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The relativistic two-component complete active space self-consistent field theory in Kramers re-
stricted formalism (KRCASSCF) through the framework of the spin-orbit relativistic effective core
potential is implemented into the KPACK package. This paper continues the development previously
reported [Y. S. Kim and Y. S. Lee, J. Chem. Phys. 119, 12169 (2003)] and extends the theory by
means of adding time-reversal symmetry into the relevant expressions so as to complete the course
of theoretical development. We retained the usage of elementary spinor excitation operator for defin-
ing the spinor rotation operator and derived the gradient and Hessian in simpler forms than previously
found. To eliminate redundant computation resulting from repeating sums in the derivatives, a suit-
able decomposition method is proposed, which also facilitates the implementation. The two-step
near second-order approach is employed for convergence. The present implementation is applicable
for both closed- and open-shell systems and is used to calculate the atoms of lower p-block. The
results for 5p and 6p are in good agreement with the experiments, and those for 7p are compara-
ble to multi-reference configuration interaction results, showing that KRCASSCF is a versatile tool
for the relativistic electronic structure calculation of molecules containing moderate-weight through
superheavy elements. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4822426]

I. INTRODUCTION

The inseparable interplay between spin-orbit coupling
and electron correlation effects for molecules containing one
or more heavy elements requires that the spin-orbit coupling
is treated variationally at the self-consistent field (SCF) level
of theory in order for a proper description of the correlation.1

This is especially important in the calculation of static cor-
relation, which arises from near-degeneracy, as the ener-
getic separation between the valence orbitals are not only
small, the spin-orbit coupling also splits a degenerate orbital
(l > 0) in an atom into the energetically close l + 1

2 and
l − 1

2 spinors. Therefore, a multi-configurational approach in
the multi-component relativistic framework based on Dirac
equation is desirable, since the framework of the nonrelativis-
tic Schrödinger equation or the one-component scalar rela-
tivistic approach does not directly treat the spin-orbit coupling
but only in ad hoc fashion.

The fully relativistic all-electron four-component theory
is exact but rather limited in the range of applicability to, at
most, a few heavy atoms owing to the unaffordable computa-
tional cost.2 Instead, the quasi-relativistic two-component ap-
proaches are often employed as an efficient alternative and, in
particular, the relativistic effective core potential (RECP)3–5

as an approximate two-component method has gained popu-

a)Electronic mail: yslee@kaist.edu.

larity for the efficiency by considering the valence (and semi-
core) electrons explicitly and also by a high degree of re-
liability comparable to the all-electron calculations. The re-
cent two-component RECP is referred to as spin-orbit RECP
(SOREP) and provides one-electron effective spin-orbit op-
erators, which can be utilized in the SCF stage with time-
reversal symmetry to manifest jj-coupling in one-electron
functions.6

As an approach to treat static correlation in the nonrel-
ativistic theory, multi-configurational (MC)SCF theory has
been devised, in which orbital space and configurations are
simultaneously optimized. The MCSCF methods are usu-
ally classified by the manner of specifying the spaces, and
the most widely used one is the complete active space
(CAS)SCF of Roos and co-workers,7–9 for which the wave-
function is conveniently defined by choosing the active
orbitals.10 The theory of nonrelativistic MCSCF has been
extended to four-component framework by Jensen et al.,11

later to two-component by Fleig et al.,12 and both employed
Kramers basis operators,13 the excitation operators that con-
form time-reversal symmetry, in placement of spin summed
excitation operators appearing in the orbital rotation oper-
ator. Kim and Lee14 took an alternative approach by em-
ploying elementary spinor excitation operators instead of the
Kramers bases, which tend to generate rather complicated
expressions, in search of simpler equations for Kramers re-
stricted (KR)CASSCF; however, the formulated gradients and

0021-9606/2013/139(13)/134115/14/$30.00 © 2013 AIP Publishing LLC139, 134115-1
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Hessians were deficient in time-reversal symmetry, even
though the method relied on the inherent time-reversal
symmetry in one-electron functions. Thyssen et al.15 reported
an implementation of KRMCSCF formulated in Ref. 11, and
recently, Ganyushin and Neese16 presented a derivation and
implementation of the CASSCF approach, in which spin-
orbit coupling is variationally treated while retaining the one-
component framework. Furthermore, the inclusion of dynam-
ical correlation onto the multi-configurational wavefunction
through the configuration interaction (CI), KRMCSCF/CI,17

and the second-order perturbation theory, DC-CASPT2,18 has
also been reported.

In present work, the formulation of two-component
KRCASSCF theory with the SOREP begun in Ref. 14 are
continued and a full implementation is reported. We retained
the use of elementary excitation operators in the expansion of
spinor rotation operator, which composites the unitary trans-
formation in the spinor space, but time-reversal symmetry is
now applied to the resulting expression of the derivatives.
Moreover, the spinor gradient and Hessian are decomposed
into small number of sums that renders the expressions to
even simpler forms, and the redundant work in the evaluation
can be reduced. Test calculations are performed on atomic
properties such as excitation energy and ionization poten-
tial for the lower p-block elements and compared with the
CASSI-SO19 method. Through the examination of total en-
ergy difference and occupations in the relevant spinors, the
characteristic of KRCASSCF is also analyzed.

The paper is organized as follows. In Sec. II, the underly-
ing theory is presented, followed by the details of implemen-
tation in Sec. III. Applications of the present KRCASSCF im-
plementation to the lower p-block atoms are given in Sec. IV.
Finally, the conclusion is given in Sec. V.

II. THEORY

All equations are written in atomic unit. The indices p,
q, . . . refer to general spinors, i, ī, j, j̄ , . . . to particular spinors
of Kramers pairs, while m, n, u, v correspond to non-specific
spinors of Kramers pairs.

A. Two-component Hamiltonian with SOREP

The two-component n valence electron Hamiltonian with
SOREP is expressed as5

Ĥ =
n∑
I

ĥI +
n∑

I>J

1

rIJ

+ hnuc, (1)

ĥI = −1

2
∇2

I +
N∑
A

[
−Zeff

A

rIA

+ ÛSOREP
A

]
, (2)

where I, J denote the valence electrons, A denotes the nucleus,
Zeff

A and ÛSOREP
A are the effective charge and the SOREP of the

core A, and hnuc is the nuclear repulsion energy. The ÛSOREP

for an atom is defined as3

ÛSOREP =
∞∑
l=0

l+1/2∑
j=|l−1/2|

USOREP
lj (r)

j∑
m=−j

|ljm〉〈ljm|, (3)

where l and j denote the orbital and the total angular mo-
mentum quantum number, m denotes the magnetic quantum
numbers for the given j, and |ljm〉〈ljm| is the two-component
projection operator. The first summation of above equa-
tion is often constrained to certain angular momentum L, at
which the contribution from the higher angular momenta are
summed into a single term or neglected entirely. The scalar
relativistic (spin-free) effects, mostly from mass-velocity and
Darwin terms, and the spin-orbit coupling effects can be con-
veniently treated in the framework of the two-component
SOREP by rewriting Eq. (3) as the sum of (spin-orbit-)-
averaged RECP (AREP), which replaces the core electrons
and also incorporates the scalar relativistic effects, and an ef-
fective one-electron spin-orbit operator:5, 20

ÛSOREP = ÛAREP + Ĥ SO, (4)

with

ÛAREP = UAREP
L (r) +

L−1∑
l=0

l∑
m=−l

× [
UAREP

l (r) − UAREP
L (r)

]|lm〉〈lm|, (5)

Ĥ SO = ŝ ·
L∑

l=1

2

2l + 1
�USOREP

l (r)

×
l∑

m=−l

l∑
m′=−l

|lm〉〈lm|l̂|lm′〉〈lm′|, (6)

where UAREP
l (r)=(2l + 1)− 1[l·USOREP

l,l − 1/2(r) + (l + 1)·USOREP
l,l + 1/2]

and �USOREP
l (r) = USOREP

l,l+1/2(r) − USOREP
l,l−1/2(r). The spin-orbit

integrals of Ĥ SO are purely imaginary21 and contribute to
spin off-diagonal matrix elements, inducing the one-electron
wavefunctions to be composed by mixture of α and β spin
functions, and hence, two-component. On the other hand,
the omission of Ĥ SO in the calculation corresponds the one-
component scalar relativistic approach and shares the non-
relativistic methodology. More details of SOREP are de-
scribed in Refs. 22 and 23.

