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Abstract— The wafer handling robot actions in cluster tools 

used for semiconductor manufacturing should serve to 

maximize throughput while maintaining good wafer quality. 

Since excessive delay in a process chamber may cause 

deterioration in wafer quality, wafer delays should be 

maintained in an acceptable range, or preferably, should be 

minimized. We focus on addressing these concerns for all 

wafers in a lot, including those in both the transient and 

possibly cyclic regime. As the general problem is 

computationally complex, we first assume that the robot 

sequence is given and develop a multistage linear programming 

(LP) model to minimize the total makespan, subject to wafer 

residency constraints, and subsequently the average delay.  

Forging into less tractable territory, we next develop a branch 

and bound algorithm to find an optimal robot sequence with 

minimum wafer delay. This approach enables us to solve 

problems that were not previously solvable. Simulation studies 

demonstrate that when the number of process modules grows to 

more than five, the branch and bound algorithm may fail to 

find an optimal solution due to computational complexity. In 

this case, we suggest a transient sequence based on cyclic 
policies together with the LP model; it is within 2% of optimal.  

 

Keywords— cluster tool, transient state, wafer delay constraint, 

linear programming, branch and bound  

I. INTRODUCTION 

In 2011, the world semiconductor market revenue was 
US$307 billion according to Garner, Inc., and is expected to 

grow to US$344 billion by 2014 according to the 

International Data Corporation. To increase the productivity 

of semiconductor wafer fabrication, cluster tools are widely 

used. A cluster tool consists of processing modules (PM) and 

wafer handling robot(s) housed in a single chassis. We will 

consider cluster tools with single armed robots that perform 

three tasks: pick-up (or unload) a wafer from a processing 

module, move from one processing module to another, and 

place (or load) a wafer into a processing module. In addition 

to the processing modules and wafer handling robot, there 
are also input and output load locks that store wafers without 

processing them. There may be a wafer aligner, cooler and 

buffer.  

We consider the case where the tool, starting from empty, 

processes a fixed number of wafers and then empties. There 

is a single wafer handling robot and wafers must receive 

service from a fixed number of process modules in order 

(serial processing). When wafers initially enter, there is a  

 

start-up period. During this period, wafer exit times may not 

exhibit periodic behaviour, i.e., wafers come out of the 

system at irregular times; we call this the initial transient 

period. After processing several wafers, the system may 

enter a periodic regime referred to as steady state. Once the 

final wafers in a lot enter the tool, another aperiodic regime 
begins. This final transient period ends when the last wafer 

exits the tool. The time difference between the entry of the 

first wafer and the exit of the last wafer is called the 

makespan. The makespan is the inverse of the throughput. It 

is our primary goal to maximize the throughput. Readers 

may refer to [1]-[4] for studies on steady state behaviour and 

[5-8] for studies on transient analysis. 

Minimizing wafer delay is the secondary goal of this 

paper. Wafer delay occurs when a wafer has finished 

processing but the robot is not available to pick it up. It is 

thus the difference between the epochs of unloading a wafer 

from a processing module and the end of the process 
provided by that processing module. Especially for chemical 

processes, if a wafer stays too long in a processing module, 

then residual gas and heat may cause the wafer quality to 

deteriorate. To combat this phenomenon, constraints on the 

wafer delays – referred to as time windows – are common. 

The sequential optimization of throughput followed by wafer 

residency time seems to have first been proposed in [9-10] in 

the context of flow line models of manufacturing. The 

concept is helpful in our context as well.  

Focusing on steady state analysis with wafer delay 

constraints, Kim, et al. [11] proposed a method to find the 
feasible range of process times in dual armed cluster tools 

with wafer delay constraints. Kim [12] extended this work to 

allow disruptive events in single-armed cluster tools, and 

developed stabilizing strategies for an efficient return to 

steady state. Wu, et al. [13] proposed an analytical method to 

check the schedulability of single armed cluster tools with 

wafer residency time constraints and developed an algorithm 

to find the optimal cyclic sequence when it is schedulable. 

This was extended to allow changing activity times ([14]).  

