based
architecting by being absorbed business needs suftware
architecture.

Another famous trend in software engineering isdpo line

engineering which mainly consists of two parts: domengineering
and application engineering. Its goal is to suppbe systematic
development of a set of similar software systemauhgerstanding
and controlling their common and distinguishing releteristics [8].

The methodologies of product line engineering ersjzieaproactive
reuse to construct high-quality products that ass kostly but more
quickly, so that the productivity increases remhhkaand product
qualites are guaranteed by maximizing reusabilignce

components in domain artifacts are developed astdden domain
engineering. Also, product architecture freely dedi from artifacts
of domain engineering with variability points faflecting specific

product requirements. However, variability points domain

artifacts only allow technical flexibility; moreorewhole product
line approach is itself limited within reducing @epment costs
and time to market. It is necessary to place VB®HBcepts in

designing software architecture with the followipgestions.

® How can one provide architectural solutions cormgni
technical and business issues?

® How can one trade-off or reflect software architest
decisions between business needs and
supports?

Requirements ‘

"""" ——

Meta—Architecture ‘

—— 11

Conceptual Architecture ‘

——
Architeclure

—— |1

Logical Architecture ‘

—— |]

Execution Architecture ‘

Implementation ‘

Figure1. Architectural Processes between requirement and
implementation

3. ARCHITECTURE PROCESSES

After requirement engineering, essentially, there architectural
activities to provide structural information to swdre developers.
Architecture is simply to figure out what comporestre needed
and what relationship are required among them; kiewehere are
many subprocesses within the architecture phasmelya meta-

architecture, conceptual architecture, logical #eckure, and
execution architecture. Those subprocesses are csmupas a
layered structure, and they conduct iterativelyfiggre 1) until all

the architectural requirements are satisfied.

3.1 Meta-Architecture

Any decisions in the meta-Architecture stronglyeeffthe integrity
and structure of the system; however, it does tselfidefine the
structure of the system [9]. The meta-architechn®/ides us with

the limitations of or recommendation for architeetustyle,

principles, philosophy, and pattern of compositisrinteraction by
architects through extracting and analyzing the higectural

requirements from requirement phase. This phaseeig helpful

rather than directly moving on the conceptual detitire phase in
that architects think about the qualities thatesysshould delivered
and the components needed in conceptual archigectur

3.2 Conceptual Architecture

The main activities in the conceptual architectane to identify the
high-level components of the system and thoseioalstiips among
one another [9]. In this phase, architects canctyrdocus on a
suitable decomposition rules of the system withoahsidering

detail designs. Moreover, artifacts in conceptuehigecture can be
communication tools between architects and nonrieah

audiences, such as managers and users, througlitecitate

diagrams and informal component specifications [4].

3.3 Logical Architecture

The output of the logical architecture is “Blueptirof whole
systems with precise and unambiguous propertiethiditphase, all
artifacts from the conceptual architecture becanséle and are
assembled with well-defined interfaces and compbnen
specifications. Key architectural mechanisms algmpsrted onto or
among the components [9]. By doing those activitiesch

technicalcomponent is developed individually and locatedanchitecture

diagrams with enough explanations and rationales.

3.4 Execution Ar chitecture

Execution architecture is for describing hardwaenocerns of
software systems, such as throughput and scajabiitdistributed
and concurrent mechanisms, execution architectdoesinstance,
development and deployment views, are the suitallks to show
the mapping of components onto nodes, or mappir@wiponents
onto processes of the physical systems [9].

Significant architectural-decision processes ocbatween meta-
architecture and conceptual architecture, or betweenceptual
architecture and logical architecture [9]. Architeenay consider
lower-level designs or implementations in architegtdecisions;
however, they should not be regard as architecnes since it has
only local impact, not systematic impact, and ieslmot require
making the necessary trade-offs across the sys@mlhdeed,
Architectural-decision processes should be inclualédoad-scoped
or system perspective. A case study of Messagesit@an System
in the next chapter offers visual understandingsahitectural
decisions in more detail.

MTSW Message Translation Software
MMDB : Message Mapping Database

IMSDB Message Specification Database ! Z type
———————————————— 4, |Message instance
<% i
P S e
'z type MSDD | |

X type B -—— | Y type

Message instance | +—— Mge instance

3

Figure 2. Thecurrent structure of Me&ageTranslatlon System
with an extension plan

4. CASE STUDY: Message Trandlation System

The organization that developed the Message Tramislaystem

considers extending the current system by adding message type.

The current system, which has only two types ofsags translating,
consists of MTSW (Message Translation Software) idIMDB
(Message Mapping Database), as shown in Figure fhe8sage
instance is generated from its MMDB, and it goe® iMTSW.
Based on message element mapping tables in MMDBhssage
instance is transformed into different type of nageselements and
reconstructed those message elements accordihg ®yhtax rules.
However, with three more message types, the cursystem
structure is not effective, and it requires new haectural
approaches since one-by-one mapping rule does odt among
different types of elements. Theoretically, it reqs one-to-many or
many-to-many mapping rules; that is one elemena @roup of
elements transformed as one or a set of elemergdifferent type
of message.