In the relativistic regime, the spin symmetry for or-
bitals in the nonrelativistic or scalar relativistic theory is no
longer valid and replaced by time-reversal (also known as
Kramers) symmetry, leading to the relativistic extension of
spin-restricted Hartree-Fock (RHF) into Kramers restricted
(KR)HF method.6, 24–26 The time-reversal operator can be
written in an anti-unitary form for an electron as27

T̂ = −iσyK̂0, (7)

where σ y is the Pauli y-matrix applied on the spin part and K̂0

is the complex conjugation operator acting on the orbital part.
Then, two-component Fock equation is given by24(

Fαα −Fβα∗

Fβα Fαα∗

) (
cα
i

cβ

i

)
= εi

(
cα
i

cβ

i

)
, (8)

where F is the two-component Fock matrix, the one-electron
eigenvector c is called spinor, and the eigenvalue ε is the
spinor energy. The spin diagonal Fαα is a hermitian matrix,
while the spin off-diagonal Fβα is a complex anti-symmetric
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matrix and nonzero by direct results of the spin-orbit integrals
and additional two-electron exchange integrals. The spinors
of KRHF form the doubly degenerate pairs called Kramers
pairs related through Eq. (7) as

T̂ |i〉 = T̂

(
cα
i

cβ

i

)
=

(
−cβ∗

i

cα∗
i

)
= ∣∣ī〉 . (9)

Since the spin-orbit coupling is introduced in the atomic bases
and treated self-consistently, KRHF can be regarded as the
jj-coupling approach. The KRHF wavefunction is a single
Slater determinant composed of Kramers pairs and has been
widely employed as a starting point for elaborate correlated
methods.14, 28, 29

B. Fundamentals of KRCASSCF

The basic idea of nonrelativistic MCSCF,30 which is a
simultaneous optimization of both configuration and orbital
spaces, is retained in the relativistic two-component case, but
the reformulation is necessary since (i) the real orbital be-
comes the complex spinor, which is doubled in size and re-
quires complex arithmetic operations, and (ii) the excitations
and the rotations between barred and unbarred spinors are al-
lowed, giving rise to larger matrix dimensions and complica-
tions in the mathematical expressions.

The relativistic MCSCF trial wavefuction is expressed as
the linear combination of n-electron functions such as deter-
minants composed of the spinors from an initial KRHF calcu-
lation:

|0〉 =
∑

m

Cm|m〉. (10)

Then, the optimized wavefunction can be obtained by apply-
ing the unitary transformation

|0′〉 = Û |0〉, (11)

Û = exp(Â) exp(Ŝ), (12)

where Â and Ŝ are the anti-Hermitian spinor and configura-
tion transformation operators, respectively, for the optimiza-
tions of the spinor coefficients in the determinants and the
corresponding configuration coefficients in Eq. (10). Note that
the CI method can be regarded as a special case of MCSCF,
for which the orbitals (or spinors) are kept frozen. The oper-
ator Â can be written in terms of spinor rotation parameters
and elementary spinor excitation operators as

Â =
∑
p>q

[apqÊpq − a∗
pqÊqp], (13)

Êpq = â†
pâq, (14)

where â† and â are the elementary creation and annihilation
operators in the spinor space. Note the anti-Hermicity relation
in the rotation parameters in Eq. (13). In the determination of
these parameters, the elimination of the redundant and unde-
sired rotations including inactive-inactive, active-active and

external-external are crucial for minimizing numerical prob-
lems during the rotation.9 The operator Ŝ is defined by

Ŝ =
∑
K �=0

(sK0|K〉〈0| − s∗
K0|0〉〈K|), (15)

where |K〉 is the orthogonal complement to the wavefunction
|0〉.

The convergence in MCSCF wavefunction is reached
by locating the stationary point of the energy hypersurface,
i.e., (∂E/∂a)0 = 0 and (∂E/∂s)0 = 0. If the spinors and the
configurations are optimized simultaneously during the itera-
tions, this is called one-step method. The coupling between Â

and Ŝ may be neglected altogether, resulting in the two-step
procedure,31, 32 which is frequently used in practice due to its
much simpler form. In the two-step procedure, the configu-
rations are first optimized with a fixed spinor space followed
by the rotation in the spinor space with the pre-optimized but
fixed configurations. The same procedure is iterated until the
convergence of MCSCF wavefuction. In this paper, we will
only consider the two-step procedure employing the second-
order Newton-Raphson method for the spinor rotation, and
hence the procedure is quadratic only in the spinor space.

The relativistic MCSCF energy, at a point of iterations, is
given by

E(a, s) = 〈0′|Ĥ |0′〉
= 〈0| exp(−Ŝ) exp(−Â)Ĥ exp(Â) exp(Ŝ)|0〉, (16)

and Baker-Campbell-Hausdorff expansion to second-order
leads to

E(a, s) 	 〈0|Ĥ |0〉 + 〈0|[Ĥ , Â]|0〉 + 〈0|[Ĥ , Ŝ]|0〉

+ 1

2
〈0|[[Ĥ , Â], Â]|0〉 + 1

2
〈0|[[Ĥ , Ŝ], Ŝ]|0〉

+ 〈0|[[Ĥ , Â], Ŝ]|0〉. (17)

For the expressions of the expectation values of above com-
mutators, which will be used in the expansion of derivatives
in Secs. II D and II E, it is most convenient to rewrite the
Hamiltonian (1) in the second quantization as

Ĥ =
∑
pq

hpq â
†
pâq + 1

2

∑
pqrs

gpqrs â
†
pâ†

r âs âq + hnuc, (18)

with

hpq =
∫ ∫

φ∗
p(r1, σ1)ĥ1φq(r1, σ1)dr1dσ1, (19)

gpqrs =
∫ ∫ ∫ ∫

φ∗
p(r1, σ1)φ∗

r (r2, σ2)r−1
12 φq(r1, σ1)

×φs(r2, σ2)dr1dσ1dr2dσ2, (20)

where φ refers the spinor and σ denotes the spin variable. The
one- and two-electron molecular spinor integrals, Eqs. (19)
and (20), respectively, can be obtained by the complex two-
and four-index transformation outlined in Ref. 33.

As noted earlier, the specification of the orbital space
determines the particular MCSCF scheme. The KRCASSCF
method, which we consider in this paper, divides the spinor
space into three groups: inactive, active, and external spaces,
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where the inactive and external spaces have full and zero oc-
cupations, respectively, and the active space can have varying
occupation number. Therefore, the occupation number nocc

for a Kramers pair in each space is nocc = 2 for the inactive,
0 < nocc < 2 for the active, and nocc = 0 for the external space.
The additional spaces, the frozen core and the deleted virtual
spaces can be also defined in order to reduce the computa-
tional cost.

C. Spinor rotation under Kramers symmetry

The spinor variation can be regarded as a rotation in the
vector space spanned by the spinors and is written as

	new = 	old exp(A), (21)

where 	 is a row vector containing Kramers pairs, i.e.,
	 = [	+	−] = [ φ1 · · · φMφ1̄ · · · φM̄ ] where M is the total
number of Kramers pairs. Since the unitary transformation
given by Eq. (21) should leave the rotated spinors under
time-reversal symmetry, the following relations between the
elements of the anti-Hermitian rotation matrix A can be
obtained:12

aij = a∗
ī j̄

, (22)

aīj = −a∗
ij̄

. (22a)

Making use of these, and by breaking the summation to
adapt Kramers pairs, i.e., 
2M

p → 
M
i + 
M

ī
, we can rewrite

Eq. (13) as

Â =
∑
i>j

[aij (Êij − Êj̄ ī) − a∗
ij (Êji − Êīj̄ ) + aīj (Êīj + Êj̄ i)

− a∗
īj

(Êj ī + Êij̄ ) + aīiÊīi − a∗
īi
Êiī]. (23)

Here, the four sets of rotation parameters constructs the rota-
tion matrix A as

A =
(

A++ −A∗
−+

A−+ A∗
++

)
. (24)

Note that the submatrices A++ and A−+ are anti-Hermitian
and complex-symmetric, respectively. In the nonrelativistic
limit, the subscripts + and − correspond to α and β spin,
respectively, and Aαβ = Aβα = 0 since the orbitals with dif-
ferent spin function simply cannot mix due to the orthogo-
nality. However, since the two-component spinor is basically
the linear combination of α and β functions, the mixing be-
tween + and − spinors does occur and gives rise to the ad-
ditional off-diagonal rotation parameters compared with the
nonrelativistic case. The matrix exponential exp(A) can be
calculated either using the power expansion or the method by
Dalgaard and Jørgensen,32 which elegantly obtains the matrix
exponential by the diagonalization of the Hermitian matrix
[−A2]. The quaternion algebra26, 34 can be employed in the
manipulation of A, since the structure of matrix resembles the
quaternion.

