
Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 73–83, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Jasmine: A PSP Supporting Tool

Hyunil Shin, Ho-Jin Choi, and Jongmoon Baik

Information and Communications University, School of Engineering,
119 Munjiro, Yuseong-gu, Daejeon, 305-732, Korea
{linugee,hjchoi,jbaik}@icu.ac.kr

Abstract. The PSP (Personal Software Process) was developed to help devel-
opers make high-quality products through improving their personal software
development processes. With consistent measurement and analysis activities
that the PSP suggests, developers can identify process deficiencies and make a
reliable estimate on effort and quality. However, due to the high-overhead and
context-switching problem of manual data recording, developers have difficul-
ties to collect reliable data, which can lead to wrong analysis results. Also, it is
very inconvenient to use the paper-based process guide of the PSP in navigating
its process information and difficult to attach additional process-related infor-
mation to the process guide. In this paper, we describe a PSP supporting tool
that we have developed to deal with these problems. The tool provides auto-
mated data collection and analysis to help acquire reliable data and identify
process deficiencies. It also provides an EPG (Electronic Process Guide) in or-
der to provide easy access and navigation of the PSP process information,
which is integrated with an ER (Experience Repository) to allow developers to
store development experiences.

Keywords: Personal Software Process, Electronic Process Guide, Automated
Data Collection, Experience Repository.

1 Introduction

Continuous process improvement has been regarded as a solid solution to make
high-quality products at the team and personal level as well as at the organization and
project level. The PSP [1] was developed to help individual developers make high-
quality products through improving their personal software development processes.
The PSP provides a set of methods and practices to assist individual software devel-
opers to improve product and process quality such as defined and measurable process,
size and effort estimation based on historical data, code and design review, precise
designs, process quality measures, detailed plan, and earned value tracking. While the
PSP has been proved as an effective way to improve the accuracy of effort estimation
and to reduce defects in case studies [13, 14, 15], its manual data recording and paper-
based process guide act as barriers in following the PSP process.

Among those methods and practices, the measurement and analysis is a central and
core practice in identifying process deficiencies and providing a focus on process
improvements. Sets of historical project data are used to make a reliable estimate on
effort and quality. However, due to the high-overhead and context-switching problem

74 H. Shin, H.-J. Choi, and J. Baik

of manual data recording, developers have difficulties to acquire reliable data, which
can lead to wrong analysis results [2, 3]. The problem can be overcome through an
automated tool for collecting the PSP data and analyzing the collected data. However,
since an automated tool can not collect all necessary data, manual data recoding
should be supported as well. Manual data recording can be still a problem, but data
errors can be decreased because it is reduced to a few items. To help developers col-
lect reliable data and all necessary data, it is therefore required to develop a tool for
supporting both automated and manual data collection.

The PSP provides a set of increasingly evolved processes to help developers learn
the methods and practices. To guide developers in following the processes, materials
such as scripts, templates, and checklists are presented in a paper form, which can be
seen as a paper process guide. A paper process guide generally has problems in its
usability and maintenance because it is very inconvenient for developers to search and
navigate process information and difficult to add process-related information or to
modify existing information [8]. To solve these problems caused by a paper process
guide, an EPG using the web technology is proposed allowing easy access to all proc-
ess-related information [5, 8]. To allow easy navigation of the PSP process informa-
tion and to enable storing additional information, it is necessary to develop an EPG
which enhances the contents and usability of the paper-based PSP guide.

In this paper, we describe a PSP supporting tool, named Jasmine, which have been
developed to address the issues above. Aiming at supporting personal process and
quality management, the Jasmine provides capabilities to collect reliable data auto-
matically and analyze the collected data. It also provides an EPG for the PSP guide
for easy access, modification and addition of information.

The rest of this paper is organized as follows. The next section gives a short over-
view of sensor-based automated data collection, an EPG and an ER. This is followed
by the description of the Jasmine’s architecture and salient features. Section 4 pre-
sents a comparison with existing PSP supporting tools, and section 5 concludes the
paper and describes future works.

