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INTRODUCTION

Asthma is the most common chronic lung disease, affecting 
more than 300 million people of all ages, and the number of pa-
tients is increasing by 50% per decade worldwide.1,2 This disease 
is characterized by airway hyperreactivity and mucous overse-
cretion that result in intermittent airway obstruction.3,4 Asthma 
is considered to be an allergic, eosinophilic, and Th2-mediated 
disease.5 Th2-cell-derived cytokines such as IL-5 and IL-13 play 
a critical role in the type 2 immune response involved in aller-
gen-induced airway inflammation. IL-5 affects the differentia-
tion and maturation of eosinophils, while IL-13 acts on epithe-
lial and smooth muscle cells and plays a role in airway hyperre-
sponsiveness in allergen-induced asthma.6,7 Serum IgE and 
IgG1 levels are important markers related to the pathogenesis 
of allergic asthma; asthma patients have increased serum levels 
of IgE and IgG1.8 Antigen-specific IgE can attach to receptors 
on mast cell, basophils, B lymphocytes, and eosinophils.9 This 
interaction results in the release of inflammatory mediators such 
as histamine, prostaglandins, leukotrienes, proteases, growth 
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factors, cytokines, and chemokines; these are required for the 
development of allergic asthma.10 Interaction of antigen with 
IgE bound to receptors on the cell surface activates mast cells to 
release preformed mediators such as histamine, leukotrienes, 
prostaglandin D2, thromboxane B2, and platelet-activating fac-
tors. These mediators induce airway smooth muscle contrac-
tion, edema, and enhanced mucous secretion, leading to air-
flow limitation.11

Nod-like receptors (NLRs) belong to a family of cytosolic re-
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Fig. 1. OVA-induced airway inflammation in WT and RIP2-deficient mice. A schematic diagram of the experimental design (A). Mice were sensitized by i.p. adminis-
tration of OVA mixed with adjuvant at days 0, 1, 7, and 8. On days 14, 15, 21, and 22, mice were challenged with OVA or PBS. Photographs of lung tissues were ob-
tained from H&E-stained sections (B) and histopathological scores were determined semi-quantitatively by microscopic examination (C). Total cell numbers in the 
BAL fluids were counted (D) and a differential cell count was performed using Diff-Quick staining (E). Data are expressed as means±SD.

ceptors that are responsible for the recognition of microbial 
molecules and danger signals. The first identified NLRs, NOD1 
and NOD2, have an N-terminal caspase-recruitment domain 
(CARD), intermediate Nod, and C-terminal leucine-rich re-
peats (LRRs). They sense the bacterial peptidoglycan compo-
nents, meso-diaminopimelic acid (meso-DAP) and muramyl 
dipeptide, respectively.12 Following recognition, NOD1 and 
NOD2 recruit a serine/threonine kinase, receptor interacting 
protein 2 (RIP2 [also known as RICK and CARDIAK]), which has 
an N-terminal kinase domain and C-terminal CARDs linked by 
an intermediate region. Association between NOD1 or NOD2 
and RIP2 mediated by CARD-CARD interactions induces the 
activation of NF-κB and mitogen-activated protein kinases 
(MAPKs), subsequently leading to the production of proinflam-
matory mediators.13-15 

Studies have shown that NOD1 and NOD2 signaling is involved 
in allergic disease. Genetic variations of NOD1 are associated 
with asthma and elevated IgE levels in humans.16 NOD1 poly-
morphisms are also significantly associated with alteration in 
the strong protective effect which exposure to a farming envi-
ronment has on allergies.17 In addition, children with the poly-
morphic allele C2722 of the NOD2 gene are at greater risk of de-
veloping allergic rhinitis and atopic dermatitis.18 There is also 
evidence of an association between the adaptor molecule RIP2 
and asthma. Nakashima et al.19 suggested that genetic variants 

of the RIP2 gene may be associated with the severity of asthma, 
even though these variants are not likely to be involved in asth-
ma development. Moreover, blockade of RIP2 by the flavonoid 
aglycone, naringenin, contributed to the suppression of the 
production of thymic stromal lymphopoietin in mast cells, 
which play a pivotal role in allergic asthma.20 These findings 
suggest that RIP2 may be associated with the development of 
allergic asthma, and prompted us to determine the exact role of 
RIP2 in the development of allergic airway inflammation. We 
developed a mouse model of ovalbumin (OVA)-induced air-
way inflammation using WT and RIP2-deficient mice and ex-
amined the severity of lung inflammation, Th2-derived cyto-
kine levels in lung extracts, and serum immunoglobulin levels. 

