
Architecture Decision within Value-Based Software Engineering
concepts

Jin-Gyu Kim

Information and Communications University
MunJi-Dong, YouSeong-Ku,

DaeJeon, South Korea
82-042-866-6215

jinlooks@icu.ac.kr

Sungwon Kang
Information and Communications University

MunJi-Dong, YouSeong-Ku,

DaeJeon, South Korea
82-042-866-6215

kangsw@icu.ac.kr

ABSTRACT
Architectures in software intensive systems are a significant field of
study while it is representing static structure, dataflow, and
relationships among subsystems or components. Also, architectures
could be considered an artifact as blueprint of software system to
make sure that design approach will yield an acceptable system in
early system analysis. As the complexity of system increases, there
will be several approaches to design or select components to
improve qualities, namely performance, modification, and security,
and there are many stakeholders involved in those architectural
concerns such as implementors, testers, maintainers, and managers.
To select right and workable architectural approaches, architects
firstly need to recognize the values among stakeholders, how to
affect them, and how to lead negotiated architectural decisions
against the value-neutral approach that focuses on only technical
issues. In this paper, we primarily propose a method that
systematically derives architectural decision framework to reflect
both economical and technical issues in context of architecture
processes.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information Systems]:
Software Management – Software Selection, software
development, software maintenance.

General Terms
Management, Measurement, Performance, Design, and
Economics.

Keywords
Architecture Decision, Weighed Sum Technique, Business
and technical issue, Decision Framework.

1. INTRODUCTION
Software might be the first thing to bridge between customers and
products or services, and growing competitive environment in

market requires a high-quality, flexible and adaptable software
system to support its particular services. To respond to such
environment, to understand software architecture and to select
suitable software architecture are the most significant steps to
develop a software product while architecture is representing static
structure, dataflow, and relationships among subsystems or
components [1].

There are growing issues in developing software systems such as
low productivity, low quality, and high maintenance cost, and many
organizations adapt software process, such as CMM, CMMI, Six-
Sigma, and ISO, to optimize development and maintenance
activities. Even though these methods increase productivity and
quality of software systems, it is not the ultimate solution to
maximize the values of software systems and to reduce the cost of
maintenance without strong architecture reflecting industrial
requirement [5]. As the complexity of system increases, there will
be several approaches to design or select components to improve
qualities, namely performance, modification, and security [1].
Software architects traditionally had an architectural decision
process with the fundamental understanding of what software
architecture should be, and architects could turn the questions of
how to create architecture into good, right and successful technical
supports. The primary intent of this paper is to establish a strategy to
help understanding the full nature of software architecture process.
Then it explores a case study of Message Translation System with
specific architectural approaches through value based architecting
that involves further trade-offs of the system objectives with
achievable architectural solutions [3]. Finally, it suggests a method
to generate an architecture decision framework that reflects both
economical and technical issues in context of architecture processes.

2. RELATED WORKS
The most commonly accepted and well-known concept about VBSE
(Value-Based Software Engineering) is that enabling significant
improvements in software design and engineering through
economical reasoning about software system is to maximize its
benefits in not only present values, but also future values [6]. In
comparing past works, we focused on development costs, rather
than considering other economical and environmental factors, and
we had believed that improving the performance of existing
functions or creating high technologies provides enormous benefits.
However, recently, we have realized even high technology or new
functionality itself does not satisfy objectives of system
development until putting economical issues into technical issues.
The VBSE concept is very strong at maximizing values of related
issues by the principle of separation of concerns, providing practical
plan and supported environment, and trade-off analysis among

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

stakeholders [7]. But, we still need to progress on value-based
architecting by being absorbed business needs into software
architecture.

Another famous trend in software engineering is product line
engineering which mainly consists of two parts: domain engineering
and application engineering. Its goal is to support the systematic
development of a set of similar software systems by understanding
and controlling their common and distinguishing characteristics [8].
The methodologies of product line engineering emphasize proactive
reuse to construct high-quality products that are less costly but more
quickly, so that the productivity increases remarkably and product
qualities are guaranteed by maximizing reusability since
components in domain artifacts are developed and tested in domain
engineering. Also, product architecture freely derived from artifacts
of domain engineering with variability points for reflecting specific
product requirements. However, variability points in domain
artifacts only allow technical flexibility; moreover, whole product
line approach is itself limited within reducing development costs
and time to market. It is necessary to place VBSE concepts in
designing software architecture with the following questions.