At fixed configurations, the Taylor expansion of MCSCF
energy at the zero point in the energy hypersurface spanned

by the spinor variables is

E(a) = E(0) + g†a + 1

2
a†Ha + · · · , (25)

where g and H are the gradient and Hessian with respect to
spinor rotation parameters a, the vector arrangement of the ro-
tation matrix A. The truncation of above equation to second-
order and setting dE/da = 0 lead to the second-order Newton-
Raphson equation,

a = −H−1g, (26)

for the calculation of the rotation parameters. To solve above
equation, 4 gradient vectors and 16 Hessian matrices accord-
ing to the four types of rotations are required, however, as
will be shown later in this section, the number of gradients
and Hessians elements that are required can be reduced to 1

2

and 1
4 , respectively, using the time-reversal symmetry.

D. Spinor gradient

The spinor gradient vector at a point can be partitioned
into 4 vectors according to the types of the rotation parameters
as

g =
[(

∂E

∂aij

)
0

(
∂E

∂a∗
ij

)
0

(
∂E

∂aīj

)
0

(
∂E

∂a∗
īj

)
0

]T

, (27)

Note the restriction i > j by Eq. (23) and the 4-fold increase
in the dimension from the nonrelativistic case. Direct differ-
entiation of the MCSCF energy given by Eq. (17) leads to

g
(1)
ij = ∂

∂aij

〈0|[Ĥ , Â]|0〉 = 〈0|[Ĥ , Êij ] − [Ĥ , Êj̄ ī]|0〉,
(28)

g
(2)
ij = ∂

∂a∗
ij

〈0|[Ĥ , Â]|0〉 = 〈0|[Ĥ , Êīj̄ ] − [Ĥ , Êji]|0〉,
(28a)

g
(3)
ij = ∂

∂aīj

〈0|[Ĥ , Â]|0〉 = 〈0|[Ĥ , Êīj ] + [Ĥ , Êj̄ i]|0〉,
(28b)

g
(4)
ij = ∂

∂a∗
īj

〈0|[Ĥ , Â]|0〉 = 〈0| − [Ĥ , Êij̄ ] − [Ĥ , Êj ī]|0〉,
(28c)

where the superscript denotes the location in the g vector. The
gradients are given by the sum or the difference of the com-
mutator [Ĥ , Êmn]. Using the anti-commutation relations of
elementary operators,35 the expectation value of this commu-
tator can be written as

〈0|[Ĥ , Êmn]|0〉 =
∑

p

[hpmDpn − (hpnDpm)∗]

+
∑
pqr

[gpgrmdpqrn − (gpqrndpqrm)∗], (29)

where

Dpq = 〈0|Êpq |0〉, (30)

dpqrs = 〈0|a†
pa†

r asaq |0〉, (31)
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refer the first- and second-order reduced density matrix ele-
ments, respectively. The expressions for other commutators
entering Eqs. (28)–(28c) can be obtained by an appropriate
interchange of indices. Also, the permutation of indices in
Eq. (29) gives

〈0|[Ĥ , Êmn]|0〉 = −〈0|[Ĥ , Ênm]|0〉∗, (32)

which leads to the relations within the g vector:

g
(1)
ij = (

g
(2)
ij

)∗
, (33)

g
(3)
ij = (

g
(4)
ij

)∗
. (33a)

Thus, only two gradient vectors, g(1) and g(3) are distinct and
required to be calculated, and the evaluation of the various
types of Eq. (29) with differing time-reversal notations are
the central quantities composing the gradients. By defining
the intermediate

Fmn =
∑

p

hpmDpn +
∑
pqr

gpqrmdpqrn, (34)

and with Eq. (29), the final working expressions for the nonre-
dundant gradients are

g
(1)
ij = Fij − F ∗

ji − Fj̄ ī + F ∗̄
ij̄

, (35)

g
(3)
ij = Fīj − F ∗

j ī
+ Fj̄i − F ∗

ij̄
. (35a)

We note the similarity of Eq. (34) to the nonrelativistic
MCSCF Fock-type matrix, however, such decomposition is
only used here for sake of simplification and computational
reduction, since it does not reduce to the Fock matrix as in
nonrelativistic case. Therefore, by computing the four types
of F matrix entering Eqs. (35) and (35a), the gradients can be
easily calculated.

E. Spinor Hessian

Like the spinor gradient, the spinor Hessian matrix at a
point in the energy hypersurface, appearing in Eq. (25), can be
partitioned into 4 by 4 submatrices according to the rotation
parameters as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂2E

∂aij ∂akl

)
0

(
∂2E

∂aij ∂a∗
kl

)
0

(
∂2E

∂aij ∂ak̄l

)
0

(
∂2E

∂aij ∂a∗
k̄l

)
0(

∂2E

∂a∗
ij ∂akl

)
0

(
∂2E

∂a∗
ij ∂a∗

kl

)
0

(
∂2E

∂a∗
ij ∂ak̄l

)
0

(
∂2E

∂a∗
ij ∂a∗

k̄l

)
0(

∂2E

∂aīj ∂akl

)
0

(
∂2E

∂aīj ∂a∗
kl

)
0

(
∂2E

∂aīj ∂ak̄l

)
0

(
∂2E

∂aīj ∂a∗
k̄l

)
0(

∂2E

∂a∗
īj

∂akl

)
0

(
∂2E

∂a∗
īj

∂a∗
kl

)
0

(
∂2E

∂a∗
īj

∂ak̄l

)
0

(
∂2E

∂a∗
īj

∂a∗
k̄l

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

Again, note the restrictions i > j and k > l, and since the di-
mension is four times larger compared with the nonrelativis-
tic case and the elements are complex-numbered, the increase
in the storage of H is thus 32 times. The matrix elements
are given by the second derivatives of MCSCF energy with
respect to the rotation parameters:

H
(1,1)
ij,kl = 1

2

∂2

∂aij ∂akl

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| [[Ĥ , Êij ], Êkl] + [[Ĥ , Êkl], Êij ]

− [[Ĥ , Êij ], Êl̄k̄] − [[Ĥ , Êl̄k̄], Êij ]

− [[Ĥ , Êj̄ ī], Êkl] − [[Ĥ , Êkl], Êj̄ ī]

+ [[Ĥ , Êj̄ ī], Êl̄k̄] + [[Ĥ , Êl̄k̄], Êj̄ ī] |0〉 , (37)

H
(1,2)
ij,kl = 1

2

∂2

∂aij ∂a∗
kl

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| − [[Ĥ , Êij ], Êlk] − [[Ĥ , Êlk], Êij ]

+ [[Ĥ , Êij ], Êk̄l̄] + [[Ĥ , Êk̄l̄], Êij ]

+ [[Ĥ , Êj̄ ī], Êlk] + [[Ĥ , Êlk], Êj̄ ī]

− [[Ĥ , Êj̄ ī], Êk̄l̄] − [[Ĥ , Êk̄l̄], Êj̄ ī] |0〉 , (37a)

H
(1,3)
ij,kl = 1

2

∂2

∂aij ∂ak̄l

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| [[Ĥ , Êij ], Êk̄l] + [[Ĥ , Êk̄l], Êij ]

+ [[Ĥ , Êij ], Êl̄k] + [[Ĥ , Êl̄k], Êij ]

− [[Ĥ , Êj̄ ī], Êk̄l] − [[Ĥ , Êk̄l], Êj̄ ī]

− [[Ĥ , Êj̄ ī], Êl̄k] − [[Ĥ , Êl̄k], Êj̄ ī] |0〉 , (37b)
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H
(1,4)
ij,kl = 1

2

∂2

∂aij ∂a∗̄
kl

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| − [[Ĥ , Êij ], Êkl̄] − [[Ĥ , Êkl̄], Êij ]

− [[Ĥ , Êij ], Êlk̄] − [[Ĥ , Êlk̄], Êij ]

+ [[Ĥ , Êj̄ ī], Êkl̄] + [[Ĥ , Êkl̄], Êj̄ ī]

+ [[Ĥ , Êj̄ ī], Êlk̄] + [[Ĥ , Êlk̄], Êj̄ ī] |0〉 , (37c)

H
(2,1)
ij,kl = 1

2

∂2

∂a∗
ij ∂akl

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| − [[Ĥ , Êji], Êkl] − [[Ĥ , Êkl], Êji]

+ [[Ĥ , Êji], Êl̄k̄] + [[Ĥ , Êl̄k̄], Êji]

+ [[Ĥ , Êīj̄ ], Êkl] + [[Ĥ , Êkl], Êīj̄ ]

− [[Ĥ , Êīj̄ ], Êl̄k̄] − [[Ĥ , Êl̄k̄], Êīj̄ ] |0〉 , (37d)