MATERIALS AND METHODS

Animals
Wild-type (WT) C57BL/6 mice, 6- to 8-weeks-old, were pur-

chased from KOATECH (Pyeongtaek, Gyeonnggi-do, Korea). 
RIP2-deficient C57BL/6 mice were purchased from The Jack-
son Laboratory (Bar Harbor, ME, USA). All animal experiments 
were approved by the Institutional Animal Care and Use Com-
mittee of Konyang University.
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Airway inflammation induction
Protocols are depicted schematically in Fig. 1A. Both WT and 

RIP2-deficient mice were sensitized with 40 μg OVA (Sigma-Al-
drich, St. Louis, MO, USA) and 2 mg of adjuvant (Imject® Alum, 
Thermo scientific, Rockford, IL, USA) in 200 μL of PBS, or with 
PBS alone by intraperitoneal (i.p.) injection on days 0, 1, 7, and 
8. On days 14, 15, 21, and 22, anesthetized mice were challenged 
intranasally (i.n.) with 200 μg of OVA in PBS or with PBS alone 
in a volume of 50 μL. Animals were sacrificed 2 days after the 
last challenge and bronchoalveolar lavage (BAL) fluids, serum, 
and lung tissues were collected for analysis.

Measurement of cytokine and serum OVA-specific antibody 
levels

Lung extracts were obtained using a tissue homogenizer. Ho-
mogenates were centrifuged at 1,000×g for 10 minutes. Super-
natants were collected, and then stored at -70°C for analysis. 
IL-5 and IL-13 levels were measured using a commercial en-
zyme-linked immunosorbent assay (ELISA) kit (R&D Systems, 
Abingdon, U.K.). For the measurement of OVA-specific IgE lev-
els, 96-well ELISA plates were coated with OVA (10 μg/mL) at 
4°C overnight. Nonspecific binding was blocked with 1% BSA in 
PBS, and serum samples (at 1:20 dilution) were added to the 
plate. After incubation for 2 hours at room temperature, biotin 
rat anti-mouse IgE (BD Biosciences, San Jose, CA, USA) was ap-
plied, followed by streptavidin HRP (BD Biosciences). After 
washing, the TMB substrate reagent set (BD Biosciences) was 
applied according to the manufacturer’s instructions and opti-
cal density (OD) at 450 nm was measured. OVA-specific IgG1 
levels were determined using the methods described above, ex-
cept that peroxidase-conjugated rat anti-mouse IgG1 (Southern 
Biotech, Birmingham, AL, USA) was used. 

Bronchoalveolar lavage (BAL)
After anesthesia by intraperitoneal injection of Zoletile (Virbac 

Laboratories, Carros, France), BAL fluid was obtained by lavage 
with 0.8 mL of PBS via a tracheal catheter. The BAL fluid was 
centrifuged at 200×g for 3 minutes at 4°C. After discarding the 
supernatant, we resuspended the cell pellet in cold RPMI 1640 
medium. Total cell numbers in the lavage fluid were counted 
using a hemocytometer. A differential cell count was performed 
using Diff-Quick staining on the basis of morphological criteria.

Histopathology
To evaluate tissue inflammation, the left lung of each mouse 

was fixed in 10% neutral-buffered formalin for 48 hours and 
then embedded in paraffin. Tissue sections (2 μm thick) were 
prepared and stained with hematoxylin and eosin (HE) or peri-
odic acid-Schiff (PAS), and examined under a light microscope. 
Tissue inflammation scoring was based on the presence or 
abundance of inflammatory lesions as follows: 0, non-specific; 
1, mild; 2, mild to moderate; 3, moderate; 4, moderate to severe; 

5, severe. To quantitate mucus staining, PAS-positive cells in the 
airways were counted, and the length of the basement mem-
brane (BM) in each airway was measured using ImageJ version 
1.44 (National Institutes of Health, Bethesda, MD, USA). The re-
sults are reported as the mean numbers of PAS-positive cells 
per 100 micrometers of BM.21

Statistical analysis
The significance of differences in mean values of the groups 

was evaluated by t-tests, and values are expressed as means±
SD. All statistical calculations were performed using GraphPad 
Prism version 4 (GraphPad Software, San Diego, CA, USA). Val-
ue of P<0.05 was considered to indicate significance.