It will take less than six months for this orgatiaa to develop the
extension of this system with designing componestated new
type of messages due to the business needs. Wheessage
instance is translated into a different type, ibidd keep the same
translation time as the current system dose. Aaldlidly, the

components of the current system should be reusedw extended
system.

4.1 Threearchitectural options

To address this challenge and meet the emergirigdassneeds, the
organization developed architectural visions todguits system'’s
transformation through numerous infrastructure DRpmMent
studies and they finally narrow down their visidoghree workable
options (see Figure 3).

Option A

Option B

*ML Transforming
Software

*ML Message Element
Mapping DB

ML Transforming

Software Meszage instance

Z type
Message nelance

X type:

@ e Ty
MMDB
(7-X ype)

Option C

-— —=| ¥ ype
Meszage nslance | ————» +— Message nzlance

s T
MMDB
(X-Y type)

Figure 3 Architectural approaches

Option A. In this approach, when a new message type appedrs
is added to Message Translation System, it leth eaEssage type
have a one-by-one relationship. For example, suppbsype of
message is added to this system among X and Y tfpesssages,
it requires additional message translation softypaogram with the
message mapping database between X and Y messdlges.
another message translation software program amdmissage
mapping database located between Y and Z messddes.
approach does not require further technologies dTE
(Commercial off-the-shelf) from the outside, ande tlturrent
components are fully reused; however, when a np& tf message
added, more than two message translation softwargrggm and
message mapping databases are needed so thasttenddime of
development components and complexity of structuapidly
increase.

Option B. This XML (Extensible Markup Language) intensive
translation approach is all messages firstly tamséd into the
XML syntax structure and are sent to the XML mappsoftware.
This software program is mapping and exchanging@rokinds of
XML message elements through accessing XML messtgaent
mapping database and reconstructs the XML syntaictste in
different message types. With this approach, whenev new
message type is developed, the message is easibdam this

architecture by transforming all the message elésnato the XML
structure and updating them onto the XML messagenehts
mapping database. This approach has strength oficired
development cost and time in further extension, huneeds
transforming the current structure of system. Addally, it
requires further technology such as XML transfognihowever,
this technical issue can be solved by COTS, whidly Supports
XML transforming.

Option C. The idea of this architectural approach is tocedame of
the message types and use it as a bridge for otessage types; for
instance, if X type of message is selected asdgérmessage, this
message is located in the middle of the system mmedsage
translation software and its message mapping dsgabare
positioned between a bridge message and other tfpeessages.
This approach mainly contributes to saving the tgraent cost
and time and keeping the original structure to cedine complexity
of system. Moreover, it is free from the issuesuother technology.
However, when an instance message translates idiffeaent type
of message, it demands translation twice in thitiiggcture except
for the translation to the bridge message, and thé&ans the
translation time is much longer than the currestem’s.

Table 1. Architecture Decision Table of Message Trandation System

Option A | Option B | Option C

Essential Criteria I

- Be ready for delivery in Six months? Yes Yes Yes
- Keep original translation time? Yes Yes No
- Reuse original components? Yes Yes Yes

[Sdected Critetia___________________________]|

Weight | Option A | Option B | Option C
1. Development Costs? 6 16 0] 0] 1|6
2. Reduce time to market for future enhancement b1|-5]1 5|0 0
3. Require further technology? 4 L4 |-1|-4]1 4
4. Available outside COTS? 3 A1-3] 1 3 |-1]-3
5. Transforming original structure? 2 12]|-1]-2]1)| 2
6. Development Time? 1 -1-11]10 0 1 1
Total 21 -9 2 10

5. DECISION FRAMEWORK

This Architectural Decision Table basically consisf two parts;

essential criteria and selected criteria, as desdrin Table 1. First
of all, architects are provided the list of crigeffom system analysts
or themselves extract them from meta-architecthi@se. Then they
classify this list into the essential list and tbptional list. The

essential criteria indicate the lists which theerdatives should be
satisfied; however, the alternatives in selectégria part would be

considered as optional supports. Those selectégtiarprovide or

lead architects to which alternative is the mogtable for specific

situation or development team. On the other hanthiwessential

criteria area, architects simply ask whether certaichitectural

approach supports it or not. It means they do aké tany rating

techniques into consideration on the essentiakr@it and some
alternatives would be eliminated from the Architeet Decision

table in case that those were not met with a cedatierion.

The selected criteria part is located in bottom As€hitectural
Decision Table and is applied by weighted sum teghen This part
consists of optional criteria and those are alrgayritized with a

set of weights to reflect the relative significasft each criterion.
Moreover, those criteria are assigned to a ratmgéch criterion to
reflect how well options satisfy the criterion. #se result of this
analysis, architects consequently recognize whithretive is the
most suitable.

