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In this study, the unknown wall temperature profile of a cylinder was predicted by applying the inverse
method. The temperature profile of the cylinder wall was predicted from the given temperature data at
measurement points near the cylinder wall. The cylinder was assumed to represent a typical pipe in a
bundle of heat exchange tubes operating in a high temperature system. Radiative heat transfer was incor-
porated as one of major heat transfer modes to consider a hot gas flow passing over the cylinder. The cor-
responding inverse problem was solved by minimizing an objective function by applying the iterative
conjugate gradient method. A multi-block grid composed of three different blocks was used for better
computational accuracy and convenience in locating the measurement points. A new method, which
could be applicable to non-symmetric geometry, was adopted to solve the adjoint equation. In this study,
the effects of number and location of the measurement points were numerically investigated. When the
measurement points were too close to the cylinder, the predicted temperature profile exhibited larger
fluctuations. The results have also shown that an appropriate number of measurement points were
required to improve the prediction of the boundary temperature profile.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Heat exchangers [1] have been widely used in various engineer-
ing applications such as chip-cooling, refrigerating, power produc-
tion, waste heat recovery, and chemical processing. They can
operate either in moderate temperature conditions [2] or in high
temperature conditions [3]. Chip-cooling or refrigerating systems
employ heat exchangers operating in the moderate temperature re-
gime, in which conduction and convection are the major heat trans-
fer mechanisms. On the other hand, heat exchangers built in energy
consuming devices, such as dryers, ovens, and furnaces, are exposed
to a high temperature environment, in which an additional heat
transfer mechanism, namely radiation, becomes operative.

Inverse analysis is well suited for the problem of finding out un-
known input conditions corresponding to the given measurement
data. There have been a number of efforts to develop efficient in-
verse methods and their application to practical situations. For
example, the prediction of the outer wall temperature profile of a
target pipe in a heat exchanger tube bundle can be enabled by
an inverse analysis technique. Then, such a temperature profile
can be used in the evaluation of the corresponding tube wall heat
flux to design an improved heat exchanger. In practice, the inverse
heat conduction techniques have been utilized to reduce experi-
mental burdens by the prediction of accurate heat transfer rates
ll rights reserved.

: +82 42 869 3710.
in many heat conduction problems. However, the inverse heat
transfer analysis has been applied mainly to conduction and con-
vection problems, while its applications to the inverse radiation
problem have been quite limited.

Liu et al. [4] studied a one-dimensional radiation problem to
estimate the temperature and wall emissivity simultaneously. Li
[5] estimated the radiative properties while considering both con-
duction and radiation heat transfers using the conjugate gradient
method (CGM). Kim and Charette [6] predicted optical properties
by using the CGM with the known boundary radiation intensity.
They attempted to apply the inverse technique to medical devices
that capture images of the human body with the aim of finding dis-
eases in tissues. Hong and Baek [7] attempted to determine the in-
let temperature profile for two-phase laminar flow in a channel
including radiation effect by using the CGM as an inverse algo-
rithm. They also considered inverse radiation in the recent work
dealing with natural convection [8].

The actual applications of inverse analysis to heat exchanger
systems are quite few. Szczygiel and Fic [9] estimated the inlet
boundary velocity corresponding to the given temperature mea-
surement data in a heat exchanger system. They adopted the po-
tential function for flow calculation and method to inversely
obtain the inlet velocity. Huang et al. [10] calculated the heat
transfer coefficients for a plate-tube heat exchanger using the
steepest descent method (SDM). Chen and Yang [11] applied an in-
verse technique to predict the heat transfer rate around two in-line
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Nomenclature

Roman symbols
cp specific heat of gas (J/(kg K))
d distance of measurement points from cylinder wall
dk direction of descent
D diameter of cylinder
F boundary temperature of inner cylinder wall
H,L height and width of domain
I radiation intensity
kg conductivity of gas (W/(m K))
M number of measurement points
~n unit normal vector
N radiation strength parameter
p pressure
Pe Peclet number
Re Reynolds number
~qR radiative heat flux vector
s path of cylinder wall
~s unit direction vector
S objective function
T temperature
u,v velocity components in x and y directions
x,y coordinates
Ym temperature at the measurement points

