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Abstract

Next-generation sequencing (NGS) has enabled the high-throughput discovery of germline and somatic mutations.
However, NGS-based variant detection is still prone to errors, resulting in inaccurate variant calls. Here, we categorized the
variants detected by NGS according to total read depth (TD) and SNP quality (SNPQ), and performed Sanger sequencing
with 348 selected non-synonymous single nucleotide variants (SNVs) for validation. Using the SAMtools and GATK
algorithms, the validation rate was positively correlated with SNPQ but showed no correlation with TD. In addition, common
variants called by both programs had a higher validation rate than caller-specific variants. We further examined several
parameters to improve the validation rate, and found that strand bias (SB) was a key parameter. SB in NGS data showed a
strong difference between the variants passing validation and those that failed validation, showing a validation rate of more
than 92% (filtering cutoff value: alternate allele forward [AF]$20 and AF,80 in SAMtools, SB,–10 in GATK). Moreover, the
validation rate increased significantly (up to 97–99%) when the variant was filtered together with the suggested values of
mapping quality (MQ), SNPQ and SB. This detailed and systematic study provides comprehensive recommendations for
improving validation rates, saving time and lowering cost in NGS analyses.
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Introduction

Next-generation sequencing (NGS) provides cheap and reliable

large-scale DNA sequencing [1]. NGS has recently been

introduced as an effective tool for genetic screening and many

recent publications have described new disease-causing variants

discovered by whole exome sequencing [2]. NGS techniques

generate large numbers of DNA sequence variants, which must be

analyzed and filtered to find candidates for disease causation.

However, NGS-based variant detection is prone to erroneous calls

and generates low-interest variants in the form of genotype false-

positives.

NGS data can contain errors due to technological and

biological biases, as well as systematic problems [3–9]. Errors

can arise from biases in target enrichment [3], sequence effects or

base calling sequence errors [4–7], uncertainties in read

alignments [6,7], batch effects [7] or platform-specific mechanistic

problems [8,9]. The choice of software tool has a clear impact on

the identified variants [10]. Variant-detection algorithms of

software tools are other important sources of false-positive calls

in NGS data [11]. A critical step in detecting variants from NGS is

filtering the putative variants called using analysis algorithms and

parameters.

NGS variant-detection algorithms such as SAMtools [12] and

GATK [13] produce multiple parameters for each variant call,

including coverage, SNP quality (SNPQ), mapping quality (MQ),

and strand bias (SB). Variant-detection algorithms infer the actual

nucleotide information from obtained florescence-intensity data

for each aligned read. This information is then assigned as SNPQ,

which is a measure of Phred-scale quality scores to each base call.

MQ is a measure of the uncertainty that a read is mapped to the

proper genomic position. SB can occur where there is a highly

unequal distribution of forward vs. reverse directions in aligned

reads. However, it is unclear how these parameters should be

interpreted with regard to whether a variant call is correct.

Furthermore, multiple parameters are generated for each variant

call, and thus one cannot simply rank or prioritize variants using

the values. For this reason, researchers often rely on personal

experience and arbitrary filtering thresholds to select variants.

Also, researchers prefer variants identified using all algorithms

(common variants) than variants identified by individual programs
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(caller-specific variants) to reduce the false discovery rate (FDR)

[10]. However, there is a lack of methods for assigning a single

accuracy estimate to individual variants. A consensus approach for

confident putative variant analyses would enable prioritizing and

selecting variants in a robust manner. A high validation rate would

not only reduce the cost and labor in experimental validation of

NGS data, but also avoid reporting false discoveries in the

literature or public databases.

In this study, we used Sanger sequencing with single nucleotide

variants (SNVs) detected by NGS using our own experimental

data and systematically examined the validation rate according to

total read depth (TD) and SNPQ. We evaluated several major

parameters that affect variant calling, and provide some guidelines

for choosing appropriate parameters for variant calls from NGS

data.

Materials and Methods

Generation of Sequence Data
The study included 30 Korean Charcot-Marie-Tooth disease

patients with whole exome data available from previous studies

[14,15]. Written informed consent was obtained from all Korean

participants according to the protocol approved by the Institu-

tional Review Board of Ewha Woman’s University (Mokdong

Hospital) and Korea National Institute of Health (KNIH).