H
(2,2)
ij,kl = 1

2

∂2

∂a∗
ij ∂a∗

kl

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| [[Ĥ , Êji], Êlk] + [[Ĥ , Êlk], Êji]

− [[Ĥ , Êji], Êk̄l̄] − [[Ĥ , Êk̄l̄], Êji]

− [[Ĥ , Êīj̄ ], Êlk] − [[Ĥ , Êlk], Êīj̄ ]

+ [[Ĥ , Êīj̄ ], Êk̄l̄] + [[Ĥ , Êk̄l̄], Êīj̄ ] |0〉 , (37e)

H
(2,3)
ij,kl = 1

2

∂2

∂a∗
ij ∂ak̄l

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| − [[Ĥ , Êji], Êk̄l] − [[Ĥ , Êk̄l], Êji]

− [[Ĥ , Êji], Êl̄k] − [[Ĥ , Êl̄k], Êji]

+ [[Ĥ , Êīj̄ ], Êk̄l] + [[Ĥ , Êk̄l], Êīj̄ ]

+ [[Ĥ , Êīj̄ ], Êl̄k] + [[Ĥ , Êl̄k], Êīj̄ ] |0〉 , (37f)

H
(2,4)
ij,kl = 1

2

∂2

∂a∗
ij ∂a∗̄

kl

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| [[Ĥ , Êji], Êkl̄] + [[Ĥ , Êkl̄], Êji]

+ [[Ĥ , Êji], Êlk̄] + [[Ĥ , Êlk̄], Êji]

− [[Ĥ , Êīj̄ ], Êkl̄] − [[Ĥ , Êkl̄], Êīj̄ ]

− [[Ĥ , Êīj̄ ], Êlk̄] − [[Ĥ , Êlk̄], Êīj̄ ] |0〉 , (37g)

H
(3,1)
ij,kl = 1

2

∂2

∂aīj ∂akl

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| [[Ĥ , Êīj ], Êkl] + [[Ĥ , Êkl], Êīj ]

− [[Ĥ , Êīj ], Êl̄k̄] − [[Ĥ , Êl̄k̄], Êīj ]

+ [[Ĥ , Êj̄ i], Êkl] + [[Ĥ , Êkl], Êj̄ i]

− [[Ĥ , Êj̄ i], Êl̄k̄] − [[Ĥ , Êl̄k̄], Êj̄ i] |0〉 , (37h)

H
(3,2)
ij,kl = 1

2

∂2

∂aīj ∂a∗
kl

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| − [[Ĥ , Êīj ], Êlk] − [[Ĥ , Êlk], Êīj ]

+ [[Ĥ , Êīj ], Êk̄l̄] + [[Ĥ , Êk̄l̄], Êīj ]

− [[Ĥ , Êj̄ i], Êlk] − [[Ĥ , Êlk], Êj̄ i]

+ [[Ĥ , Êj̄ i], Êk̄l̄] + [[Ĥ , Êk̄l̄], Êj̄ i] |0〉 , (37i)

H
(3,3)
ij,kl = 1

2

∂2

∂aīj ∂ak̄l

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| [[Ĥ , Êīj ], Êk̄l] + [[Ĥ , Êk̄l], Êīj ]

+ [[Ĥ , Êīj ], Êl̄k] + [[Ĥ , Êl̄k], Êīj ]

+ [[Ĥ , Êj̄ i], Êk̄l] + [[Ĥ , Êk̄l], Êj̄ i]

+ [[Ĥ , Êj̄ i], Êl̄k] + [[Ĥ , Êl̄k], Êj̄ i] |0〉 , (37j)

H
(3,4)
ij,kl = 1

2

∂2

∂aīj ∂a∗
k̄l

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| − [[Ĥ , Êīj ], Êkl̄] − [[Ĥ , Êkl̄], Êīj ]

− [[Ĥ , Êīj ], Êlk̄] − [[Ĥ , Êlk̄], Êīj ]

− [[Ĥ , Êj̄ i], Êkl̄] − [[Ĥ , Êkl̄], Êj̄ i]

− [[Ĥ , Êj̄ i], Êlk̄] − [[Ĥ , Êlk̄], Êj̄ i] |0〉 , (37k)

H
(4,1)
ij,kl = 1

2

∂2

∂a∗
īj

∂akl

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| − [[Ĥ , Êij̄ ], Êkl] − [[Ĥ , Êkl], Êij̄ ]

+ [[Ĥ , Êij̄ ], Êl̄k̄] + [[Ĥ , Êl̄k̄], Êij̄ ]

− [[Ĥ , Êj ī], Êkl] − [[Ĥ , Êkl], Êj ī]

+ [[Ĥ , Êj ī], Êl̄k̄] + [[Ĥ , Êl̄k̄], Êj ī] |0〉 , (37l)
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H
(4,2)
ij,kl = 1

2

∂2

∂a∗
īj

∂a∗
kl

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| [[Ĥ , Êij̄ ], Êlk] + [[Ĥ , Êlk], Êij̄ ]

− [[Ĥ , Êij̄ ], Êk̄l̄] − [[Ĥ , Êk̄l̄], Êij̄ ]

+ [[Ĥ , Êj ī], Êlk] + [[Ĥ , Êlk], Êj ī]

− [[Ĥ , Êj ī], Êk̄l̄] − [[Ĥ , Êk̄l̄], Êj ī] |0〉 , (37m)

H
(4,3)
ij,kl = 1

2

∂2

∂a∗
īj

∂ak̄l

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| − [[Ĥ , Êij̄ ], Êk̄l] − [[Ĥ , Êk̄l], Êij̄ ]

− [[Ĥ , Êij̄ ], Êl̄k] − [[Ĥ , Êl̄k], Êij̄ ]

− [[Ĥ , Êj ī], Êk̄l] − [[Ĥ , Êk̄l], Êj ī]

− [[Ĥ , Êj ī], Êl̄k] − [[Ĥ , Êl̄k], Êj ī] |0〉 , (37n)

H
(4,4)
ij,kl = 1

2

∂2

∂a∗
īj

∂a∗
k̄l

〈0| [[Ĥ , Â], Â] |0〉

= 1

2
〈0| [[Ĥ , Êij̄ ], Êkl̄] + [[Ĥ , Êkl̄], Êij̄ ]

+ [[Ĥ , Êij̄ ], Êlk̄] + [[Ĥ , Êlk̄], Êij̄ ]

+ [[Ĥ , Êj ī], Êkl̄] + [[Ĥ , Êkl̄], Êj ī]

+ [[Ĥ , Êj ī], Êlk̄] + [[Ĥ , Êlk̄], Êj ī] |0〉 , (37o)

where the superscript denotes the location in Eq. (36).
After some algebra in the second quantization, we obtain
for the symmetric sum of the nested commutators entering
Eqs. (37)–(37o) the following expression:

1

2
〈0| [[Ĥ , Êmn], Êuv] + [[Ĥ , Êuv], Êmn] |0〉

= 1

2
{δnu(Fmv + F ∗

vm) + δmv(Fun + F ∗
nu)}

−hnuDmv−(hmvDnu)∗ +
∑
pq

[gpmqudpnqv+(gpnqvdpmqu)∗]

+
∑
pq

[(gpmvq − gpqvm)dpqun + {(gpnuq − gpqun)dpqvm}∗].

(38)

By interchanging one or more indices with their time-
reversal pair, the expressions for other similar sums in
Eqs. (37)–(37o) can be obtained. Using that Eq. (38) is
symmetric with respect to the interchange of the excitation
operators and the following relation:

〈0|[[Ĥ , Êmn], Êuv] + [[Ĥ , Êuv], Êmn]|0〉
= 〈0|[[Ĥ , Ênm], Êvu] + [Ĥ , Êvu], Ênm]|0〉∗, (39)

the elements of the H matrix are related as follows:

H
(1,1)
ij,kl = H

(1,1)
kl,ij = (

H
(2,2)
ij,kl

)∗
, (40)

H
(1,2)
ij,kl = (

H
(1,2)
kl,ij

)∗ = (
H

(2,1)
ij,kl

)∗
, (40a)

H
(1,3)
ij,kl = H

(3,1)
kl,ij = (

H
(2,4)
ij,kl

)∗ = (
H

(4,2)
kl,ij

)∗
, (40b)

H
(1,4)
ij,kl = (

H
(3,2)
kl,ij

)∗ = (
H

(2,3)
ij,kl

)∗ = H
(4,1)
kl,ij , (40c)

H
(3,3)
ij,kl = H

(3,3)
kl,ij = (

H
(4,4)
ij,kl

)∗
, (40d)

H
(3,4)
ij,kl = (

H
(3,4)
kl,ij

)∗ = (
H

(4,3)
ij,kl

)∗
. (40e)