Greek symbols
a absorption coefficient
q density of gas (kg/m3)
h angular variation (degree)
kT,kR Lagrange multipliers
bk search step
ck conjugate coefficient
r deviation of measurement
rAB Stefan–Boltzmann constant, = 5.67 � 10�8(W/(m2�K4))
X solid angle (sr)

Superscripts
� primitive dimensional variable
k iteration step

Subscripts
b boundary
g gas
i inflow
m measurement
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cylinders with the CGM. However, radiation heat transfer to the
heat exchange pipes was not considered by them.

In this study, an inverse approach is presented to predict the out-
er wall temperature profile of a cylinder, which represents a single
pipe in a heat exchanger tube bundle. The conjugate gradient meth-
od (CGM) is used as the inverse algorithm that transpired to produce
a stable solution for unstable inverse problems. It is assumed that
the cylinder is exposed to a high temperature gas flow, which in-
volves radiation heat transfer by absorption and emission. Heat
transfer from the hot gas into the cylinder is dependent on radiation
as well as conduction and convection. Further to the conductive and
convective disturbances arising from the boundary temperature
perturbation, the radiative disturbances have also been taken into
account to calculate the adjoint equation in the CGM.
2. Formulation

2.1. Direct problem

Fig. 1 shows a schematics of two neighboring cylinders in a tube
bundle under a hot gas flow. The angle (h) is introduced to describe
a boundary wall temperature profile on the cylinder, which may be
uniform or variant with h. All the measurement points are located
along the circular line around the cylinder whose center coincides
with that of the cylinder.

The steady continuity, laminar Navier–Stokes equations, and
energy equation with a constant density can be described in the
Cartesian coordinate as follows:
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The radiant intensity for a gray medium along a path ~s through a
non-scattering medium is given by:

dIð~sÞ
ds
¼ aIb � aIð~sÞ ð5Þ

The effect of radiation in energy equation is expressed in the form of
divergence of radiative heat flux.

r �~qR ¼ a
N

T4 � 1
4

Z
Ið~sÞdX

� �
ð6Þ

Above all equations are non-dimensional forms of ordinary
governing equations with the following non-dimensional
variables.
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Here, superscript � denotes primitive variable. u�i and T�i are
inflow values of velocity and temperature. D* is the cylinder
diameter used for the characteristic length. I*, s*, a* are the
radiation intensity, a path of intensity, absorption coefficient,
respectively. Re, Pe, a, and N are the resulting dimensionless
parameters.

Temperature and velocity are specified on the wall boundaries
while the normal gradients of all the variables are set to zero on
the symmetric boundary.

inlet : u ¼ 1; v ¼ 0; T ¼ 1 ð8aÞ

outlet and symmetry :
@u
@n
¼ @v
@n
¼ @T
@n
¼ 0 ð8bÞ

cylinder wall : u ¼ v ¼ 0; T ¼ Fðx; yÞ ¼ FðhÞ ð8cÞ

Boundary conditions for intensity are described in the following
equations where subscript b denotes boundary.
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Fig. 1. Schematics of two neighboring cylinders.
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symmetry :
@I
@n
¼ 0 ð9aÞ

others : Ið~sÞ ¼ eb
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eb is the boundary emissivity and ~n is the unit normal vector to the
boundary.

2.2. Inverse problem

The cylinder wall temperature is assumed unknown and is to be
predicted by using the inverse technique. The unknown tempera-
ture distribution F(h) around the cylinder wall is acquired by min-
imizing the objective function as follows:

SðFðhÞÞ ¼
XM

m¼1

½Ymðx; yÞ � Tgðxm; ym; FðhÞÞ�2 ð10Þ

where Ym and Tg denote measured temperature and predicted tem-
perature at the sensor locations. M is the total number of probes.
The calculated temperature Tg is obtained by solving the direct
problem with F(h).