Focusing on transient analysis with wafer delay 

constraints, Kim, et al. [15] discussed how the latest starting 

policy minimizes the start-up period and earliest starting 
policy minimizes the close-down period while meeting the 

wafer delay constraints. However, without restricting 

attention to the backward sequence or assuming the tool is in 

steady state, there is no systematic approach to decide both 
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when and how (in what sequence) to schedule the robot for 

the entire makespan with wafer delay constraints. We take 

steps to address this problem. 

This paper is organized as follows. In Section 2, we 

propose a multistage linear programming model to answer 

the question of when to start each robot activity assuming a 
given sequence of activities. It employs an approach ([16]) 

enabling the modelling of a discrete-event system as an LP. 

In Section 3, we develop a branch and bound algorithm that 

uses an upper bound, lower bound, and feasibility check to 

address the larger question of what robot action sequence to 

use (we also obtain action times). In Section 4, we conduct 

numerical experiments to evaluate the performance of our 

branch and bound algorithm. Concluding remarks and future 

work are mentioned in Section 5.  

II. LINEAR PROGRAMMING MODEL 

A. Notation 

Let m+1 be the total number of processing modules (PM), 
including the input and output load locks. The processing 

module index is in the set {0, 1, …, m}; 0 represents the 

input load lock and m represents the output load lock.  Let n 

be the total number of wafers to be processed; the wafer 

index is in the set {1, …, n}. Wafers must receive service 

from each processing module in order. There is a single 

wafer handling robot. In this section, we will assume a given 

robot action sequence; it should be feasible (but our linear 

programming model will determine if it is not). 

1) s =(  ,  ,…,  ,…,   ) denotes a given robot action 

sequence, where     {0,1,…,m-1} is the index of the 

processing module from which the     action starts. For 

example,    = 2 means that the     robot action in the 

sequence is to unload a wafer from the     processing 

module, move it to the     PM, and then load the wafer into 

the     processing module.  

2) w =(  ,  ,…,  ,…,   ) denotes the set of wafer 

indices associated with each of the robot actions, where     

{1,…,n} is the index of the wafer associated with the     

robot action. For example,    =5 means that the      robot 

action is handling the     wafer.  

For a given robot action sequence, the following pseudo-
code determines the wafer index associated with each action. 

 

Pseudo code 1: 
Let wafer_index=1 
(1) Initialize    for i (1,2,…,mn) as 0. 

(2) Update the value of each    as follows. 

For (j=1;j<=mn;j++){ 

 If   =0 then{//start of the first “if”  

    =wafer_index 

  Set latest_index = j 
  For (k=j+1;k<=mn;k++){ 

   If   =0 and   =              +1 then 

    {//start of the second “if” 
      =wafer_index 

    Update latest_index = k 
    }//end of the second “if” 
   } 

Update wafer_index = wafer_index+1 
}//end of the first “if” 

 } 

For example, consider the case with two processing 

modules, an input load lock, an output load lock (m=3) and 

n=2 wafers. When the robot action sequence is s=(0, 1, 0, 2, 

1, 2), we obtain w=(1, 1, 2, 1, 2, 2). That is, the 1st, 2nd and 

4th robot actions move the first wafer, while the 3rd, 5th and 

6th robot actions move the second wafer.  

3) Table I provides the definition of other variables and 

constants. 

TABLE I 

TERMINOLOGY 

Term Type Definition 
    variable Unloading epoch of wafer i from PM j 

    variable Start time of processing wafer i in PM j 

    variable Finish time of processing wafer i in PM j 

   variable Robot available time for the     time 

    constant Maximum allowed wafer delay in PM j 

            
     

 constant If           and k<mn, then the 

value is 1; otherwise, it is 0. 

   constant Process time of a wafer in PM j 

δ constant Robot moving time 

ε constant Robot pick / place time 

 

B. Constraint 

Chan, et al. [16] proposed a method to model the 

dynamics of discrete-event stochastic systems as 

optimization problems. They presented a procedure that 

maps a simulation event relationship graph into a mixed-
integer program. Our linear programming model is a special 

case of this approach, where the following constraints define 

and enforce the desired system behaviour. 