The first and second rows of Eq. (36) are related by com-
plex conjugation, and likewise for the third and fourth rows.
Additionally, the upper triangular elements of the submatrices
are also related to the lower parts as shown above. Also, the H
matrix is overall symmetric, which is a natural feature of the
Hessian. Therefore, the nonredundant Hessian elements are
the lower triangular elements of the submatrices comprising
the first and third rows of H, and therefore, the computational
effort for H is reduced to 1

4 . Furthermore, Eq. (38) can be sep-
arated into two parts:

1

2
〈0|[[Ĥ , Êmn], Êuv] + [[Ĥ , Êuv], Êmn]|0〉
= Bmn,uv + B∗

nm,vu, (41)

where

Bmn,uv = 1

2
(δnuFmv + δmvFun) − hnuDmv

+
∑
pq

[gpmqudpnqv + (gpmvq − gpqvm)dpqun], (42)

in analogy to defining Eq. (34) for the spinor gradients. Sub-
stituting Eq. (42) into Eqs. (37)–(37o) with the considera-
tion of the relations provided by Eqs. (40)–(40e), the lower-
triangular elements of the nonredundant Hessian submatrices
can be written as

H
(1,1)
ij,kl = Bij,kl + B∗

ji,lk − Bij,l̄k̄ − B∗
ji,k̄l̄

− Bj̄ī,kl

−B∗
ī j̄ ,lk

+ Bj̄ī,l̄k̄ + B∗
ī j̄ ,k̄l̄

, (43)

H
(1,2)
ij,kl = −Bij,lk − B∗

ji,kl + Bij,k̄l̄ + B∗
ji,l̄k̄

+ Bj̄ī,lk

+B∗
ī j̄ ,kl

− Bj̄ī,k̄l̄ − B∗
ī j̄ ,l̄k̄

, (43a)

H
(1,3)
ij,kl = Bij,k̄l + B∗

ji,lk̄
+ Bij,l̄k + B∗

ji,kl̄
− Bj̄ī,k̄l

−B∗
ī j̄ ,lk̄

− Bj̄ī,l̄k − B∗
ī j̄ ,kl̄

, (43b)

H
(1,4)
ij,kl = −Bij,kl̄ − B∗

ji,l̄k
− Bij,lk̄ − B∗

ji,k̄l
+ Bj̄ī,kl̄

+B∗
ī j̄ ,l̄k

+ Bj̄ī,lk̄ + B∗
ī j̄ ,k̄l

, (43c)

H
(3,1)
ij,kl = Bīj,kl + B∗

j ī,lk
− Bīj,l̄k̄ − B∗

j ī,k̄l̄
+ Bj̄i,kl

+B∗
ij̄ ,lk

− Bj̄i,l̄k̄ − B∗
ij̄ ,k̄l̄

, (43d)

H
(3,2)
ij,kl = −Bīj,lk − B∗

j ī,kl
+ Bīj,k̄l̄ + B∗

j ī,l̄k̄
− Bj̄i,lk

−B∗
ij̄ ,kl

+ Bj̄i,k̄l̄ + B∗
ij̄ ,l̄k̄

, (43e)

H
(3,3)
ij,kl = Bīj,k̄l + B∗

j ī,lk̄
+ Bīj,l̄k + B∗

j ī,kl̄
+ Bj̄i,k̄l

+B∗
ij̄ ,lk̄

+ Bj̄i,l̄k + B∗
ij̄ ,kl̄

, (43f)
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H
(3,4)
ij,kl = −Bīj,kl̄ − B∗

j ī,l̄k
− Bīj,lk̄ − B∗

j ī,k̄l
− Bj̄i,kl̄

−B∗
ij̄ ,l̄k

− Bj̄i,lk̄ − B∗
ij̄ ,k̄l

. (43g)

In solving the Newton-Raphson equation, using Eqs. (33)
and (33a), and (40)–(40e) in Eq. (26), then, by rearranging
into real and imaginary parts, Eq. (26) can be rewritten in the
form of a real linear equation:

⎛
⎜⎜⎜⎜⎝

Re[H(1,1) + H(1,2)] −Im[H(1,1) − H(1,2)] Re[H(1,3) + H(1,4)] −Im[H(1,3) − H(1,4)]

Im[H(1,1) + H(1,2)] Re[H(1,1) − H(1,2)] Im[H(1,3) + H(1,4)] Re[H(1,3) − H(1,4)]

Re[H(3,1) + H(3,2)] −Im[H(3,1) − H(3,2)] Re[H(3,3) + H(3,4)] −Im[H(3,3) − H(3,4)]

Im[H(3,1) + H(3,2)] Re[H(3,1) − H(3,2)] Im[H(3,3) + H(3,4)] Re[H(3,3) − H(3,4)]

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

Re[a(1)]

Im[a(1)]

Re[a(3)]

Im[a(3)]

⎞
⎟⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝

Re[g(1)]

Im[g(1)]

Re[g(3)]

Im[g(3)]

⎞
⎟⎟⎟⎟⎠ , (44)

where a(1) and a(3) are the vector forms of the lower triangular
elements of the matrices A++ and A−+ in Eq. (24), respec-
tively. Therefore, in the actual implementation, it is the ma-
trix part of above equation that is required, instead of the full
Hessian matrix H, and its element can be easily obtained by
the combinations provided by Eqs. (43)–(43g).

F. Configuration optimization

In the two-step procedure, the configurations of frozen
spinors are optimized by the full-CI procedure within the KR-
CASSCF active space, i.e., by the KRCASCI, which solves
the CI eigenvalue equation based on the orthonormal two-
component spinors,

HC = CE, (45)

where H is the CI matrix, C is the CI coefficients matrix
and E is the diagonal matrix constituting the CI energies.
Although the determinants, which form the bases of the KRCI
wavefunction, are generated via the unrestricted excitations
between barred and unbarred spinors, the Kramers restricted
formalism is retained by the use of one- and two-electron
integrals over the two-component Kramers pairs given in
Eqs. (19) and (20) in the construction of CI matrix. The ma-
trix elements Hmn = 〈m| Ĥ |n〉 are evaluated using Slater’s
rules,36 in which the nonzero matrix elements occur between
the determinants that differ by at most two spinors.

Since the calculations of the lowest few CI states relevant
to KRCASSCF calculations are necessary or the dimension
of CI matrix can be too large, a direct CI algorithm based on
Davidson diagonalization37 that has been modified for Hermi-
tian matrix is employed. With the optimized CI coefficients,
the reduced density matrix elements, Eqs. (30) and (31), are
computed for usage in the stage of spinor rotation:

Dpq =
∑
mn

C∗
mCn 〈m| â†

pâq |n〉, (46)

dpqrs =
∑
mn

C∗
mCn 〈m| a†

pa†
r asaq |n〉. (47)

Note that the expectation values of the number conserving
operators in above equations can have three possible val-
ues: −1, 0, or 1. Usually the active space is small enough
that the reduced density matrices can be stored in the core
memory.

III. IMPLEMENTATION

The KRCASSCF approach described in Sec. II is im-
plemented into KPACK,38 the relativistic two-component
ab initio electronic structure program package developed by
the authors. The routines for the spinor rotation are written
entirely in the standard-compliant Fortran 95/2003 language
as the rest of package. Also, an extension to the existing KRCI
routines is made in order to enable the computation of the re-
duced density matrices. The present implementation does not
yet support the use of (double) point group symmetry.

A. Algorithm

We employ the two-step procedure in convergence of
KRCASSCF wavefunction, in which the stationary point in
both the configuration and the spinor spaces is reached by an
iterative loop of a sequential execution of the configuration
and the spinor optimizations. The sequence of the current im-
plementation of KRCASSCF can be summarized as follows:

(i) Define molecule. Choose basis sets. Specify KR-
CASSCF inactive, active and external spaces. Start the
calculation. Find the initial spinor guess by solving the
two-component Fock equation, Eq. (8), i.e., KRHF.

(ii) Transform the atomic orbital integrals to a molecular
spinor basis with the current spinor set, i.e., calculate
Eqs. (19) and (20). Perform KRCASCI [Eq. (45)] to ob-
tain the configuration coefficients. Calculate the first-and
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second-order reduced density matrices, Eqs. (46) and
(47).

(iii) Generate 4 types of F matrix, Eq. (34). Use these to eval-
uate the gradients using Eqs. (35) and (35a).

(iv) Check the convergence for gradient and energy. If con-
verged, stop the iterations and exit.

(v) Generate 64 types of B, Eq. (42), for the given Hessian
indices to avoid storing massive B matrices. Use these
to evaluate the Hessian matrix element using Eqs. (43)–
(43g). Repeat for all indices.