The whole exome was captured from genomic DNA using the

Human SeqCap EZ Human exome library v2.0 (Roche-Nimble-

Gen, Madison, WI), and NGS was performed using the Solexa

GAIIx Genome Analyzer (Illumina, San Diego, CA). Sequencing

libraries were prepared following the standard Illumina library-

preparation protocol for paired-end 76-bp reads. Raw ‘fastq’ files

for both reads were generated and used for the alignment

processes.

Exome Data Analysis
Raw sequence reads were first mapped to the human genome

with the reference sequence of UCSC assembly hg19 (NCBI

build37.1) using the BWA program (http://bio-bwa.sourceforge.

net/). Any reads not across the targeted exonic regions were filtered

out. After creating a consensus sequence from the BWA mapping (a

BAM file), the variant calling process was performed using the two

most popular calling algorithms, SAMtools (http://samtools.

sourceforge.net/) and GATK (http://www.broadinstitute.

org/gatk/), following the guidelines presented in the user manual.

SNP data were generated using the mpileup utility of SAMtools.

SNV data were also generated using the Unified Genotyper of

GATK as the tool to call variation. Targeted realignment and base

recalibration were performed using GATK. Then, the variants were

annotated with the ANNOVAR program (http://www.

openbioinformatics.org/annovar/).

Analysis Pipeline for SNV Detection
The analysis pipeline for detecting SNVs generally consisted of

the following steps: (1) pre-processing, (2) mapping the reads to the

reference genome, (3) post-processing, (4) calling SNVs and (5)

filtering. We first trimmed the adapter sequences with an in-house

script, applied BWA (ver. 0.5.9) to map reads using default

parameters (excluding the 2q 20 option), used Picard tools (ver.

1.8.5) to sort and mark duplicates and intersected the reads within

target regions using BEDtools (ver. 2.17.0). We denoted the BAM

file prepared using this pipeline as the basic BAM file. In the

filtering step for SAMtools, we used ‘‘perl vcfutils.pl varFilter’’ with

a ‘‘2D 1000’’ option and other parameters by default and named

the variant results as SNP set1. In the filtering step for GATK, we

used the GATK-implemented variant recalibrator with known

variant data (e.g., hapmap 3.3, 1000G omni 2.5 and dbSNP 135)

and named the variant results as SNP set2. In addition, we

realigned and recalibrated the basic BAM file with GATK (ver.

Figure 1. Pipelines for calling single nucleotide variants (SNVs). SNVs were called in four sets, based on SAMtools: mpileup (SNP
set1 and SNP set3) and GATK: unified genotyper (SNP set2 and SNP set4). The numbers of reads and SNPs for individual steps are given for
one exome-seq data set, generated using a Solexa GAIIx Genome Analyzer.
doi:10.1371/journal.pone.0086664.g001
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Table 1. Validation rates according to TD and SNPQ categories in 4 analysis pipelines.

SNP Set1

Category TD,5 5#TD,10 10#TD,20 20#TD,40 40#TD Total

SNPQ,10 5/9 (55.6%) 5/13 (38.5%) 5/10 (50.0%) 4/7 (57.1%) 0/4 (00.0%) 19/43 (44.2%)

10#SNPQ,20 7/8 (87.5%) 5/8 (62.5%) 4/12 (33.3%) 4/12 (33.3%) 1/5 (20.0%) 21/45 (46.7%)

20#SNPQ,30 4/8 (50.0%) 10/12 (83.3%) 3/12 (25.0%) 0/9 (00.0%) 2/5 (40.0%) 19/46 (41.3%)

30#SNPQ,40 7/9 (77.8%) 5/7 (71.4%) 3/9 (33.3%) 1/7 (14.3%) 0/3 (00.0%) 16/35 (45.7%)

40#SNPQ,60 6/6 (100.0%) 6/9 (66.7%) 5/10 (50.0%) 4/12 (33.3%) 2/5 (40.0%) 23/42 (54.8%)

60#SNPQ,80 1/1 (100.0%) 6/9 (66.7%) 6/7 (85.7%) 6/8 (75.0%) 5/6 (83.3%) 24/31 (77.4%)

80#SNPQ,100 2/2 (100.0%) 7/8 (87.5%) 10/10 (100.0%) 8/10 (80.0%) 6/8 (75.0%) 33/38 (86.8%)

100#SNPQ,200 2/2 (100.0%) 6/6 (100.0%) 13/13 (100.0%) 10/10 (100.0%) 6/7 (85.7%) 37/38 (97.4%)