� How can one provide architectural solutions combining

technical and business issues?

� How can one trade-off or reflect software architecture

decisions between business needs and technical
supports?

Figure 1. Architectural Processes between requirement and

implementation

3. ARCHITECTURE PROCESSES
After requirement engineering, essentially, there are architectural
activities to provide structural information to software developers.
Architecture is simply to figure out what components are needed
and what relationship are required among them; however, there are
many subprocesses within the architecture phase, namely, meta-
architecture, conceptual architecture, logical architecture, and
execution architecture. Those subprocesses are composed as a
layered structure, and they conduct iteratively (as figure 1) until all
the architectural requirements are satisfied.

3.1 Meta-Architecture
Any decisions in the meta-Architecture strongly affect the integrity
and structure of the system; however, it does not itself define the
structure of the system [9]. The meta-architecture provides us with

the limitations of or recommendation for architecture style,
principles, philosophy, and pattern of composition or interaction by
architects through extracting and analyzing the architectural
requirements from requirement phase. This phase is very helpful
rather than directly moving on the conceptual architecture phase in
that architects think about the qualities that system should delivered
and the components needed in conceptual architecture.

3.2 Conceptual Architecture
The main activities in the conceptual architecture are to identify the
high-level components of the system and those relationships among
one another [9]. In this phase, architects can directly focus on a
suitable decomposition rules of the system without considering
detail designs. Moreover, artifacts in conceptual architecture can be
communication tools between architects and non-technical
audiences, such as managers and users, through architecture
diagrams and informal component specifications [4].

3.3 Logical Architecture
The output of the logical architecture is “Blueprint” of whole
systems with precise and unambiguous properties. At this phase, all
artifacts from the conceptual architecture became visible and are
assembled with well-defined interfaces and component
specifications. Key architectural mechanisms also supported onto or
among the components [9]. By doing those activities, each
component is developed individually and located in architecture
diagrams with enough explanations and rationales.

3.4 Execution Architecture
Execution architecture is for describing hardware concerns of
software systems, such as throughput and scalability. In distributed
and concurrent mechanisms, execution architectures; for instance,
development and deployment views, are the suitable tools to show
the mapping of components onto nodes, or mapping of components
onto processes of the physical systems [9].

Significant architectural-decision processes occur between meta-
architecture and conceptual architecture, or between conceptual
architecture and logical architecture [9]. Architects may consider
lower-level designs or implementations in architecture decisions;
however, they should not be regard as architecture ones since it has
only local impact, not systematic impact, and it does not require
making the necessary trade-offs across the system [9]. Indeed,
Architectural-decision processes should be included a broad-scoped
or system perspective. A case study of Message Translation System
in the next chapter offers visual understandings of architectural
decisions in more detail.

Figure 2. The current structure of Message Translation System

with an extension plan

4. CASE STUDY: Message Translation System
The organization that developed the Message Translation system
considers extending the current system by adding more message type.
The current system, which has only two types of message translating,
consists of MTSW (Message Translation Software) and its MMDB
(Message Mapping Database), as shown in Figure 2. A message
instance is generated from its MMDB, and it goes into MTSW.
Based on message element mapping tables in MMDB, the message
instance is transformed into different type of message elements and
reconstructed those message elements according to the syntax rules.
However, with three more message types, the current system
structure is not effective, and it requires new architectural
approaches since one-by-one mapping rule does not work among
different types of elements. Theoretically, it requires one-to-many or
many-to-many mapping rules; that is one element or a group of
elements transformed as one or a set of elements in a different type
of message.

It will take less than six months for this organization to develop the
extension of this system with designing components related new
type of messages due to the business needs. When a message
instance is translated into a different type, it should keep the same
translation time as the current system dose. Additionally, the
components of the current system should be reused in new extended
system.

4.1 Three architectural options
To address this challenge and meet the emerging business needs, the
organization developed architectural visions to guide its system’s
transformation through numerous infrastructure improvement
studies and they finally narrow down their visions to three workable
options (see Figure 3).