2.2.1. Sensitivity problem
Before proceeding with the sensitivity problem, a representa-

tive variable / is introduced, which can be one of the variables in-
volved such as T or I. The sensitivity problem can be obtained by
assuming that / is perturbed by an amount of D/, when F(h) is per-
turbed by DF(h). Then, by replacing / with / + D/ and F(h) with
F(h) + DF(h) in all the equations of direct problem and subtracting
the original direct problem from the resulting expressions, the fol-
lowing sensitivity equations are obtained:
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dDIð~sÞ
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¼4a
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T3DT�aDIð~sÞ ð12Þ

The boundary conditions for temperature and velocity described in
Eq. (8) are transformed into the following equations.

inlet : DT ¼ 0 ð13aÞ

outlet and symmetry :
@DT
@n
¼ 0 ð13bÞ

cylinder wall : DT ¼ DF ð13cÞ

Transformations are also performed for the boundary conditions of
intensity described in Eq. (9).
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2.2.2. Adjoint problem
To derive the adjoint problem, two Lagrange multipliers, kT(x, y)

and kR(x, y), are introduced. Two governing equations for tempera-
ture and intensity are multiplied by the above multipliers. Each
resulting expression is integrated over the space domain, and
added to the right-hand side of the objective function to yield:
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Next, the variation DS(F(h)) is derived. After some algebraic
manipulations, the resulting equations are compelled to be zero.
Then, the following adjoint problem is obtained to yield the gov-
erning equations for the Lagrange multipliers.

u
@kT

@x
þ v @kT

@y
¼ � 1

Pe
@2kT

@x2 þ
@2kT

@y2

 !
þ 1

Pe
4a
N

T3kT

� 1
Pe

4
p

T3
Z

X
kRdXþ 1

Pe

XM

m¼1

2½Ym � Tg �dðx� xmÞdðy� ymÞ ð16Þ

dkRð~sÞ
ds

¼ � a
4N

kT þ kRð~sÞ ð17Þ

where d is the Dirac delta function. The boundary conditions for two
Lagrange multipliers are described in the following equations.

symmetry :
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¼ 0 ð18aÞ

outlet :
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¼ 0; kR ¼ 0 ð18bÞ

others : kT ¼ kR ¼ 0 ð18cÞ
Finally, the gradient direction of the objective function is deter-
mined by:

rS½FðhÞ� ¼ DS
DF
¼ @kT

@n

����
cylinder wall

ð19Þ
2.2.3. Iterative procedure
The current kth iteration proceeds with the known values of /,

D/, kT(x,y),kR(x,y), andrS(F(h)) which are available from the previ-
ous (k � 1)th iteration step. The boundary temperature at the
(k + 1)th step is computed from:

Fkþ1ðhÞ ¼ FkðhÞ � bkdkðhÞ ð20Þ

Here dk is the direction of descent which is defined as:

dk ¼ rS½FkðhÞ� þ ckdk�1 ð21Þ

where ck can be calculated from the Fletcher–Reeves expression
[12] as follows:

ck ¼
R

cylinderfrS½FkðhÞ�g2dsR
cylinderfrS½Fk�1ðhÞ�g2ds

with c0 ¼ 0 ð22Þ

The search step size bk is determined by minimizing the func-
tional S(Fk+1(h)) defined in Eq. (10) with respect to bk as follows:

bk ¼
PM

m¼1½Tgðxm; ym; FkðhÞÞ � Ym�DTgðxm; ym; dkÞPM
m¼1½DTgðxm; ym; dkÞ�2
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Here DTg(xm,ym;dk) is the solution of the sensitivity problem which
is calculated by setting DF(h) = dk.

2.2.4. Discrepancy principle for stopping criterion
The iteration process reaches convergence if the objective func-

tional S(Fk+1(h)) is reduced to a value smaller than tolerance e.