2 Background

2.1 Sensor-Based Automated Data Collection

To reduce the high overhead and context-switching in manual data collection, tools
like Hackystat [2, 9], PROM [12] have been developed. They collect automatically
the PSP data and provide various analyses on the collected data. These tools do not
require any efforts of developers in data collection, except in installation and configu-
ration of sensors. Sensors, which are attached to development-related tools such as
Eclipse, Microsoft Office, and JBuilder, are central components for automatic data
collection. A sensor collects unobtrusively low-level data (e.g., information on files
that developers are editing, results of unit test executions) by monitoring application-
generated events of a development-related tool. Then, it sends the low-level data to a
server where the data are stored and analyzed.

Although Hackystat and PROM collect the PSP data automatically, all necessary
data can not be collected automatically and the collected data do not have all

 Jasmine: A PSP Supporting Tool 75

necessary information. For example, the time data collected automatically are associ-
ated with modification activity of software artifacts such as source files and design
documents. In this way time spent on implementation or design activity can be auto-
matically collected, but time spent on other activities (e.g., meeting, design review)
can not be collected because not all important developer activities involve modifica-
tion of software artifacts. Also, it is hard to identify which phase automatically
collected time data are spent on. Defect data are automatically collected by sensors
attached to unit testing mechanism such as JUnit or to bug reporting systems such as
Bugzilla. However, there is no way to automatically collect defects in design/design
review/code review phases where developers manually find defects, and automati-
cally collected defect data do not have all information such as the time spent on
finding and fixing the defect, the phase when it was injected, and its defect type.

2.2 EPG and ER

A process guide is a reference document to help process participants understand and
execute a given process, providing guidance of the process and other useful informa-
tion [8]. Basic information of process guides are details regarding activities, artifacts,
roles, and relationships between them. Process guides are necessary for software proc-
ess improvements where process knowledge transfer is crucial. Process guides tradi-
tionally were offered in a paper form, but it is said that they are not useful in their
contents and layouts [8]. It is hard to navigate and search easily process information
and to put related information together (e.g., an activity and its input and output arti-
facts) in paper-based process guides, because its layout is linear and static. Also, it is
difficult to modify existing information or add new process information because it
requires publishing a new edition of its process handbook.

These problems of paper-based process guides can be mitigated by an EPG which
provides a process guide using the web technology [5, 8]. However, simply providing
a process guide in forms such as PDF, Microsoft Word, or other electronic formats or
converting the contents of a process guide into HTML is not treated as an EPG. In [8],
a set of basic requirements are proposed which an EPG should meet.

• An EPG should provide all information contained in a good paper process guide.
• It is recommended that each web page contain so small manageable unit that

process participants can easily understand and digest.
• An EPG should provide hyper-links, a graphical overview, and hierarchical ac-

tivity decompositions for flexible navigation and easy access. Also, related in-
formation such as an activity and its associated artifacts should be linked
together using hyper-links.

• All web pages should have the same basic structure in order to facilitate the
usage.

Beyond the basic requirements above, an EPG can contain additional process-
related information such as examples of a document, personal annotation, or discus-
sion, which leads to more general knowledge and experience management. As a result
it is recommended to integrate an EPG with an ER [7]. An ER is a system which is
used to collect, structure, and reuse key management and development experience,
and to make it quickly and easily accessible to users [6]. An ER plays a crucial role in

76 H. Shin, H.-J. Choi, and J. Baik

knowledge and experience management where past knowledge and experience is seen
as resources to solve today’s problems.

Some works have been done to integrate an EPG with an ER. In [4, 7], a successful
implementation of coupling an EPG with an ER in a small organization is presented.
In the combined tool, an experience entity is attached to its related process element
for easy access to a large number of collected experience data. The idea to structure
experience data to related process elements is also supported by [6], which proposes
that a good experience repository should be organized to its related process.