Figure 3 Architectural approaches

Option A. In this approach, when a new message type appears and
is added to Message Translation System, it lets each message type
have a one-by-one relationship. For example, suppose Z type of
message is added to this system among X and Y types of messages,
it requires additional message translation software program with the
message mapping database between X and Y messages. Also,
another message translation software program and its message
mapping database located between Y and Z messages. This
approach does not require further technologies or COTS
(Commercial off-the-shelf) from the outside, and the current
components are fully reused; however, when a new type of message
added, more than two message translation software program and
message mapping databases are needed so that the cost and time of
development components and complexity of structure rapidly
increase.

Option B. This XML (Extensible Markup Language) intensive
translation approach is all messages firstly transformed into the
XML syntax structure and are sent to the XML mapping software.
This software program is mapping and exchanging other kinds of
XML message elements through accessing XML message element
mapping database and reconstructs the XML syntax structure in
different message types. With this approach, whenever a new
message type is developed, the message is easily added to this

architecture by transforming all the message elements into the XML
structure and updating them onto the XML message elements
mapping database. This approach has strength of reducing
development cost and time in further extension, but it needs
transforming the current structure of system. Additionally, it
requires further technology such as XML transforming; however,
this technical issue can be solved by COTS, which fully supports
XML transforming.

Option C. The idea of this architectural approach is to select one of
the message types and use it as a bridge for other message types; for
instance, if X type of message is selected as a bridge message, this
message is located in the middle of the system and message
translation software and its message mapping databases are
positioned between a bridge message and other types of messages.
This approach mainly contributes to saving the development cost
and time and keeping the original structure to reduce the complexity
of system. Moreover, it is free from the issues of further technology.
However, when an instance message translates into a different type
of message, it demands translation twice in this architecture except
for the translation to the bridge message, and this means the
translation time is much longer than the current system’s.

Table 1. Architecture Decision Table of Message Translation System

 Option A Option B Option C

Essential Criteria

- Be ready for delivery in Six months? Yes Yes Yes
- Keep original translation time? Yes Yes No
- Reuse original components? Yes Yes Yes

Selected Criteria

 Weight Option A Option B Option C

1. Development Costs? 6 -1 -6 0 0 1 6
2. Reduce time to market for future enhancement 5 -1 -5 1 5 0 0
3. Require further technology? 4 1 4 -1 -4 1 4
4. Available outside COTS? 3 -1 -3 1 3 -1 -3
5. Transforming original structure? 2 1 2 -1 -2 1 2
6. Development Time? 1 -1 -1 0 0 1 1
Total 21 -9 2 10

5. DECISION FRAMEWORK
This Architectural Decision Table basically consists of two parts;
essential criteria and selected criteria, as described in Table 1. First
of all, architects are provided the list of criteria from system analysts
or themselves extract them from meta-architecture phase. Then they
classify this list into the essential list and the optional list. The
essential criteria indicate the lists which the alternatives should be
satisfied; however, the alternatives in selected criteria part would be
considered as optional supports. Those selected criteria provide or
lead architects to which alternative is the most suitable for specific
situation or development team. On the other hand, within essential
criteria area, architects simply ask whether certain architectural
approach supports it or not. It means they do not take any rating
techniques into consideration on the essential criteria, and some
alternatives would be eliminated from the Architecture Decision
table in case that those were not met with a certain criterion.

The selected criteria part is located in bottom of Architectural
Decision Table and is applied by weighted sum technique. This part
consists of optional criteria and those are already prioritized with a

set of weights to reflect the relative significant of each criterion.
Moreover, those criteria are assigned to a rating for each criterion to
reflect how well options satisfy the criterion. As the result of this
analysis, architects consequently recognize which alternative is the
most suitable.

5.1 Traditional problems with Weighted Sum
Technique
Problems with weighted sum technique are that wrong set of rating
factors and weights suggested unacceptable alternatives. For
instance, some criteria require critical considerations and they
should be classified in high-level criteria. However, it is hard to
figure out accurate ratings and weights in early design phase [2]. In
the Architectural Decision Table, those requiring critical
consideration or architect seems it is significant could be tie up
together in the essential part to justify critical decision first.

Another issue in weight sum technique is how well assigns or fairly
contribute ratings and weights to each criterion according to their
significations [2]. For more specific, one criterion possibly makes

other criteria meaningless; for example, suppose development costs
(see table. 1) was assigned considerably high weight with high
rating relatively to the other criteria, the other criteria could not
have any effect on this architectural decision. To minimize this
problem, the Architecture Framework Decision is discriminated just
by one between criteria; so that it gives the chances that lower level
criteria can overcome or lead different alternatives even though a
higher level criterion supports a certain alternative while most
critical criteria are classified into the essential part. The formula of
assigning weights is like below.