 

RESULTS

Role of RIP2 in the severity of OVA-induced inflammation in 
the mouse lung

Airway inflammation in mice was achieved by challenge with 
OVA 4 times i.n. after 4 immunizations by i.p. injection, as de-
scribed in Fig. 1A. We first examined whether RIP2 affected the 
severity of airway inflammation. Intra-nasal challenge with OVA 
induced severe infiltration of inflammatory cells, consisting 
mostly of lymphocytes and granulocytes, around the bronchus, 
and increased the thickness of the alveolar walls in both WT 
and RIP2-deficient mice (Fig. 1B). However, when histopatho-
logical scores were assessed, RIP2 deficiency did not appear to 
affect the severity of lung inflammation induced by OVA (Fig. 
1C). In addition, total infiltrating cells were counted in the BAL 
fluids of mice with and without i.n. challenge by OVA. Com-
pared to the PBS-treated mice, OVA challenge increased the 
number of infiltrating cells in the BAL fluids of both WT and 
RIP2-deficient mice, with no significant difference between the 
WT and RIP2-deficient mice (Fig. 1D). When a differential cell 
count was performed using Diff-Quick staining, intranasal 
challenge with OVA led to a decrease in the percentage of mac-
rophages and an increase in eosinophils and neutrophils in the 
BAL fluids of mice (Fig. 1E). However, there was no significant 
difference between WT and RIP2-deficient mice (Fig. 1E). 

Effects of RIP2 on goblet cell hyperplasia and mucus 
hypersecretion in the bronchi of OVA-challenged mice

OVA-induced allergic airway inflammation is characterized 
by hyperplasia of goblet cells and mucus hypersecretion in the 
bronchus. To determine whether RIP2 deficiency influenced 
these phenomena, slide sections were stained with PAS and 
observed under a light microscope. As shown in Fig. 2 A and B, 
the number of PAS-positive cells as well as mucus secretion in 
the airway epithelial layer of mice was increased by intranasal 
challenge with OVA. However, there was no significant differ-
ence in the number of PAS-positive cells or mucus secretion 
between WT and RIP2-deficient mice (Fig. 2 A and B).
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Effect of RIP2 on Th2-derived cytokine levels in lung extracts 
of OVA-challenged mice

We examined OVA-induced IL-5 and IL-13 levels in lung ex-
tracts of WT and RIP2-deficient mice. Results showed that i.n. 
challenge with OVA increased the IL-5 and IL-13 levels in the 
lungs of mice (Fig. 3 A and B). However, RIP2 deficiency did not 
affect OVA-induced IL-5 and IL-13 levels in lung extracts (Fig. 3 
A and B).

Effect of RIP2 on serum antigen-specific IgE and IgG1 levels in 
OVA-challenged mice

Finally, we measured the serum antigen-specific IgE and IgG1 
levels. As expected, antigen-specific IgE and IgG1 levels were 
increased by OVA challenge (Fig. 4 A and B). However, there 
were no significant differences in OVA-specific IgE and IgG1 
levels between WT and RIP2-deficient mice (Fig. 4 A and B). 

DISCUSSION

Allergic asthma is a chronic airway inflammatory disease re-
lated to dysfunction of the airway caused by the release of in-
flammatory mediators, and remodeling of the airway wall.22 In 
allergic asthma, exacerbation of the underlying airway inflam-
mation is associated with symptoms and airway limitations.11 
Pattern recognition receptors (PRRs) initiate immune respons-
es by recognizing structures of microorganisms and endoge-
nous molecules released from damaged cells, and regulate the 
transcription of genes involved in inflammatory responses.23 In 
addition to their protective role in bacterial or viral infection, 
PRRs have been reported to be involved in allergic asthma. Toll-
like receptors (TLRs), the best characterized PRRs, are known 
to mediate the induction of allergic airway inflammation. There 
is also evidence of a close association between polymorphisms 
in TLR genes and asthma.24-26 In addition, several studies have 
revealed that TLR stimulation exacerbates or alleviates aller-
gen-induced asthma depending on the TLR type.27,28 Immuni-
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Fig. 2. Hyperplasia of goblet cells and mucus hypersecretion in the bronchus of lung tissue. Lung sections were stained with PAS and examined by light microscopy. 
Areas in the black boxes are shown at a higher magnification on the right of each picture (A). Numbers of PAS-positive cells in the airway epithelium were counted. 
In each airway studied, the length of the basement membrane (BM) was measured using image analysis software. The results are presented as mean numbers of 
PAS-positive cells per micrometer of BM (B). Data are expressed as means±SD.

Fig. 3. Cytokine production in the lung tissue of WT and RIP2-deficient mice. 
Lung extracts from the right lungs of sacrificed mice. IL-5 (A) and IL-13 (B) levels 
in lung extracts were measured by ELISA. Data are expressed as means±SD. 
Coefficients of variations (%) are shown in brackets.