200#SNPQ 0/0 (–) 0/0 (–) 10/10 (100.0%) 9/10 (90.0%) 10/10 (100.0%) 29/30 (96.7%)

Total 34/45 (75.6%) 50/72 (69.4%) 59/93 (63.4%) 46/85 (54.1%) 32/53 (60.4%) 221/348 (63.5%)

SNP Set2

Category TD,5 5#TD,10 10#TD,20 20#TD,40 40#TD Total

SNPQ,20 1/2 (50.0%) 1/2 (50.0%) 0/1 (00.0%) 0/0 (–) 0/0 (–) 2/5 (40.0%)

20#SNPQ,50 11/15 (73.3%) 7/10 (70.0%) 2/9 (22.2%) 1/6 (16.7%) 0/0 (–) 21/40 (52.5%)

50#SNPQ,100 7/9 (77.8%) 9/13 (69.2%) 1/6 (16.7%) 0/7 (00.0%) 0/4 (00.0%) 17/39 (43.6%)

100#SNPQ,150 7/8 (87.5%) 16/17 (94.1%) 8/14 (57.1%) 3/10 (30.0%) 0/4 (00.0%) 34/53 (64.2%)

150#SNPQ,200 0/0 (–) 5/6 (83.3%) 6/8 (75.0%) 4/8 (50.0%) 1/10 (10.0%) 16/32 (50.0%)

200#SNPQ,300 0/0 (–) 8/11 (72.7%) 15/16 (93.8%) 8/13 (61.5%) 1/7 (14.3%) 32/47 (68.1%)

300#SNPQ,500 0/0 (–) 3/3 (100.0%) 11/11 (100.0%) 17/21 (81.0%) 2/11 (18.2%) 33/46 (71.7%)

500#SNPQ,1000 0/0 (–) 0/0 (–) 7/7 (100.0%) 14/16 (87.5%) 15/24 (62.5%) 36/47 (76.6%)

1000#SNPQ 0/0 (–) 0/0 (–) 0/0 (–) 5/5 (100.0%) 19/22 (86.4%) 24/27 (88.9%)

Total 26/34 (76.5%) 49/62 (79.0%) 50/72 (69.4%) 52/86 (60.5%) 38/82 (46.3%) 215/336 (64.0%)

SNP Set3

Category TD,5 5#TD,10 10#TD,20 20#TD,40 40#TD Total

SNPQ,10 6/7 (85.7%) 7/10 (70.0%) 1/6 (16.7%) 3/8 (37.5%) 0/4 (00.0%) 17/35 (48.6%)

10#SNPQ,20 5/7 (71.4%) 6/11 (54.5%) 5/13 (38.5%) 2/6 (33.3%) 0/3 (00.0%) 18/40 (45.0%)

20#SNPQ,30 6/8 (75.0%) 2/4 (50.0%) 3/8 (37.5%) 3/5 (60.0%) 0/3 (00.0%) 14/28 (50.0%)

30#SNPQ,40 3/6 (50.0%) 8/10 (80.0%) 3/10 (30.0%) 0/2 (00.0%) 0/2 (00.0%) 14/30 (46.7%)

40#SNPQ,60 7/7 (100.0%) 8/8 (100.0%) 4/7 (57.1%) 3/8 (37.5%) 4/5 (80.0%) 26/35 (74.3%)

60#SNPQ,80 2/2 (100.0%) 9/13 (69.2%) 8/9 (88.9%) 4/4 (100.0%) 1/3 (33.3%) 24/31 (77.4%)

80#SNPQ,100 4/4 (100.0%) 2/3 (66.7%) 12/12 (100.0%) 9/10 (90.0%) 6/6 (100.0%) 33/35 (94.3%)

100#SNPQ,200 1/1 (100.0%) 6/6 (100.0%) 12/12 (100.0%) 14/15 (93.3%) 9/10 (90.0%) 42/44 (95.5%)

200#SNPQ 0/0 (–) 0/0 (–) 7/7 (100.0%) 8/9 (88.9%) 10/10 (100.0%) 25/26 (96.2%)

Total 34/42 (81.0%) 48/65 (73.8%) 55/84 (65.5%) 46/67 (68.7%) 30/46 (65.2%) 213/304 (70.1%)

SNP Set4

Category TD,5 5#TD,10 10#TD,20 20#TD,40 40#TD Total

SNPQ,20 1/2 (50.0%) 1/1 (100.0%) 0/2 (00.0%) 0/1 (00.0%) 0/1 (00.0%) 2/7 (28.6%)