SðPkþ1Þ < e ð24Þ

As the estimated temperatures approach the measured temper-
atures that are liable to inherently contain some error, a large oscil-
lation may appear during the minimization of the objective
functional. However, the CGM used to produce smooth solutions
if the discrepancy principle is used as stopping criterion. When
the residuals between measured and estimated temperature are
of the same order magnitude as r

jYðxmeasured; ymeasuredÞ � Tðxestimated; yestimatedÞj � r ð25Þ

where r is the standard deviation of the measurement which is as-
sumed to be a constant. The following expression is obtained for
stopping criterion by substituting Eq. (25) into Eq. (10):

e ¼
XM

m¼1

r2 ¼ Mr2 ð26Þ

Finally, the stopping criterion is given by Eq. (24) with e deter-
mined from Eq. (26).
3. Numerical method

A multi-block grid has been adopted for two reasons. The first is
to obtain a more favorable grid in the region around the cylinder,
which belongs to the area of most concern in the calculation do-
main. The second is to set the measurement points at an equal dis-
tance from the cylinder wall. CAFA code [13] has been modified to
use multi-block grids. The finite-volume method for radiation
(FVM) has been used for prediction of radiation [14–17]. The
FVM for radiation is a flux type of method similar to the discrete
ordinates method (DOM). As a geometrical space is discretized into
a finite number of control volumes, angular direction is also dis-
cretized into a finite number of control angles. The inflow and out-
flow of radiant energy across control volume faces are balanced
with attenuation and augmentation of radiant energy within each
control volume and each control angle.

Adjoint equations are slightly different from the original con-
served equations. The first derivative terms have changed to nega-
tive terms in the process of deriving the adjoint equations as
shown in Eqs. (16) and (17). The coordinate transformation [7,8]
is applied to express the adjoint equations in the same form as
the original conserved equations. The convective term in Eq. (16)
and first spatial derivative term in Eq. (17) can be transformed to
have a positive sign by replacing x with L � x and y with H � y.
But some difficulties still exist in applying discretization of the
transformed equations to the present geometry because it is not
symmetric with respect to y-axis. It is necessary to devise a meth-
od with which the coordinate transformed equation can be solved
in non-symmetric geometry.

When discretization of kT is performed on the resulting coordi-
nate transformed equations, the mirrored coordinate, as shown in
Fig. 2, is used. The figure depicts that the positions of four neigh-
boring cells are interchanged by mirroring. But discretization of
the diffusion term does not change with the interchange of four
neighboring cells. This is because the direction is irrelevant to
the diffusion term. However, the convective term is changed, be-
cause it depends on direction. If uE is positive, the point E becomes
downstream to the point P by the interchange, and vice versa. A re-
verse concept for normal convection occurs in discretizing kT with
the mirrored coordinate. If this reversed convection concept is ap-
plied to discretization of the transformed equation, the discretiza-
tion can be successfully preformed without the mirrored
coordinate. The same procedure is used for discretization of kR be-
cause the FVM for radiation uses the upwind concept to treat
incoming radiation. So an outgoing ray of kR is considered to be
an incoming one in the reversed convection concept.

4. Results and discussion

4.1. Direct problem calculation

Since the problem is symmetric with respect to the center line
depicted in Fig. 1, only a half section of the depicted domain is
solved. The cylinder diameter D and domain height H have the
same value of 1.0 and the domain length L is 12. Fig. 3(a) shows
the computational grid, which is composed of three different struc-
tured blocks corresponding to the upstream, near-cylinder and
downstream regions. The grid sizes for these three blocks are
31 � 26, 91 � 29, and 101 � 26, respectively. The gird is clustered
around the cylinder where a large temperature gradient is induced.
The Reynolds number and the Peclet number in this study are set
to be 150 and 105. The values for a and N are 0.015 and 0.00494.
The emissivity of the cylinder is set to be 0.7 while those of the in-
let and outlet boundaries are 1.0.