3 High-Level Architecture and Main Features of Jasmine

In this section, we describe the high-level architecture and main features of the Jas-
mine, which consists of two sub-systems, PPMT (Personal Process Management
Tool) and PSPG/ER (PSP Guide/Experience Repository) as shown in Fig. 1. PPMT
supports project planning, earned value tracking, and quality management by facilitat-
ing data collection and analyses. It automates large parts of data collection to reduce
the high overhead and context switching. It also provides various data analyses in
forms of charts, graphs, or tables. In PSPG/ER, the EPG provides the PSP process
guide in the web and the ER is used to store and share development experience which
can be linked to the EPG contents.

Project
data

PPMT Client
Sensor

Sensor

Web Browser

Web Browser
Process

elements,
Experience

PPMT Server

PSPG/ER

Artifacts,
Analysis
results

Sensor data

Manual data,
plan data

Analysis
results

Experience

PSP Guide

Application

Application

PPMT

PSPG/ER

Fig. 1. Jasmine Architecture

3.1 PPMT

PPMT is designed using a client-server architecture, as illustrated in Fig. 1, in which
the client consists of sensors developed for automated data collection. The server
provides all functionalities except automated data collection. It was implemented as a
web application which interacts with users through a web browser. The main compo-
nents of PPMT are as follows.

• Sensor: It is attached to a development-related application. It collects automati-
cally data by monitoring the application and then sends the data to the PPMT
Client.

 Jasmine: A PSP Supporting Tool 77

• PPMT Client: The main functionality of the PPMT Client is to receive sensor
data from the sensors and to send them to the PPMT Server. It plays a temporary
storage for collected sensor data when it is not connected to the server, and
sends them to the server when the connection to the server is re-established. If
necessary, it can preprocess sensor data before sending them to the PPMT
Server.

• PPMT Server: It provides most of functionalities for PPMT: manual data re-
cording, data storage, data analyses, earned value calculation, and users/projects
administration. The implementation is based on Java technologies (such as Java
Servlet, JSP, Java Beans, and JDBC), and on Apache Tomcat to execute Java
Servlets and JSP.

• Database: It stores the collected PSP data from sensors and manual recording
such as time and defect logs, task and schedule plan data, and information on us-
ers/projects. MySQL is used for the database implementation.

XML is used to send and receive sensor data among sensors, the PPMT Client, and
the server. Its language-independent characteristic simplifies sensor data transmission
because sensors are implemented using various programming languages. The main
features of PPMT are presented below.

Sensor-based automated data collection. To facilitate recording time, defects, and
software size, PPMT provides a sensor-based automated data collection mechanism
like Hackystat, PROM. Time and defect data collected automatically are recorded in
the time and defect log respectively, which allows modification and insertion of the
data when necessary.

By monitoring software artifacts or tools, time spent on design, coding, review, and
testing can be collected automatically. The current version of the Jasmine collects
automatically time spent on: source code modification by monitoring continuously
source files’ size; manual testing of windows applications and web applications by
monitoring mouse or key events occurred in the target application. An Eclipse sensor
tracks Java source code modification and manual testing of a windows application
executed in Eclipse. Testing web applications using Internet Explorer is tracked by an
IE sensor. A set of consecutive time data is stored as an item in the time log.

Failed unit tests, bugs, compile errors and so on can be automatically collected as
defects. The Jasmine collects automatically failed unit tests, compile errors, and run-
time errors, each of which is stored as a defect in the defect log as shown in Fig. 2.

Table 1. Defect information of failed unit tests, compile errors, and runtime errors

 Failed unit tests Compile errors Runtime errors
Remove phase “Test” “Compile” “Test”
Description The stack trace of

the exception
The description of
the syntax error

The stack track of
the exception

Defect type The exception type “Syntax” The exception type
Found date (automatic) (automatic) (automatic)
Inject phase (manual) (manual) (manual)
Fix time (manual) (manual) (manual)

78 H. Shin, H.-J. Choi, and J. Baik

Fig. 2. Defect log

The Eclipse sensor collects the results of unit tests executed by JUnit, Java compile
errors, and Java exceptions. As described in Table 1, information on removal phase,
description, defect type, and found date are automatically recorded.