20#SNPQ,50 10/13 (76.9%) 7/10 (70.0%) 2/6 (33.3%) 1/6 (16.7%) 0/3 (00.0%) 20/38 (52.6%)

50#SNPQ,100 8/10 (80.0%) 11/14 (78.6%) 2/7 (28.6%) 1/8 (12.5%) 0/6 (00.0%) 22/45 (48.9%)

100#SNPQ,150 7/8 (87.5%) 14/15 (93.3%) 8/14 (57.1%) 2/11 (18.2%) 0/5 (00.0%) 31/53 (58.5%)

150#SNPQ,200 0/0 (–) 5/6 (83.3%) 5/6 (83.3%) 2/4 (50.0%) 1/5 (20.0%) 13/21 (61.9%)

200#SNPQ,300 0/0 (–) 10/13 (76.9%) 14/15 (93.3%) 10/12 (83.3%) 1/10 (10.0%) 35/50 (70.0%)

300#SNPQ,500 0/0 (–) 1/1 (100.0%) 12/12 (100.0%) 17/18 (94.4%) 2/8 (25.0%) 32/39 (82.1%)

Analysis of Validation Rate for SNVs from NGS

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e86664



1.6) before the variant-calling step, to improve the initial mapping

results before variant calling. After the integration of these two

steps, post-processed bam files were generated for SAMtools and

GATK, and we generated two types of variant sets (SNP set3 and

SNP set4, respectively) in the same manner as the analysis of the

basic BAM file (Figure 1).

Distribution of Variants According to TD and SNPQ
Values

We categorized the SNVs called by SAMtools and/or GATK

according to TD and SNPQ values. The TD values were divided

into five categories: TD,5, 5#TD,10, 10#TD,20,

20#TD,40 and 40#TD. The SNPQ values were divided into

nine categories for each tool. For the SAMtools analysis, they were

divided as follows: SNPQ,10, 10#SNPQ,20, 20#SNPQ,30,

30#SNPQ,40, 40#SNPQ,60, 60#SNPQ,80, 80#SNPQ,100,

100#SNPQ,200 and 200#SNPQ. For the GATK analysis,

they were divided as follows: SNPQ,20, 20#SNPQ,50,

50#SNPQ,100, 100#SNPQ,150,150#SNPQ,200, 200#SNPQ,3000,

300#SNPQ,500, 500#SNPQ,1000 and 1000#SNPQ. We

matched the categories of SNPQ as consensus values between

SAMtools and GATK.

Sanger Sequencing Analysis for Selected SNVs
In total, 348 non-synonymous variants were selected randomly

for validation by Sanger sequencing. The selected SNVs were

generally well-distributed in 45 TD and SNPQ categories

Figure 2. Distribution of validation rate according to SNP quality (SNPQ) and total read depth (TD). (A) Validation rate of SNPQ for
SAMtools (SNP set1 and SNP set3). (B) Validation rate of SNPQ for GATK (SNP set2 and SNP set4). (C) Validation rate of TD for SNP set1–4.
doi:10.1371/journal.pone.0086664.g002

Table 1. Cont.

SNP Set1

Category TD,5 5#TD,10 10#TD,20 20#TD,40 40#TD Total

500#SNPQ,1000 0/0 (–) 0/0 (–) 7/7 (100.0%) 14/16 (87.5%) 15/21 (71.4%) 36/44 (81.8%)

1000#SNPQ 0/0 (–) 0/0 (–) 0/0 (–) 5/5 (100.0%) 19/22 (86.4%) 24/27 (88.9%)

Total 26/33 (78.8%) 49/60 (81.7%) 50/69 (72.5%) 52/81 (64.2%) 38/81 (46.9%) 215/324 (66.4%)

doi:10.1371/journal.pone.0086664.t001
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(Table 1). The variants were genotyped by PCR amplification

using 50 ng of DNA, followed by Sanger sequencing using an ABI

3730 automatic genetic analyzer (Applied Biosystems, Foster City,

CA). The sequence reads were analyzed using the Sequencer

software package (Gene Codes Corp., Ann Arbor, MI). Reactions

were successful for all loci, after which these loci were compared to

the results generated using NGS data.