N – (L – 1) ……………………………………....…. [Eqn, 1]

∑
=

N

L
LW

1

…………………………………...…………. [Eqn. 2]

WL : Weighted value of certain level
N : Number of selected criteria
L : Level of each selected criterion

5.2 Applying modified Weighted Sum
Technique
Firstly, architects prepare levels of criteria categories as same size as
the number of the selected criteria. They prioritize criteria and
assign weights to each criterion using Eqn. 1. After that, they
position the criteria into the selected criteria part from most
significant one with a certain weight. Regarding the rating table (see
Table. 2), it simply divide into three categories such as ‘Strong’,
‘Acceptable’, and ‘Poor’, and it just uses 1, 0, and -1 for allocated
value to minimize differentiation of weighted rating value between
category levels. For example, if alternatives are strong at certain
criterion, it will have plus effect based on its weight, and if its rating
is acceptable, it will have no effect on it; otherwise, it will have
minus effects in case of poor at this criterion. After filling out rest of
all Architecture Decision Table through multiplying weight by its
rating value, each weighted rating is sum up to compare which
alternative is the most suitable. Eqn. 2 is used to figure out sum of
weights in Architectural Decision Table.

Table 2. Rating Table
Rate Value
Strong 1
Acceptable 0
Poor -1

Regarding the result of Table 1, Option C should be considered as
the most alternative within the selected criteria section; however,
Option C does not suitable while it does not support or satisfy the
translation time as same as the current system’s, and it requires two
times of translation when Y type of instance message is translated
into Z type of instance message or in reverse. So, Option B, which
is second ranking in selected criteria, will be selected as the further
development type of structure.

6. CONCLUSION
Architecture in software intensive system is the central concern to
ensure the qualities or properties of system and its business
objectives. However, what seems to be lacking is to combine the
concept of technical issues and business issues into the software
architecture. During the software architecture designing, architects
had just focused on the qualities of system such as performance,
modification, maintainability, and security across components or

subsystem, and they simply believed that the high quality software
system satisfies its business needs. Therefore, this paper have
considered fundamental steps of architectural process and applied
VBSE concepts to bring business needs into architectural decisions.
By doing this, business issues, occurred from outside of
development team, embodied into technical software architecture
along with architectural process. Furthermore, it proposes and
illustrates the usefulness of the method by conducting a case study
of Message Translation System and proved how uncertain software
architecture flows out and refines into the good, right, and
successful architectural solution by driving modified weighted sum
analysis technique.

Future researches, proposed in this paper, include the development
of domain architecture with value maximizing methods in software
product line engineering, especially with variability management. In
particular, to define technical and business issues at same variation
points will be inevitably an essential activity for improving the
speed of developing high-quality products and reducing those costs.
This would be more the efficient management in domain level of
product line architectures.

6. References
[1] Len Bass, Paul Clements, Rick Kazman: Software Architecture

in Practice: Addison Wesley 2003.
[2] Barry W. Boehm: Software Engineering Economics: Prentice-

Hall 1981.
[3] Stefam Biffl, Aybuke Aurum, Berrry Boehm, Hakan

Erdogmus, Paul Grunbacher: Value-based Software
Engineering: Springer 2006.

[4] Ruth Malan, Dana Bredemeyer: Conceptual Architecture
Action Guide: Bredemeyer Consulting.

[5] Jongsu Bae, Songwon Kang: A methods to generate
Feature Model from Business Process Model for
Business Application: Information and Communications
University 2007.

[6] Barry W. Boehm, Kevin J Sullivan: Software Economics: A
Roadmap: University of Southern California, University of
Virginia Thornton Hall.

[7] Steve McConnell: Rapid Development: Mircosoft Press 1996
[8] Klaus Pohl, Günter Böckle, Frank J. van der Linden, Software

Product Line Engineering: Foundations, Principles and
Techniques; 1st ed, Springer, September 19, 2005.

[9] Ruth Malan, Dana Bredemeyer: Software Architecture: Central
Concerns, Key Decisions: Bredemeyer Consulting.