1) Initial condition constraints 

(1)        =0, for ∀    

(2)    =∞ 

(3)   =0 

(4)    =0 

2) Primary constraints  

For each k ∈ {1,…,mn}: 

(5)        
≥                                                                    

(6)        
 ≥       

                                                                   

(7)        
 -       

 ≤      
                                                             

(8)     ≥       
 + 2 ε + δ + δ∙                                                             

(9)            =   - δ∙                                                                                                                             

(10)            =          +                                                              

Constraint (5) ensures that the robot unloads a wafer only 
when the robot is available. Constraint (6) requires the robot 

to wait until a wafer has finished processing before it unloads 

it. Constraint (7) enforces the wafer delay constraints. 

Constraint (8) calculates the robot available time for the next 

action. It is not equality because we may want to delay the 

loading to meet the wafer delay constraint. Constraint (9) 

allows a wafer to start processing once it is loaded into a 

processing module. Constraint (10) sets the finish time of 

processing to the start time plus processing time. 
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C. Objective Function 

Our multistage LP model is constructed as follows.  

(1) Minimize makespan:  

min       

      s.t.  constraints (1)~(10) 

We call this linear programming model as   , and denote 

its optimal value as     . The resulting total wafer delay we 

denote as     
. If feasible, this linear programming model 

provides the minimal makespan possible while meeting the 

time window constraints.  
We subsequently seek to minimize wafer delays with the 

following linear programming model that we call   . 

(2) Minimize total wafer delays: 

min              
   
   

 
       

s.t.  constraints (1)~(10) 

                   =     

Let     denote the optimal value of   . This linear 

programming model minimizes the total wafer delay while 

subject to reaching the minimum makespan and meeting the 

wafer delay constraints. Since there are two objective 
functions and they are solved one by one, we call this a 

multistage linear programming model.  

 The multistage LP model gives higher priority to the 

makespan objective than to the total delay objective, with the 

assumption that the throughput maximization is more 

important as long as the wafer delay constraints are not 

violated. However, one may modify    and     to balance the 

trade-off between    and    . For example, importance 

factors, denoted as    and   , may be given to    and    . 

Then minimizing        +                
   
   

 
     would 

become the objective function, while the constraints (1)~(10) 
are kept the same. 

Readers may refer to [9] and [10] for the use of sequential 

optimizations via linear programming in flow lines. In [9], 

Park, et al. proposed an optimization algorithm for flow lines 

to reduce wafer residency times and maximize throughput. In 

[10], Park, et al. developed a linear program to determine 

when to admit the preordered jobs into flexible flow lines, 

which resulted in  significant reductions in wafer residency 

time, in-tool buffer occupation and hot lot queueing time.  

 

D. LP Performance Evaluation 
We consider some examples using ILOG CPLEX 12.4 

with JAVA on a PC with Intel dual core CPU, 2.4GHz and 

3GB RAM. Table II provides the results with the backward 

sequence. For odd PM indices such as the first and third PM, 

the process time is set as 100 s; for even PM indices such as 

the second and fourth PM, the process time is set as 150 s. 

Furthermore,     = 10 s for all j, and δ = ε =1s. We define m’ 

to be the number of processing modules excluding input and 

output load lock; thus, m’=m-1. Average data, such as 

optimal delay per wafer (   /n), is rounded to two decimal 

points. Let    be the computation time. As it is shown in 

Table II, the LP model is reasonably tractable.  

 

 

TABLE II 

LP PERFORMANCE WITH THE BACKWARD SEQUENCE 

 

m' n    
/n     

/n    
/n    

2 25 161.08s 9.60s 0s <1s 

2 1000 157.10s 8.97s 0s 3s 

2 5000 157.02s 8.98s 0s 13s 

3 25 165.20s 11.60s 0s <1s 

3 1000 157.21s 14.91s 0s 3s 

3 5000 157.04s 14.49s 0s 18s 

4 25 171.32s 7.20s 0s <1s 

4 1000 157.36s 9.99s 0s 5s 

4 5000 157.07s 0s 0s 138s 

5 25 175.44s 17.04s 14.28s <1s 

5 1000 157.46s 16.96s 16.93s 7s 

5 5000 157.09s 16.99s 16.99s 189s 

6 25 182.00s 20.40s 18.36s <1s 

6 1000 157.63s 20.98s 20.93s 11s 

6 5000 157.13s 20.99s 20.99s 308s 

 

From the data for the example given in Table II, we can 

see that     
/n becomes positive when m' is increased to 5. 