Adjustment of Analysis Parameters to Improve the
Validation Rate

Additional analysis parameters for filtering variants, including

MQ score, genotype quality (GQ) score, alteration read percent-

age and SB, were assessed and compared to those established

during validation. SB is observed either when the majority of

sequence reads originate from only one DNA strand or when

variant bases occur preferentially on one strand compared to the

other. In the SAMtools program, the percent of alternate allele

forward (AF) was taken to be the SB value.

Results

Validation of SNVs by Sanger Sequencing
To check the validation rate of variants by Sanger sequencing,

we used one exome-seq data generated from an Illumina GA II

and focused on non-synonymous variation based on potential

functional importance. To avoid sample-specific bias, we previ-

ously examined differences in the number or SNPQ value patterns

of non-synonymous SNVs among 30 exome-seq data sets [14,15],

and observed no significant differences in distribution patterns of

SNPQ value (Figure S1).

Starting with SNP set1 (SAMtools, Basic), we selected and

sequenced 348 SNPs, which were categorized according to TD

and SNPQ. Primers were designed for each variant site, and

traditional Sanger sequencing was used to sequence the corre-

sponding PCR products. The overall validation rate was very low

(63.5%, 221/348; Table 1). When we analyzed SNP set2 (GATK,

Basic), the validation rate was similar to that of SNP1 (64%, 215/

336). After the integration of realignment and recalibration, the

validation rates of SNP set3 (SAMtools, recalibration) and SNP

set4 (GATK, recalibration) increased marginally, to 70.1% (213/

304) and 66.4% (215/324), respectively (Table 1). Several variants,

as detected by NGS and confirmed (or not) by conventional

Sanger sequencing, are shown in Figure S2. The data sets of

variants generated from four pipelines were shown in the

Supporting Information (Dataset S1, S2, S3 and S4).

Distribution of Validation Ratio According to SNPQ and
TD

In early applications using SAMtools:pileup to call variants, a

cutoff value of 20 for SNPQ was suggested. Because SNPQ scores

of variants called by mpileup and pileup are quite similar, it has

been thought that 20 can also generally be used for variant-calling

by SAMtools:mpileup. However, appropriate cutoff values for

SNPQ to filter putative SNVs have not been established. To

determine appropriate cutoffs for SAMtools:mpileup (SNP set1

and SNP set3) and GATK:unifiedgenotyper (SNP set2 and SNP

set4), we first checked the correlation between validation rate and

SNPQ value. Coincident with the definition of Phred-scale value,

the validation rate of SNPs with high SNPQ values were positively

correlated with SNPQ value (Figure 2A and 2B). We suggest that

an SNPQ cutoff of 80 is more appropriate than 20 because when

Figure 3. Diagram and validation rate of common variants. (A) The diagram of common variants among the four types of SNP sets. (B) The
validation rates of common variants and caller-specific variants.
doi:10.1371/journal.pone.0086664.g003

Analysis of Validation Rate for SNVs from NGS

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e86664



this value was applied to call variants using SAMtools:mpileup the

cutoff showed a validation rate of more than 80% by Sanger

sequencing. In the case of GATK, SNPQ values greater than 300

had a validation rate of more than 80% by Sanger sequencing. As

averages for entire categories, the validation rates increased to

87.7% and 83.6% when SNVs were filtered with 40 in SAMtools

and 300 in GATK (Table 1).

SNPs with high TD are generally considered more reliable than

those with low TD. Thus, we checked the correlation between TD

and the validation rate of SNPs. Contrary to our expectations, TD

was negatively correlated with validation rate (Figure 2C). This

result was caused by the discrepancy between TD and SNPQ

values. For example, only high TD variants with high SNPQ were

validated. Accordingly, the SNPQ value is more important than

the TD of SNVs.

Common Variant Set with an Improved Validation Rate
We further checked whether the common variants called by

both SAMtools and GATK were more accurate than caller-

specific variants. Of 348 variants, 294 were common and 54 were

caller-specific, and their validation rates were 70.75% (208/294)

and 24.07% (13/54), respectively (Figure 3). Thus, the selection of

common variants called by both algorithms helps to improve

validation rates.

Evaluation of SB as a Key Parameter for Improving
Validation Rate

Even if the validation rate of variants was improved by the

selection of common variants, it still fell short of research

expectations. We also checked other possible parameters to see

whether they were good for selecting and validating SNPs. We did

not find a correlation between GQ and validation rate (Figure 4A).