(vi) Solve the second-order Newton-Raphson equation,
Eq. (44), and obtain the spinor rotation parameters. Com-
pute the matrix exponential of rotation matrix, exp(A).
Update the spinor set by Eq. (21). Return to step (ii).

B. Comparison with previous implementation

Table I shows the practical speedups compared to the pre-
vious implementation for a construction of the spinor Hes-
sian matrix, which predominates the computation time, with
respect to the size of active space for the state-specific KR-
CASSCF calculation performed for the ground state of the Pb
atom. Note that, by simply counting the number of Hessian
elements to be evaluated, a nominal speedup by a factor of
2 can be expected by the inclusion of time-reversal symme-
try. However, even for the minimal active space (6s6p) cal-
culation, the measured speedup is 2.4 times, exceeding the
prediction and reaches 4.1 times for the larger active space
of 17 Kramers pairs (up to 8p). This extra speedup of the
present code may be attributed to that the F matrix given by
Eq. (34) has replaced some parts in the calculation of Hes-
sian elements in Eqs. (42)–(43g), leading to a reduction of the
computational effort, and renders the present method superior
for the larger active space calculations. Lastly, the present for-
mulation facilitates the implementation effort substantially as
writing routines for the intermediates, Eqs. (34) and (42), will
suffice for the computation of energy derivatives in the spinor
space.

While the application of the previous implementation
was restricted to the state-specific KRCASSCF calculations
for the atoms and molecules with nondegenerate ground state,
the present implementation has extend the capability to the

TABLE I. Wall times (in seconds) for the calculation of Hessian matrix in
a single spinor optimization step of KRCASSCF for the Pb atoma with 4
active electrons. Both the previous and present codes were compiled using
PGI compilers (release 13.3) with the default optimization level. A 3.3GHz
single core of the i7-3960X CPU was used.

(#Electrons, Previous This
Active space #Kramers pairs) codeb work Speedup

6s6p (4,4) 2.8 1.2 2.4 times
6s6p7s (4,5) 6.5 2.4 2.7 times
6s6p7s7p (4,8) 36.9 11.8 3.1 times
6s6p6d7s7p (4,13) 193.7 51.7 3.7 times
6s6p6d7s7p8s (4,14) 239.4 63.3 3.8 times
6s6p6d7s7p8s8p (4,17) 411.1 101.4 4.1 times

aSOREP(ECP78MDF) and the uncontracted [6s6p2d] basis set were used, Ref. 40.
bFrom Ref. 14.

calculation of excited states and open-shell systems, and
the state-average scheme for degenerate states can also be
employed.

IV. APPLICATION

Atomic calculations are carried out for the lower p-
block atoms, 5p through 7p-block, for which the scheme of
spin-orbit coupling ranges from intermediate- to jj-coupling,
to verify the correctness of implementation and assess the
accuracy.

A. Computational details

All two-component KRHF and KRCASSCF calculations
are performed using the KPACK package,38 and the MOLPRO

package39 is used for the spin-orbit complete active space
state interaction (CASSI-SO) calculation, in which the spin-
orbit coupling is included using the CASSCF state interac-
tion. Both methods use the active space of outermost valence
shells: 5s5p for In through Xe, 6s6p for Tl through Rn, and
7s7p for E113 through E118. Apart from the use of RECP, no
frozen core or deleted virtual approximation is employed; all
orbitals (or spinors) below and above the active space are in-
cluded in the inactive and the external space, respectively. All
calculations are carried out in C1 symmetry.

The atomic ground and excited states arising from the
valence pn configuration are considered in this work, and
the resulting levels by the LS- and jj-coupling schemes are
summarized in Table II. The CASSI-SO approach is avail-
able through the state-average scheme because more than
one LS term can contribute to the (spin-orbit-)J-levels. Us-
ing AREP only, first the CASSCF energy for average of all
LS terms of various multiplicity belonging to the pn config-
urations is optimized, and then, with these reference spin-
free CASSCF wavefunctions, the J-levels are calculated by
a diagonalization of the matrix over the spin-free states with
the SOREP spin-orbit operator. The state-average scheme is
also applied to the KRCASSCF calculations, even though the
state-specific scheme is also possible in this case, to bring the
two methods close for comparison. Here, the spin-orbit lev-
els are already determined by the implicit jj-coupling, so the
KRCASSCF directly optimizes the energy average of the J-
levels of interest. Hence, KRCASSCF is a true MCSCF pro-
cedure, while CASSI-SO merely seeks the spin-orbit coupling
between the scalar relativistic CASSCF states. We note that,

TABLE II. Spin-orbit levels arising from the pn configurations.

Configurations LS-coupling jj-coupling

p1, p5 2P1/2,3/2 (1/2)1/2

(3/2)3/2

p2, p4 3P0,1,2 (1/2,1/2)0
1D2 (1/2,3/2)1,2
1S0 (3/2,3/2)0,2

p3 4S3/2 (1/2,1/2,3/2)3/2
2D3/2,5/2 (1/2,3/2,3/2)1/2,3/2,5/2
2P1/2,3/2 (3/2,3/2,3/2)3/2
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TABLE III. Excitation energies (in eV) arising from the pn configurations for the 5p, 6p, and 7p atoms.

5p 6p 7p

Initial Final CASSI-SO KRCASSCF Expt.a CASSI-SO KRCASSCF Expt.a CASSI-SO KRCASSCF MRCIb FSCCc FSCCd

In, Tl, and E113

(1/2)1/2 (3/2)3/2 0.274 0.230 0.274 0.929 0.823 0.966 2.397 2.884 2.965 2.793 2.878
Sn, Pb, and Fl
(1/2,1/2)0 (1/2,3/2)1 0.190 0.181 0.210 0.836 0.849 0.969 2.861 3.221 3.383 3.266 2.687

(1/2,3/2)2 0.408 0.398 0.425 1.282 1.310 1.320 3.411 3.682 3.703 3.593 3.045
(3/2,3/2)2 1.323 1.314 1.068 2.552 2.625 2.660 6.642 7.830 7.557
(3/2,3/2)0 2.213 2.204 2.128 3.602 3.677 3.653 7.804 8.840 8.408

Sb, Bi, and E115

(1/2,1/2,3/2)3/2 (1/2,3/2,3/2)3/2 1.512 1.504 1.055 1.533 1.558 1.416 3.750 4.544 4.616
(1/2,3/2,3/2)5/2 1.683 1.685 1.222 2.120 2.177 1.914 4.546 5.187 5.101
(1/2,3/2,3/2)1/2 2.343 2.345 2.033 2.875 2.929 2.686 5.426 5.999
(3/2,3/2,3/2)3/2 2.558 2.567 2.289 3.995 4.209 4.112 9.228 11.231

Te, Po, and E116

(3/2,3/2)2 (3/2,3/2)0 0.565 0.578 0.583 0.988 1.012 0.932 1.219 1.139 0.915 0.838
(1/2,3/2)1 0.540 0.558 0.589 1.829 2.025 2.087 5.236 6.570 6.441
(1/2,3/2)2 1.558 1.574 1.309 2.688 2.864 2.688 5.999 7.158
(1/2,1/2)0 2.796 2.827 2.876 5.016 5.438 5.296 11.727 14.804

I, At, and E117
(3/2)3/2 (1/2)1/2 0.901 0.939 0.943 2.593 2.886 2.800e 6.816 8.523 8.213

MAEf 0.165 0.163 0.122 0.116 0.714g 0.135g

MDh 0.015 0.125 1.051

aExperiments, Ref. 46.
bAll-electron four-component MRCISD with Dirac-Coulomb Hamiltonian, Refs. 47 and 48.
cAll-electron four-component Fock-space coupled cluster, Refs. 49 and 50.
dSOREP based two-component Fock-space coupled cluster, Ref. 42.
eAll-electron two-component DFT(B3LYP) with the sixth-order Douglas-Kroll Hamiltonian, Ref. 54.
fMean absolute error, relative to experiments.
gCalculated relative to MRCI results.
hMean difference between CASSI-SO and KRCASSCF.

as far as the same basis is used, both methods will converge
to the same energy at the full-CI limit, which is, however, not
feasible in practice.