The computational results for the direct problem are shown in
Fig. 3(b)–(d) for the case when the temperature of cylinder surface
is set to be 0.4. Fig. 3(b) depicts the stream line contours around
the cylinder. The magnitude of maximum velocity is 2.352 at the
mid point of the throat formed by two neighboring cylinders. A
large recirculation region, the length of which is about 4.2, is
formed behind the cylinder. Flow separation occurs at h = 118.7�.
The temperature field is plotted in Fig. 3(c), exhibiting the isother-
mal lines clustered in the front region of the cylinder. The thermal
boundary layer thickness in front of the cylinder is about 0.2. The
temperature contour lines become wider downstream to the cylin-
der due to the flow separation, which results in a lower thermal
conduction into the cylinder wall. The temperature averaged in
the exit boundary is reduced to 0.812 due to the heat loss around
the cylinder wall. Fig. 3(d) shows the divergence of the radiative
heat flux vector. Negative divergence of radiative heat flux vector
represents the thermal radiation absorbed by the local medium.
The main radiative heat absorption is observed behind the cylin-
der. The contour lines are clustered just in front of the cylinder
as in Fig. 3(c) for the temperature contour lines. Unlike the temper-
ature contour, these contour lines can be found even in the far up-
stream of the cylinder because radiative heat transfer is effective
even outside of the boundary layer.
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4.2. Inverse problem calculation

In this section, the cylinder wall temperature is predicted by
using the inverse technique, given the measured temperature data
near the cylinder wall. The measured temperature data are ob-
tained by adding some random errors to the calculated exact tem-
perature data such that

Ym ¼ Texact þxr ð28Þ

where x is a random variable with a range of �2.576 6x 6 2.576,
and r is the standard deviation of the measurement errors.

The three types of cylinder wall temperature profiles are inves-
tigated in this study-constant, linear, and sinusoidal profiles.

FðhÞ ¼ 0:4 ð29aÞ

FðhÞ ¼ 0:4þ 0:15� 1� h
180

� �
ð29bÞ

FðhÞ ¼ 0:4þ 0:15
2
� ðcosðhp=180Þ þ 1Þ ð29cÞ

Fig. 4 represents the effect of the measurement point location
on the prediction for the constant profile given in Eq. (29a). In this
case, there are no measurement errors in the medium temperature,
i.e. r = 0.0. A total of 23 measurement points (M = 23) are distrib-
uted along the half circle separated from the cylinder wall by the
separation distance d. Three cases of the separation distance
(d1 = 0.02, d2 = 0.05, and d3 = 0.09) have been taken into account.
If the separation distance is greater than the thermal boundary
layer thickness, the cylinder wall temperature data can hardly
reach the measurement points located upstream. Therefore, d is se-
lected as lesser than the thermal boundary layer thickness. How-
ever, according to Fig. 4, the closer the measuring points are
located to the cylinder, the larger the amplitude of fluctuation in
the predicted wall temperature profiles. Although the predicted
wall temperature profile for d1 has the average value of 0.4, it
can not be acceptable as a reasonable estimation due to a signifi-
cantly oscillating temperature profile. The magnitude of oscillation
for d1 is almost equal to 0.1 of which the value is almost 10 times
greater than the oscillation magnitude for d2. The solution error for
d3 is almost negligible. The location of measurement points too
close to the cylinder wall result in larger fluctuations in the pre-
dicted cylinder wall temperature profile, which is rather counter
intuitive and requires additional explanation as below.
The contours of the Lagrange multiplier kT for the separation
distance d1 and d3 at the 3rd iteration step are plotted in Fig. 5. It
is clearly revealed that the contour line wiggles adjacent to the cyl-
inder wall become stronger for a smaller separation distance.
These wiggles are created by the action of source terms in Eq.
(16). Such wiggles exert a disturbing effect on the gradient direc-
tion as defined in Eq. (19) which produce fluctuations in the pre-
dicted temperature profile. Consequently, the measurement
points need to be located not too close to the cylinder, while not
being located beyond the boundary layer, in order to obtain a suf-
ficiently smooth solution.