5.1 Traditional problems with Weighted Sum

Technique

Problems with weighted sum technique are that wimtgof rating
factors and weights suggested unacceptable aliezaat For
instance, some criteria require critical considerst and they
should be classified in high-level criteria. Howgvi is hard to
figure out accurate ratings and weights in earlsigite phase [2]. In
the Architectural Decision Table, those requiringitical

consideration or architect seems it is significaauld be tie up
together in the essential part to justify critidatision first.

Another issue in weight sum technique is how wedligns or fairly
contribute ratings and weights to each criterionoading to their
significations [2]. For more specific, one criteripossibly makes

other criteria meaningless; for example, supposeldpment costs
(see table. 1) was assigned considerably high weigth high
rating relatively to the other criteria, the othmiteria could not
have any effect on this architectural decision. Mmmimize this
problem, the Architecture Framework Decision iscdiminated just
by one between criteria; so that it gives the cbartbat lower level
criteria can overcome or lead different alternatieven though a
higher level criterion supports a certain altenmtiwhile most
critical criteria are classified into the essenpaft. The formula of
assigning weights is like below.

N=L =), [Egn, 1]
N

ZW,_ ... [Eqn. 2]
L=1

W, : Weighted value of certain level
N : Number of selected criteria
L : Level of each selected criterion

52 Applying
Technique
Firstly, architects prepare levels of criteria gatges as same size as
the number of the selected criteria. They priceitieriteria and
assign weights to each criterion using Eqn. 1. rAfteat, they
position the criteria into the selected criteriartpfrom most
significant one with a certain weight. Regarding thting table (see
Table. 2), it simply divide into three categoriagls as ‘Strong’,
‘Acceptable’, and ‘Poor’, and it just uses 1, Odad for allocated
value to minimize differentiation of weighted ragivalue between
category levels. For example, if alternatives dreng at certain
criterion, it will have plus effect based on itsighe, and if its rating
is acceptable, it will have no effect on it; othesy it will have
minus effects in case of poor at this criterionteafilling out rest of
all Architecture Decision Table through multiplyingeight by its
rating value, each weighted rating is sum up to am® which
alternative is the most suitable. Eqn. 2 is usefigiare out sum of
weights in Architectural Decision Table.

modified Weighted Sum

Table2. Rating Table

Rate Value
Strong 1
Acceptable 0
Poor -1

Regarding the result of Table @ption C should be considered as
the most alternative within the selected criteg&ti®n; however,
Option C does not suitable while it does not support oisBathe
translation time as same as the current systemdsjtaequires two
times of translation when Y type of instance messagtranslated
into Z type of instance message or in reverse Gpdion B, which

is second ranking in selected criteria, will beestdd as the further
development type of structure.

6. CONCLUSION

Architecture in software intensive system is that@ concern to
ensure the qualities or properties of system asd bifisiness
objectives. However, what seems to be lacking isdmbine the
concept of technical issues and business issuesthiet software
architecture. During the software architecture gieisig, architects
had just focused on the qualities of system suchesformance,
modification, maintainability, and security acrossmponents or

subsystem, and they simply believed that the highlity software

system satisfies its business needs. Therefors, ghper have
considered fundamental steps of architectural poend applied
VBSE concepts to bring business needs into arc¢hit@cdecisions.
By doing this, business issues, occurred from datsiof

development team, embodied into technical softvaahitecture
along with architectural process. Furthermore, iibppses and
illustrates the usefulness of the method by condga case study
of Message Translation System and proved how wspesbftware
architecture flows out and refines into the goodhtt and

successful architectural solution by driving meetifiweighted sum
analysis technique.

Future researches, proposed in this paper, indhelelevelopment
of domain architecture with value maximizing method software
product line engineering, especially with varialgilnanagement. In
particular, to define technical and business isstiesame variation
points will be inevitably an essential activity famproving the

speed of developing high-quality products and reduthose costs.
This would be more the efficient management in dontevel of

product line architectures.

6. References

[1] Len Bass, Paul Clements, Rick Kazm&aftware Architecture
in Practice Addison Wesley 2003.

[2] Barry W. Boehm:Software Engineering EconomidBrentice-
Hall 1981.

[38] Stefam Biffl, Aybuke Aurum, Berrry Boehm, Hakan
Erdogmus, Paul GrunbacheNalue-based Software
Engineering Springer 2006

[4] Ruth Malan, Dana BredemeyeConceptual Architecture
Action Guide Bredemeyer Consulting.

[5] Jongsu Bae, Songwon Kang methods to generate
Feature Model from Business Process Model for
Business Applicatianinformation and Communications
University 2007

[6] Barry W. Boehm, Kevin J SullivarSoftware Economics: A
Roadmap University of Southern California, University of
Virginia Thornton Hall.

[7] Steve McConnellRapid DevelopmenMircosoft Press 1996

[8] Klaus Pohl, Ginter Béckle, Frank J. van der Lindgoftware
Product Line Engineering: Foundations, Principlesnda
Techniquesl®™ ed, Springer, September 19, 2005.

[9] Ruth Malan, Dana Bredemey&oftware Architecture: Central
Concerns, Key DecisionBredemeyer Consulting.