The small-core energy-adjusted SOREPs of Stuttgart/
Cologne group are employed for the atoms: ECP28MDF40

for the 5p, ECP60MDF41 for the 6p, and ECP92MDFB42, 43

for the 7p-block. The ECP92MDFB also includes the low-
frequency Breit contribution. The basis sets of polarized va-
lence double-zeta quality are used. An improvement by using
larger bases is little when the active space only includes
the outermost shell, since the optimization of the inac-
tive and external spaces will not directly contribute to the
CASSCF energy. The uncontracted [8s8p6d] basis sets44, 45

are used with ECP28MDF and ECP60MDF to provide
a sufficient flexibility for the two-component calculations
because the contraction is based on one-component cal-
culations. With ECP92MDFB, the accompanying con-
tracted basis sets are used, [12s11p9d1f]/(4s3p2d1f) for the
CASSI-SO and [12s11p9d1f]/(4s5p3d1f) for the KRCASSCF
calculations; for these basis sets, the primitives and contrac-
tions were optimized separately for one- and two-component
calculations.

B. Excitation energy

Spin-orbit coupling, in particular, plays an important role
in the excited state energy levels, since the stabilization or
destabilization of spinors will directly affect the excitation
energy, and therefore, for accurate results, both ground and
excited states should be treated equally in terms of spin-
orbit coupling and electron correlation, preferably by multi-
configurational or multi-reference level of theory. In Table III,
the KRCASSCF excitation energies for the 5p, 6p, and 7p
atoms are listed, and the energies by CASSI-SO method
are also presented for comparison purposes. The jj-coupling
scheme is more pertinent to the electronic structure of heavy
atoms and hence, will be used to denote the states throughout
this section.

For excitation energies of the 5p atoms, on average, the
errors in both methods, relative to the experiment,46 is about
0.16 eV, while the difference between the two methods is only
0.02 eV. The small difference implies that the two methods,
which differ in the stage of the spin-orbit treatment, show near
convergence, at least, in energy. The mechanism of CASSI-
SO closely resembles the LS-coupling scheme (and also the
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intermediate-coupling if a sufficient number of states are in-
troduced to interact), a good performance is thus expected for
such coupling cases as in the 5p atoms, for which one might
deem the KRCASSCF unfit due to the inherent jj-coupling
within one-electron functions. However, the near convergence
between the two methods suggests that the KRCASSCF has
retrieved the weak spin-orbit coupling via the spinor opti-
mization, which leads to a significant mixing of the jj-coupled
functions as observed in the spinor occupations (see Sec. IV
D). Similar characteristic has been previously reported by
the KRCASSCF calculation of the ground state of group-14
elements.38 The nature of errors, in the case of 5p, is similar
for both methods, and stems mostly from the lack of dynam-
ical correlation as the correlated space being the outermost
valence shell, scarcely enough for the important static corre-
lation.

Although the 6p elements are known to be close to the
jj-coupling scheme, the quality of KRCASSCF appears to be
quite similar to the CASSI-SO, as indicated by both errors
being about 0.12 eV, but there is a significant increase in the
value of mean difference from the 5p, which now reaches
0.13 eV, implying some departure in the energy convergence
between the two methods. Here, the CASSI-SO suffers from
the additional source of error caused by the inadequacy of
scalar relativistic orbitals, and the similar magnitudes of er-
rors shown for the 6p atoms indicate that the two types of
errors, one from spin-orbit and the other from dynamical cor-
relation, are not additive, as least, for the excitation energy. In
other words, there is some sort of error cancelation occurred
to produce the final error of CASSI-SO to be similar to the
error by correlation shown for the KRCASSCF. This suggests
that, for heavy atoms of the 6p, because the spin-orbit cou-
pling and the electron correlation can be strongly intertwined,
an additional computation for the dynamical correlation upon
CASSI-SO may not reduce the spin-orbit errors, which can be
as large, implied by the value of mean difference.

The results of the KRCASSCF calculations on the 7p
atoms are compared with the multi-reference (MR)CI results
of Dyall,47, 48 the Fock-space coupled cluster (FSCC) results
of Eliav and co-workers,49, 50 and the SOREP-FSCC results of
Hangele et al.,42 since no experimental atomic excitation en-
ergy of superheavy elements has been reported to date. Many
of the excitations of 7p atoms calculated in present work have
not yet been calculated before, probably due to the compli-
cated nature of open-shell in the relativistic regime where
multi-configurational approach is essential. Moreover, most
of excitation energies within the pn configuration for the sec-
ond half atoms of 7p-block are not the lowest excitations as
in lighter homologues, since a promotion from the 7p3/2 to
the 8s or 8p1/2 spinor takes less energy than to promote from
the 7p1/2 to the 7p3/2 spinor.47 The KRCASSCF excitation en-
ergies are within about 0.14 eV of the MRCI results, show-
ing a consistent value of error throughout the lower p-block,
and outperforms the CASSI-SO, which not only greatly un-
derestimates the excitations, producing a large error of about
0.7 eV but also fails to address the large spin-orbit coupling
effectively even though all terms responsible for the spin-orbit
coupling within the 7p orbital are brought in for the state in-
teraction. Moreover, it is conspicuous in the results that the

excitations reflect the pure jj-coupling scheme, so the excita-
tion energies belonging to the same jj-configuration are placed
in nearby energy, e.g., for Fl, the (1/2,3/2)1,2 states are within
3.2–3.7 eV, while the (3/2,3/2)2,0 states in 7.8–8.8 eV.

C. Spin-orbit energy

The self-consistent treatment of spin-orbit coupling al-
ways lowers the total energy. In most cases, the energy low-
ering can occur directly by occupying the stabilized spinors,
for instance, the group-13 and group-14 atoms. An indi-
rect energy lowering also takes place since an additional
spin degree of freedom is introduced in the one-electron
functions. The effect of the latter is insignificant for lighter
atoms, but grows dramatically for the heavier ones; it can
be seen from the difference in the total energies of AREP-
HF and KRHF of the inert gases, which amounts 0.056 a.u.
for Xe, 0.354 a.u. for Rn, and becomes nearly 2 a.u. for E118.
The overall spin-orbit energy lowering, whether it is likely
overestimated in the jj-coupling or completely neglected in
the LS-coupling approach in the SCF step, should afford the
total energies in close agreement, if corrected properly in a
posteriori stage.

In this respect, Table IV lists the two types of spin-orbit
energies of the ground states: The �LS defined as ECASSCF

− ECASSI-SO indicates the spin-orbit energy recovered by the
state interaction between the spin-free LS terms, and the �LS

jj

defined as ECASSI-SO − EKRCASSCF determines the convergence
or divergence of the two methods in terms of the total energy.
In the results, the value of �LS alternates across a period and
is largest for the p2 and p4 configurations for all cases, and the
averages are 0.009 a.u. for the 5p, 0.032 a.u. for the 6p, and
0.105 a.u. for the 7p atoms, indicating the obvious increase
in the degree of spin-orbit coupling as descending down a
group. The values of �LS

jj are generally larger than �LS by
an order of magnitude and also increase significantly down
in a group, reaching over 1 a.u. for the 7p atoms. The occur-
rence of such large divergence indicates that the CASSI-SO is,
again, not able to recover the strong spin-orbit coupling effec-
tively, whereas comparably small �LS

jj for the 5p atoms proves
the capability of KRCASSCF to describe the weak spin-
orbit coupling as well. These are in line with the findings in
Sec. IV B.

We also note that the �LS
jj increases almost linearly from

left to right across a period. As atomic number increases in

TABLE IV. Spin-orbit energies (�LS
a and �LS

jj
b in a.u.) of the ground state

for the 5p, 6p, and 7p atoms.

5p 6p 7p

Group �LS �LS
jj �LS �LS

jj �LS �LS
jj

13 0.007 0.021 0.023 0.180 0.059 1.081
14 0.012 0.021 0.046 0.228 0.147 1.209
15 0.002 0.029 0.020 0.257 0.111 1.397
16 0.011 0.033 0.042 0.289 0.124 1.585
17 0.011 0.037 0.032 0.319 0.084 1.772

a�LS = ECASSCF − ECASSI-SO.
b�LS

jj = ECASSI−SO − EKRCASSCF.
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TABLE V. Occupations of the p1/2 and p3/2 valence spinors in the ground
and excited states of the 5p, 6p, and 7p atoms.a

5p 6p 7p

State p1/2 p3/2 p1/2 p3/2 p1/2 p3/2

In, Tl, and E113
(1/2)1/2 1.000 0.057 1.000 0.029 1.000 0.005
(3/2)3/2 0.034 1.028 0.029 1.013 0.025 1.002

Sn, Pb, and Fl
(1/2,1/2)0 1.615 0.409 1.874 0.141 1.985 0.018
(1/2,3/2)1 1.000 1.024 1.000 1.012 1.000 1.002
(1/2,3/2)2 0.539 1.488 0.878 1.135 0.993 1.009
(3/2,3/2)2 0.491 1.537 0.147 1.877 0.029 1.993
(3/2,3/2)0 0.411 1.682 0.149 1.905 0.037 1.990