This is reasonable because as the number of PMs increase, 
there tend to be more wafers in the system. The robot is 

busier and sometimes unavailable to handle the wafers 

immediately as they are available. 

Note that there are two cases in which the LP model fails 

to provide a solution. The first case is when the given robot 

action sequence is itself infeasible. This case violates our 

assumption of starting with a viable sequence and can be 

fixed by providing a feasible one (which could be obtained 

using those inspired by steady state policies as in Section 

III.A below). The second case is when the time windows 

cannot be satisfied with the given feasible sequence. We next 
develop a branch and bound algorithm to identify an optimal 

sequence; the approach is less computationally tractable but 

guarantees an optimal solution if one exists.    

III. BRANCH AND BOUND ALGORITHM 

We next endeavour to develop a branch and bound 

algorithm to identify an optimal robot action sequence as 

well as to determine the actions times. We pursue two goals 

sequentially as before.  

In order to increase the computational efficiency, we use 

three mechanisms: upper bound, lower bound, and feasibility 

check in our branch and bound algorithm. First, we find an 

upper bound on the optimal makespan value by choosing the 
best transient robot sequence inspired by the steady state 

sequences. Second, we apply a dynamic programming 

algorithm to find a lower bound on the makespan. If the 

lower bound exceeds the upper bound, we stop searching and 

move to another branch. Finally, we apply the linear 

programming model    to check the feasibility of the 

survived branches. 

 

A. Upper Bound 

We develop an algorithm to find an upper bound on the 
optimal makespan with wafer delay constraints. We do this 

858



by considering robot action sequences inspired by the one-

unit cycle sequences.  

For a given one-unit cycle sequence, we generate an entire 

sequence that includes all actions from the start of the first 

wafer to the end of the last one.  For a given m, there are (m-

1)! different one-unit cycle sequences, so the computation 
required is limited.  

The entire sequence is generated as follows. Let      = 

(  
   , …,  

   ,…,  
   ) denote the one-unit cycle sequence, 

where   
     {0, 1, …, m-1}. Since it is a one-unit cycle 

sequence, each value in {0, 1, ..., m-1} occurs exactly once. 

Let s be the corresponding full sequence including all robot 

actions from start to finish of the work (which is initially 

empty when we start our algorithm to construct it).  

TABLE III 

 TERMINOLOGY FOR PSEUDO CODE 2 

Term Type Definition 

   constant Robot position after     robot action in   

j constant Index of the full sequence s 

max constant Maximum index of the feasible action  

    constant Number of wafers processed by PM i 

 

Pseudo code 2: 
1) Initialization 
max = 0 
   = 0 

j= 1 

   =0 for i∈(0,1,…,m-1) 

2) Determine the value of each    for each k∈(1,2,…,mn) as 

follows. 
(2-1) Start-up and steady-state period 
While    <n, do the following. 

For (i = 1; i <=m; i++) { 

  If (  
    <=     ) or (  

   >      and    
    <= max), then 

     {//start of first “if” 

  Set     =   
    

Update    =   
    + 1 

  Update     
    =     

    + 1    

  If max <   , then {//start of second “if” 

                  Set max =    

   }//end of second “if” 
  Update j = j+1 

  }//end of first “if” 
} 
(2-2) Close-down period 
While      < n, do the following. 

For (i = 1; i <=m; i++) { 
If     

    <n, then{//start of first “if” 

Set    =   
    

Update j= j+1 
Update     

    =    
   +1 

}//end of first “if” 

 } 

    Pseudo code 2 generates a full robot sequence from a 

steady state sequence. By checking the number of wafers 

processed by each PM, we ensure that every PM has 

processed exactly n wafers. The generated sequence is 

deadlock free because it satisfies the feasibility condition 

mentioned in [2]. In the start-up period, the term “max” plays 

the role of maximum index for a feasible robot action, and 

“  
    <= max” avoids robot unloading an unoccupied PM. 

Additionally, we avoid loading an occupied PM by walking 

through the      one by one and adding appropriate     . In 

the steady state, the algorithm iterates      so that no 

deadlock will occur. In the close-down period, “     < n” 

ensures that the robot does not unload an unoccupied PM. 

Similarly in the start-up period, we avoid loading an 

occupied PM by adding each       according to the sequence 

of    
   . As such, the feasibility (deadlock free) condition is 

met for the sequences generated by Pseudo code 2.  