Fig. 4. Levels of OVA-specific IgE and IgG1 in the serum. Serum was obtained 
from blood samples collected 48 hours after the last OVA challenge. Serum 
OVA-specific IgE (A) and IgG1 (B) levels were measured by ELISA. Data are ex-
pressed as means±SD.
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zation with OVA and a TLR2 agonist (Pam3Cys) induced Th2 
immune responses such as the production of antigen-specific 
IgE in the serum, and IL-13 secretion by splenocytes.27 TLR2 ac-
tivation promoted airway hyperresponsiveness.27 Double-
stranded RNA increased lung inflammation, airway hyperre-
sponsiveness, and antigen-specific Th2 responses in OVA-sen-
sitized mice through the TLR3-TRIF (Toll/IL-1R domain-con-
taining adaptor-inducing IFN-β) pathway.28 In contrast, intra-
nasal administration of the TLR7 agonist, R848, suppressed ex-
perimental asthma by inducing type Ι interferon production 
and inhibiting Th2 responses.29 Oral administration of CpG-
ODN, a TLR9 agonist, prevented eosinophilic airway inflam-
mation.30 These findings suggest that innate immune responses 
mediated by PRRs play a critical role in the development of al-
lergic airway inflammation. 

Similar to TLRs, NOD1 and NOD2 stimulation triggers the ac-
tivation of NF-κB and MAPKs, which are critical factors for the 
production of proinflammatory cytokines; the adaptor mole-
cule RIP2 is required for this.15 However, in contrast to TLRs, the 
association between NOD1 and NOD2 signaling and allergic 
asthma is poorly understood. Based on several indirect lines of 
evidence of its involvement in allergic asthma,19,20 we sought to 
determine the role of RIP2 in OVA-induced airway inflamma-
tion. We found no significant differences between WT and 
RIP2-deficient mice in terms of the severity of lung inflamma-
tion, total cell infiltration in BAL fluid, IL-5 and IL-13 levels in 
lung extracts, or serum antigen-specific IgE and IgG1 levels of 
mice challenged intranasally with OVA. A recent study showed 
that serum samples from normal mice, but not antibiotic-treat-
ed mice, had NOD1- and NOD2-stimulating activity,31 suggest-
ing that microbiota may steadily release NOD1- and NOD2-
stimulatory factors (e.g., peptidoglycans) into the body fluid. 
Therefore, in this study, we compared various parameters be-
tween WT and RIP2-deficient mice in the absence of NOD1 
and NOD2 stimulation to mimic physiological conditions. Con-
sistent with the findings of a previous study,32 we found that WT 
and RIP2-deficient mice immunized with OVA and alum with-
out NOD1 and NOD2 ligands, did not show differences in se-
rum antigen-specific IgG levels. Eosinophilic infiltration into 
the lung by OVA was also not impaired in RIP2-deficient mice 
compared with WT mice.33 In addition, RIP2 is not essential for 
T-cell proliferation and differentiation.34 Taken together, our re-
sults indicate that under normal conditions, RIP2 deficiency is 
not associated with the development of allergic airway inflam-
mation. Nevertheless, it is necessary to define the role of RIP2 
in the development of allergic disease under NOD1 and NOD2 
activation; Magalhaes et al.32 showed that RIP2 is required for 
NOD1- and NOD2-induced Th2 immunity. NOD1 and NOD2 
ligands increased the number of OVA-specific cells producing 
IL-4 and IL-5 in the splenocytes of WT mice, but not in RIP2-
deficient mice.32 In addition, RIP2 is essential for OVA-specific 
IgG1 production, mediated by NOD1 and NOD2 stimulation.32 

These findings suggest that RIP2 may affect the development of 
allergic disease mediated by NOD1 and NOD2 activation.

Microbial infections are thought to affect the development or 
severity of allergic asthma through TLR-mediated signaling.33,35 
NOD1 and NOD2 cooperate with TLRs to induce the innate im-
mune response against microbial infections.36 Listeria-induced 
production of cytokines was impaired in NOD1/2 double- or 
RIP2-deficient macrophages after LPS exposure.37 RIP2 defi-
ciency also led to decreased production of cytokines in TLR-to-
lerized macrophages in response to Pseudomonas infection, 
and protected mice from lethality induced by the bacterial in-
fection.38 Therefore, it is necessary to clarify whether NOD1/2 
and RIP2 contribute to the control of the development of aller-
gic diseases mediated by microbial infection.
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