Sb, Bi, and E115
(1/2,1/2,3/2)3/2 1.216 1.784 1.715 1.289 1.984 1.017
(1/2,3/2,3/2)3/2 1.489 1.517 1.211 1.792 1.007 1.993
(1/2,3/2,3/2)5/2 1.000 2.000 1.000 2.000 1.000 2.000
(1/2,3/2,3/2)1/2 1.000 2.042 1.000 2.021 1.000 2.004
(3/2,3/2,3/2)3/2 0.320 2.720 0.096 2.930 0.029 2.992

Te, Po, and Lv
(3/2,3/2)2 1.856 2.144 1.966 2.034 1.997 2.003
(3/2,3/2)0 1.099 2.902 1.873 2.137 1.992 2.011
(1/2,3/2)1 1.000 3.000 1.000 3.000 1.000 3.000
(1/2,3/2)2 1.144 2.856 1.034 2.966 1.003 2.997
(1/2,1/2)0 0.725 3.330 0.147 3.882 0.027 3.993

I, At, and E117
(3/2)3/2 2.000 3.000 2.000 3.000 2.000 3.000
(1/2)1/2 1.000 4.000 1.000 4.000 1.000 4.000

δjj
b 0.470 0.130 0.013

aOccupation of the s1/2 spinor is greater than 1.9 for all cases, i.e., it is almost closed-
shell, and hence is omitted for clarity.
bMean deviation of occupations of the np1/2,3/2 spinors (n = 5–7) from pure jj-coupling
occupations. Singly occurring J-levels within the pn configurations are not included, see
text for details.

a period, the effect of spin-orbit coupling consequently in-
creases approximately as Z4; however, the introduction of
spin-orbit coupling via the CASSI-SO method appears rather
limited to a certain amount for the given period that such addi-
tional increments in the degree of spin-orbit coupling cannot
be accounted for. This explains the observed trend of some-
what deteriorating accuracy of the CASSI-SO in the excita-
tion energy for the heavier elements in the same period.

D. Occupation number

The occupation numbers, obtained by the diagonal ele-
ments of the first-order reduced density matrix, give an in-
sight into the composition of the respective wavefunction. In
Table V, the occupations of the p1/2 and p3/2 spinors are
given. The deviation from the pure jj-coupling scheme is de-
noted as δjj for the 5p, 6p and 7p atoms and defined as the
average departure of the KRCASSCF occupation from the
corresponding jj-coupled occupation. In the table, the states,
(1/2)1/2, (3/2)3/2 for the p1, p5, (1/2,3/2)1 for the p2, p4, and
(1/2,3/2,3/2)1/2,5/2 for the p3 atoms appear to obey the jj-

coupling scheme very nicely. These J-levels occur uniquely
within the expansion of a given pn configuration, and the
slight mixing is from the s1/2 spinor included in the current
active space. The occupations of these states have been ex-
cluded in the calculation of δjj.

The δjj is shown to decrease rapidly as descending down
a group, reaching almost zero (pure jj-coupling) for the 7p
atoms, whereas a considerable excitation of about half elec-
tron is observed for the 5p atoms in effort to describe the
weak spin-orbit coupling properly from the jj-coupled one-
electron functions. Therefore, the success of the correct cal-
culation of the ground and excited states in KRCASSCF for
various strengths of spin-orbit coupling is mainly due to the
spinor optimization that brings the spinors close to mix.

E. Ionization potential

It is well-known that as the spin-orbit coupling strength-
ens, the p1/2 spinor is stabilized to give a higher ionization po-
tential for the p2 species than the p3, while in the nonrelativis-
tic limit, the ionization potential of the p3 to be higher than
the p4 due to the extra stability induced by unpaired spins,
and this change in the trend is reproduced qualitatively in the
KRCASSCF results. Table VI lists the ionization potentials
of the lower p-block elements calculated by the KRCASSCF
and CASSI-SO methods. Both errors (underestimation) for
the 5p and 6p atoms, relative to the experiments,51 are about
0.9–1.0 eV with a difference between the two methods less
than 0.1 eV. This is an expected convergence as the energy
convergence in the ground state has already been discussed in
Sec. IV C. The KRCASSCF performs slightly better by
smaller error and also predicts the ionization potential of Pb
to be lower than Bi, where the CASSI-SO has failed to cap-
ture. The underestimation in the calculated ionization poten-
tials can be attributed to the lack of dynamical correlations.
Assuming that all the static correlation is treated in the present
calculations, the inclusion of dynamical correlation will lower
the energy of a neutral atom more than a singly positive cation
since the correlation energy of the neutral atom should be
larger due to an additional electron. The ionization potentials
calculated by a composite method using the same SOREP for
the 5p and 6p atoms has been reported to be within 0.16 eV
error of the experiment.52

The ionization potentials for the 7p atoms are com-
pared with the relativistic CISDT results,47 and the FSCC
results.42, 49, 50, 53 As stated above, the present calculations
underestimate the ionization potential by 0.63 eV for the
KRCASSCF, and the large error (1.37 eV) of CASSI-SO
indicates that the spin-orbit relaxation effect is not consis-
tently described here for the different ionic states. For the
KRCASSCF results, there is a gradual increase in the er-
ror across the 7p-block period from 0.46 eV (E113) to
0.76 eV (E118), which implies the increase in dynamical cor-
relation that has not been included in the calculation. Tak-
ing the CISDT results as a reference, the excitations to the
(3/2,3/2)0 state for Fl, the (1/2,3/2,3/2)1/2 and (3/2,3/2,3/2)3/2

states for E115, the (1/2,3/2)2 and (1/2,1/2)0 states for Lv, and
the (1/2)1/2 state for E117 are above the ionization limit.
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TABLE VI. Ionization potentials (in eV) of the 5p, 6p, and 7p atoms.

5p 6p 7p

Group CASSI-SO KRCASSCF Expt.a CASSI-SO KRCASSCF Expt.a CASSI-SO KRCASSCF CISDTb FSCCc FSCCd

13 4.854 4.829 5.786 5.134 5.112 6.108 5.838 6.762 7.220 7.306 7.282
14 6.569 6.587 7.344 6.527 6.639 7.417 7.184 7.869 8.433 8.538 7.276
15 7.918 7.918 8.608 6.535 6.558 7.286 4.235 4.766 5.342 5.583 4.690
16 7.824 7.842 9.010 7.313 7.413 8.414 5.211 5.989 6.629 5.893
17 9.435 9.444 10.451 8.276 8.348 9.350e 5.836 6.625 7.380
18 11.258 11.259 12.130 9.796 9.850 10.749 7.119 7.888 8.648 8.846

MAEf 0.912 0.908 0.957 0.900 1.371g 0.626g

MDh 0.012 0.064 0.746

aExperiments, Ref. 51.
bAll-electron four-component CISDT with Dirac-Coulomb Hamiltonian, Ref. 47.
cAll-electron four-component Fock-space coupled cluster, Refs. 49, 53, and 50.
dSOREP based two-component Fock-space coupled cluster, Ref. 42.
eMulti-configuration Dirac-Fock, Ref. 55.
fMean absolute error, relative to experiments.
gCalculated relative to CISDT results.
hMean difference between CASSI-SO and KRCASSCF.

V. CONCLUSION

The KRCASSCF method in the framework of two-
component SOREP is presented and the underlying theory
has been revised in terms of completeness with a full con-
sideration of time-reversal symmetry. By the construction of
spinor rotation operator with the elementary excitation opera-
tor, the expressions of the gradient and Hessian were derived
in simpler forms, which can be efficiently calculated through
suitable decomposition methods. Although the second-order
Newton-Raphson method employed for the optimization of
spinors only provides quadratic convergence in the spinor
space, in our experience with the implementation, the over-
all convergence was almost quadratic, as far as the initial
guess wavefunction is provided near the stationary point in
the energy hypersurface. The application showed that the KR-
CASSCF is a versatile tool for both closed- and open-shell
systems and is able to provide consistent results for both ex-
tremes of the LS and jj-coupling schemes of spin-orbit cou-
pling through the intermediate-coupling region.

In our formulation, we presume that the SOREP is in
use; however, the present scheme is applicable to any two-
component spinors. Although highly symmetric atoms were
considered in this paper for demonstration purposes, at the
current stage of development the implementation largely fo-
cuses on the efficient calculations for systems with low
symmetry requiring the variational treatment of spin-orbit
coupling. Efforts are also being made to add the dynami-
cal correlation upon KRCASSCF reference state through the
multi-reference configuration interaction or the second-order
perturbation theory. Such approaches are expected to create a
significant synergy effect in obtaining highly accurate results.
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