In the case of MQ, the validation rate was greater than 80% when

variants were filtered with values greater than 58 by SAMtools

(SNP set1 and SNP set3) and GATK (SNP set2 and SNP set4)

(Figure 4B). The SB of NGS data showed discriminating power

between the variants that passed validation and those that failed

validation. These results showed over a 92% validation rate when

alternate allele forward [AF]$20 and AF,80 in SAMtools

(Figure 4C) and SB,–10 in GATK (Figure 4D).

To further assess the accuracy of variant calling, we applied

filtering operations together with suggested values of MQ, SNPQ

and SB. Interestingly, the filtered SNVs were not false-positives for

the most part, showing validation rates of 98.9% and 97.3% in

SAMtools (SNP set3) and GATK (SNP set4), respectively

(Figures 5 and 6). In addition, they covered more than half of all

non-synonymous variants in SAMtools (5,033/9,067) and GATK

(6,607/11,309), respectively (Figures 5 and 6).

Figure 4. Evaluation of analysis parameters for improving validation rates. (A) Distribution of validation rates according to genotype
quality (GQ) values. (B) Distribution of validation rates according to mapping quality (MQ) values. (C) Distribution of validation rates according to
alternate allele forward (AF) percent for SAMtools (SNP set1 and SNP set3). (D) Distribution of validation rates according to strand bias (SB) values for
GATK (SNP set2 and SNP set4).
doi:10.1371/journal.pone.0086664.g004

Analysis of Validation Rate for SNVs from NGS
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Discussion

We determined comprehensive cutoff values for calling SNVs

found in NGS data. Our results improve the process of validation,

using various SNP analysis sets and sub-categorized parameters.

For clinical application, it is important to reduce the number of

variants that require confirmation by Sanger sequencing (lower the

false-positive rate) to maintain an acceptable cost-benefit ratio

[16]. The comprehensive cutoff values provided herein enable one

to discover somatic and germline mutations with low rates of false-

positive variants, and then to implement clinical testing immedi-

ately.

Figures 5 and 6 show interesting findings according to suggested

values of analysis parameters in our evaluation. We first found that

common variants (variants that were filtered by both the SAMtools

and GATK algorithms) led to a slight increase in the validation

rate. When SNVs were filtered with an MQ above 58 in both

SAMtools and GATK, the validation rates increased to 80.3% and

78.3%, respectively. In the case of SNPQ, the validation rate

increased to 87.7% and 83.6% when SNVs were filtered with 40

in SAMtools and 300 in GATK. Interestingly, when SNVs were

filtered with an SB of 20#AF.%,80 in SAMtools and SB,–10 in

GATK, the validation rate increased significantly, to 94.2% and

92.6%, respectively. Moreover, when we filtered with MQ, SNPQ,

and SB at the same time with suggested values, the filtered SNVs

were not false-positives for the most part, showing validation rates

of 98.9% and 97.3% with SAMtools and GATK, respectively

(Figures 5 and 6). We performed Sanger sequencing to validate

two exome data sets produced with different capture kits and the

NGS platform (Sureselect Library exome kit and Illumina

HiSeq2000) and compared them to the results of this study. We

sequenced 40 and 46 variants (from the two data sets, respectively)

selected randomly among non-synonymous variants using our

suggested MQ, SNPQ and SB values (Figures 5 and 6), and then

examined the validation rate. The results revealed that 39 (of 40

variants) and 46 (of 46 variants) were validated for the GATK

algorithm, and 38 (of 39 variants) and 41 (of 41 variants) were

validated for the SAMtools algorithm. Therefore, we confirmed

Figure 5. Validation rates according to suggested cutoff values of parameters are shown in table (A) and graph (B) form using the
SAMtools algorithm after realignment and recalibration. A+B+C: filtered variants together with suggested values of SNPQ, GQ, and SB.
doi:10.1371/journal.pone.0086664.g005
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the high validation rate (with 99% accuracy) observed in other

data sets.

We applied the most frequently used tools, the SAMtools and

GATK programs, to identify variants. Each has different

parameters and quality scores for variant detection. Using the

SNP data of set3 and set4, there were 294 common variants and

208 variants was validated with a 70.7% validation rate (Figure 3).