Fig. 6 shows the effect of the number of measurement points on
the prediction for the constant temperature profile. As in Fig. 6, the
separation distance is fixed at d3 for which the wiggles were found
to be the smallest. Two cases of the measurement point number
(M = 12 and M = 23) are tested. Relatively large fluctuations are ob-
served for M = 12. On the other hand, when M is increased to 23,
the fluctuations are adequately suppressed. The amplitude of fluc-
tuation is observed to vary with h. The largest amplitude for M = 12
occurs near h = 120, which appears to coincide with the flow sepa-
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ration angle. This simple test confirms that the prediction accuracy
can be improved by increasing the number of measurement points.
Nevertheless, an excessive number of measurement points would
be impractical for actual measurements, therefore the number of
measurement points should be chosen by optimizing the accuracy
and the practicality.

Fig. 7 is a contour plot of kT for M = 12. The points A and C in the
figure are chosen as two arbitrary neighboring measurement
points projected into the cylinder wall. The point B is the middle
point of A and C. The creation mechanism of fluctuations in the
predicted profile is similar to that explained in the discussion for
the effects of separation distance. That is, wiggles in kT contour line
near the cylinder cause distortion in the gradient direction. How-
ever, the wiggles are produced not by a close proximity of mea-
surement points to the cylinder wall but by an increased gap
between neighboring measurement points in this case. It is be-
lieved that for M = 12, the two neighboring sources are not strong
enough to disperse their information over the range covered by
points A,B, and C. Especially, the intermediate measurement point
B appears to receive less information from two neighboring mea-
surement points than measurement point A or C. Although wiggles
in kT contour line near the cylinder wall are not clearly seen in
Fig. 7, fluctuations are clearly seen in the intermediate prediction
profiles of Fig. 8.

Fig. 9 show the effects of measurement error on the predicted
profiles for various boundary temperature profiles. Two more mea-
surement errors (r = 0.004 and r = 0.008) and two more boundary
profiles (linear and sinusoidal) are taken into account. Based on the
previous discussion, a total of 23 measurement points and location
d3 are chosen for this test. In case of r = 0.0, prediction is well be-
haved for all the boundary profiles. On the other hand, when mea-
surement data have some error, predicted profiles are somewhat
deviated from the exact ones. It is expected that the larger the
measurement error is, the greater the deviation of the predicted
profile from the exact one is. The maximum error in the predicted
profile for all the related boundary profiles is larger than the mea-
surement error. The maximum deviation appears to be indepen-
dent of the boundary profiles for the same measurement error,
that is, 0.02 for r = 0.004 and 0.03 for r = 0.008.

5. Conclusion

The conjugate gradient method has been applied to predict the
unknown surface temperature profiles of a cylinder, which is ex-
posed to a hot gas flow. Conduction, convection, and radiation have
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Fig. 9. Effect of measurement errors on the various temperature profiles.
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been taken into account to calculate the heat transfer from the hot
gas to the cylinder.

Amongst the three measurement locations (d1 = 0.02, d2 = 0.05,
d3 = 0.09), the location d3 gives the most accurate prediction for the
constant boundary temperature profile. When the measurement
points are too close to the cylinder in case of d1, large fluctuations
are produced in the predicted profile. Locating measurement
points closer to the cylinder wall results in stronger wiggles in
the contour lines of Lagrange multiplies kT near the cylinder. Since
these wiggles exert a disturbing effect on the gradient direction,
fluctuations are produced in the predicted profiles.

When the number of measurement points is 12, relatively large
fluctuations are also observed for the constant boundary tempera-
ture profile. The fluctuations are adequately suppressed by increas-
ing the number of measurement points from 12 to 23. These
results indicate that an appropriate number of measurement
points is required to obtain a better estimation of the boundary
temperature profile.
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