We apply the linear programming model developed in 

Section II to all the sequences generated from the one-unit 

cycle sequences. Each is thus checked for feasibility with 

respect to the wafer delay constraints and the robot timing is 

adjusted to obtain the minimal makespan for that sequence. 

From all of these sequences generated from the one-unit 

cycle sequences, we select one that satisfies all of the LP 

constraints and achieves the minimal makespan. This 

makespan value will serve as an upper bound on the 

achievable performance for all possible robot action 
sequences and timings. Of course, if no such feasible policy 

is generated from the one-unit cycle sequences, the upper 

bound is considered as infinity.  

 

Example 1: Obtaining an upper bound. Consider the 

case m=4.  

First, enumerate all the possible one-unit cycle sequences. 

There are 3!=6 such sequences; they are {3,2,1,0}, {3,2,0,1}, 

{3,1,2,0}, {3,1,0,2}, {3,0,2,1,} and {3,0,1,2}.  

Second, generate a robot action sequence for each one-

unit cycle sequence via Pseudo code 2. There is one for a 

given one-unit cycle sequence. For example, consider the 

case m=3 and      = {     }. The resulting robot action 

sequence is s={0,1,0,2,1,0,2,1,2}. 

Third, apply the multistage linear programming models 

from Section II to each s.  

Fourth, select a best sequence from among these full robot 

actions sequences as follows. It must be feasible, obtain the 

minimum makespan from among the sequences, and achieve 

the minimal average wafer delay from among those with 

minimal makespan.                                                      □

                                 

    The selected sequence serves as an upper bound for our 
branch and bound model. If we can prove that a branch in the 

branch and bound tree will provide a larger makespan than 

the upper bound, we will discard it. To this end, we next 

develop a lower bound. 

 

B. Lower Bound 

The minimum makespan of a sequence with wafer delay 

constraints cannot be less than the minimum makespan of the 

same sequence without wafer delay constraints, all other 

things being equal. Therefore, the minimum makespan 

without time windows can serve as a lower bound for our 
problem. Now the task is to find an efficient algorithm that 
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helps obtain this lower bound. In [8], Wikborg et al. 

suggested an efficient dynamic programming (DP) algorithm 

to find an optimal robot sequence without time window 

constraints. The main idea is that when there are two 

identical states (same wafer occupancy in each chamber), we 

compare the ready times of each resource and discard the 
state that is inferior.  

In [8], the DP algorithm obtains an optimal solution for a 

problem with 5 process steps and 1000 wafers within 1 

second. As the speed of this algorithm is substantially faster 

than others in existence, we employ it to obtain our lower 

bound.  

Since the DP algorithm does not consider wafer delay 

constraints, it might discard the states that we want to keep. 

As such, we do not discard the states in the branch and 

bound tree at this stage. For each state, we obtain the 

minimum makespan from the DP algorithm without wafer 

delay constraints. If this lower bound (LB) on makespan 
exceeds the upper bound (UB), then we discard the state. 

Here we briefly introduce the branching strategy that is 

used in [8]. Let    denote the number of wafers in the     PM. 

Then, the state (  ,   ,…,  ) shows the wafer occupancy of 
each PM at some point of time. For instance, (4,0,1,0) means 

that there are 4 wafers in the input load lock, 1 wafer in the 

second PM, and no wafers in the other PMs. The next 

possible robot action is either 0 or 2; the robot can either 

unload a wafer from the input load lock or a wafer from the 

second PM. As such, from a given state, we can determine 

the next possible robot action(s) and the subsequent next 

state. Each subsequent state is the descendent of the original 

state. The robot action to reach that descendent is embedded 

in the arrow from parent to descendent. The result is a 

reachability graph. 

 

Example 2: Lower bounds. Consider the case m=3, n=4, 

  =100s,   =150s, δ=ε=1s.  Using the preceding, an upper 

bound sequence can be obtained as s={0,1,0,2,1,0,2,1,0,2, 

1,2}. Its minimal makespan and total wafer delay are 730s 

and 0s.  

Figure 1 shows the reachability tree or branch and bound 

tree. Here, the states are a vector of four integer values. 