There were 10 specific variants in SNP set3 (SAMtools) and 30 in

SNP set4 (GATK). When we examined caller-specific variants, the

validation rate was very low, 30% (12/40). The choice of software

tool clearly impacts the mutations identified, and the FDR of

mutations found with the consensus of SAMtools, GATK, and

Somatic SNiPer is very low, much lower than those found with

specific callers [10]. We confirmed that common variants

produced the highest enrichment of true-positive variants. Based

on our analyses, the validation rate for SAMtools may be higher

than that for GATK. However, this cannot be concluded because

we used different suggested cutoff values and there are different

covered regions between SAMtools and GATK. If multiple

analyses are indispensable, then the caller-specific recommenda-

tions suggested in this study should be used to improve the

validation rate.

Our results also suggest that SB is a key parameter that increases

the validation rate. SB is observed either when the majority of

sequence reads originate from only one DNA strand, or when

variant bases occur preferentially on one strand compared to the

other. Inaccurate base calls are more likely to cluster on one strand

of DNA [17]. Thus, reads from both forward and reverse strands

should be considered for making accurate variant calls and

reducing errors. Appropriate filtering cutoff values should be

developed to minimize errors due to SB. We suggest first stetting a

confident cutoff value for the distribution of reads on the forward

and reverse strands to improve the validation.

It is generally believed that SNVs with high read depth are

more reliable than SNPs with low read depth [18]. However, we

found that high-depth SNPs tended to be validated less than low-

depth SNPs (Figure 2C). We categorized 45 combinations

according to TD and SNPQ, and examined the validation rate.

Figure 6. Validation rates according to suggested cutoff values of parameters are shown in table (A) and graph (B) form using the
GATK algorithm after realignment and recalibration. A+B+C: filtered variants together with suggested values of SNPQ, GQ, and SB.
doi:10.1371/journal.pone.0086664.g006

Analysis of Validation Rate for SNVs from NGS

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e86664



We found a positive correlation between TD and SNPQ values

(Table 1). For example, only high TD variants with high SNPQ

were validated. There may have been a close connection between

TD and SNPQ when variants were called exactly as SNVs. These

results suggest that it is difficult to select a variant with only a high

TD value without a high SNPQ value.

Various quality parameters should be assessed and compared to

those established during validation [19]. However, the cutoff

values for each parameter have been unclear. In this study, we

examined GQ and MQ as well as TD and SNPQ. For GQ, we

identified no significant values for validation with either the

SAMtools or GATK programs, but we did identify significant

cutoff values for MQ. We also found that the SNVs that failed

validation were not distributed in sequence repeat regions or copy

number variation regions by searching the established Database of

Genomic Variants (http://projects.tcag.ca/variation/). In addi-

tion, we examined the association between alternation of depth

and validation rates. Whether the alternation was hetero (15–80%)

or homo, we could not see a difference in the validation rate (data

not shown).

In conclusion, we systematically examined important factors

that could improve the validation rate in NGS data. These

parameters were (1) SNPQ (more than 40 in SAMtools and more

than 300 in GATK), (2) realignment and recalibration, (3)

common variant analysis, (4) MQ greater than 58 and (5) SB

(20#AF.%,80 in SAMtools and SB,–10 in GATK). Our results

have important implications for understanding the accuracy and

completeness of variant calling in NGS data. This detailed and

systematic study provides some guidelines for improving validation

rates, saving time and lowering cost in NGS analysis. Further-

more, our method is applicable to diagnostic algorithms or

therapeutic target selection because it can distinguish between true

mutations and false-positives.

Supporting Information

Figure S1 Quality control for 30 exome-sequencing data
sets. Minimum (Min), first quartile (Q1), median, third quartile

(Q3) and maximum (Max) values of SNP quality (SNPQ) were

analyzed in 9 groups to evaluate the congruence of 30 exome data

sets. There was no significant difference in SNPQ value pattern.

(TIF)

Figure S2 Sanger sequencing traces for both a true-
positive and a false-positive variant call. (A) Example of a

true-positive variant: chr1:45797505 identified in next-generation

sequencing (NGS) data (left) and confirmed by Sanger sequencing

(right). (B) Example of a false-positive variant: chr1:152280265

identified in NGS data (left) and confirmed by Sanger sequencing

(right).

(TIF)

Dataset S1 Data set for 348 variants generated from
SNP set1 pipeline.

(XLS)

Dataset S2 Data set for 336 variants generated from
SNP set2 pipeline.

(XLS)

Dataset S3 Data set for 304 variants generated from
SNP set3 pipeline.

(XLS)

Dataset S4 Data set for 324 variants generated from
SNP set4 pipeline.

(XLS)
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