Each value is the number of wafers in the corresponding 

process module. The DP algorithm provides a lower bound 

on the makespan of states (3,0,0,1), (2,0,0,2) and (1,0,0,3) as 
833s. This exceeds the upper bound of 730s, so these states 

are discarded. As a result, only one branch remains; it is the 

upper bound sequence, s={0,1,0,2,1,0,2,1,0,2,1,2}. In Figure 

1, states with colours are the states that have been discarded 

based on the UB and LB comparison.                          □

                          

For the surviving states, we extract the robot sequence 

from the reachability graph and apply the multistage linear 

programming model in Section II to check its feasibility for 

the wafer delay constraints. (We are guaranteed at least one 

feasible branch if there was a feasible sequence obtained 
from the extended one-unit cycle sequences.) The branch and 

bound algorithm with upper bound, lower bound and 

feasibility check follows.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 1   Reachability graph using the UB and LB elimination strategy 

First, the DP algorithm of [8] finds the minimum 

makespan for each state without considering the wafer delay 

constraints. Denote this makespan as      
Second, the LP of Section II is used to obtain an upper 

bound on the makespan. Denote it as    . 

Third, if    =    and the total wafer delay of the upper 

bound is zero, then we have an optimal solution. Otherwise, 

we generate descendant states. For each generated state, find 

its lower bound and discard the state if it exceeds the upper 

bound. Also, check the feasibility of each branch and discard 

one that violates the wafer delay constraints. 

IV. PERFORMANCE EVALUATION 

To assess the computational efficiency of the proposed 

approach, we studied several cases. We created 30 randomly 

generated cases each for m’=3, 4, 5 and 6.  

For each case, the process times, time windows and robot 
move times were uniformly distributed and independent of 

all others. The stage processing times, time windows, δ and ε 

were uniformly distributed in the range [50, 300], [0, 10], [1, 

2] and [1, 2] seconds, respectively. For m’≤4, we obtained an 

optimal solution for all the 60 cases. For m’≥5, there were 6 

cases out of the 60 trials in which the algorithm did not come 

to a solution due to the heavy computational load. The 

average computation times to obtain an optimal solution 

were 1, 1.8, 5.9 and 24 seconds for m’=3, 4, 5 and 6, 

respectively, excluding the timed out cases.  

For the cases where the branch and bound algorithm failed 

to converge, we use the upper bound as a good candidate. 

0,1,0,3 

1,0,0,3 

0,0,1,3 

0,0,0,4 

1,1,1,1 

1,1,0,2

 

 

23,1,0,1 1,0,1,2 

0,1,1,2 

2,0,0,2 

4,0,0,0 

3,1,0,0 

3,0,1,0 

3,0,0,1 2,1,1,0 

2,1,0,1 

2,0,1,1 
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Figures 2 and 3 show the difference between the upper 

bound and lower bound for m’=5 and m’=6. The maximum 

gap between the lower bound and upper bound in all the trial 

cases is within 2%. Since the optimal solution must have 

value between the upper bound and lower bound, the 

difference between the upper bound and optimal makespan is 
at most 2%. 

 

Fig. 2 UB vs. LB for m’=5                      Fig. 3 UB vs. LB for  m’=6      

V. CONCLUSION 

We proposed a multistage linear programming (LP) model 

that consists of two LPs. The first LP minimizes the total 

makespan of any given robot sequence while meeting wafer 

delay constraints, if that is possible. If the first LP is feasible, 

we apply the second LP to minimize the total wafer delays. 

Both LP models adjust the timings of each robot action to 
meet the wafer delay constraints.  

Next we developed a branch and bound algorithm to find 

an optimal robot sequence. A DP approach was employed to 

obtain a lower bound on the makespan. An approach based 

on extending the one-cycle sequences into the transient 

regime was used to identify an upper bound on the makespan. 

The multistage LP was used to check the time window 

feasibility of each branch. The lower bound, upper bound 

and feasibility check are employed to eliminate fruitless 

paths.  

This approach is relatively simple but gives optimal or 
good solutions in a relatively short time without assuming 

the backward sequence. 

Since our focus is on single armed circular cluster tools, 

future work may extend the approach to dual armed cluster 

tools, linear cluster tools or multi-cluster tools. It would also 

be useful to allow wafer reentrance or lots with different 

recipes.  
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