Software size can be automatically collected as lines of code (LOC) measured by a
line counting tool. The current implementation collects LOC measured by LOCC [16].

Support for planning and earned value tracking. Developers should make a de-
tailed plan in the planning phase and track the progress with the earned value. In order
to assist the project planning and tracking, PPMT provides forms to prepare the stan-
dard task and schedule planning templates, and automatically calculates the earned
value of all planned tasks using planned data that a developer enters and actual data
calculated from the recorded time log.

Data analyses and report generation. PPMT provides various analyses over the
collected data in forms of charts or tables. It reports a summary of analyses results.
Available analyses include trend charts which show the trend of data over time and an
earned value chart which displays the planed value, the earned value, and the predicted
earned value over time. It also provides Pareto charts for defect analysis and quality
measures such as process yield, A/FR (Appraisal to Failure Ratio), and phase ratio.
Also, it can generate a weekly report which summarizes project data during a given
week and a project report which summarizes project data during the whole period.

3.2 PSPG/ER

The main elements provided by PSPG are the PSP activities (e.g., planning, design,
and design review), artifacts (e.g., task and schedule plan, project plan summary), and

 Jasmine: A PSP Supporting Tool 79

the PSP processes (e.g., PSP0, PSP0.1). The PSPG/ER homepage provides a single
point access to the PSP processes. A number of activity and artifact pages provide the
guides of the PSP activities and artifacts, respectively. Every activity page consists of
three frames as shown in Fig. 3: a navigation bar, a diagrammatic process flow, and a
description section. The navigation bar consistently maintained in all of pages dis-
plays the current position. The diagrammatic process flow shows a flow of activities
highlighting the selected activity and supports fast navigation to other activities. The
description section contains the description of the selected activity, links to its related
artifact pages, and links to experience data associated to it. Each artifact page consists
of three frames as shown in Fig. 4: a navigation bar, a list of artifacts, and a descrip-
tion section. The list in the left frame contains a list of all the artifacts which must be
produced in the selected PSP process. The description section includes the description
of the selected artifact, its templates, and links to experience data related to it.

The ER enables developers to collect development experiences gained from previ-
ous projects by following the PSP process and to share them among team members. To
provide easy access to a number of collected experiences, they are structured according
to relevant process elements. That is, developers should insert an experience data to its
related activity or artifact page. For example, a document example should be linked to
its related artifact page. Experience data are categorized into example (only available in
artifact pages), generic experience, and discussion. In the example category, examples
of an artifact are provided in forms of files such as PDF, Microsoft Word, or other file
formats which can be downloable, or HTML pages which are generated in PPMT. The
generic experience category can include any helpful information such as lessons
learned, code fragments, and links to useful web pages. The discussion category allows
developers to discuss process elements with other developers.

Fig. 3. An example of an activity page

80 H. Shin, H.-J. Choi, and J. Baik

Fig. 4. An example of an artifact page

3.3 Interaction Between PPMT and PSPG/ER

One of main features in PSPG/ER is to store examples of artifacts such as time logs,
defect logs, and task/schedule plan. Examples can be stored in a HTML format which
is produced in PPMT. Developers can store their artifacts such as time/defect logs and
task/schedule plan in an example category of a relevant artifact and their analyses
results such as charts, tables, and reports in any experience category. This feature
would make it easy to store development experience. Another way of interaction is to
provide links to relevant pages. For example, the time log artifact page has a link to
the time recording form of PPMT, and in reverse the form contains a link to the arti-
fact page of PSPG/ER. This feature would allow developers to access easily relevant
process information.

4 Comparative Analysis of Related Tools

Several PSP support tools have been developed such as Process Dashboard [11],
Hackystat [2, 9], and PSPA [10] to help automatic data collection and analyses.
Among those tools, Hackystat provides the most similar functionalities to the Jasmine
in that both tools provide sensor-based automated data collection. The primary differ-
ence between the Jasmine and Hackystat lies in the goal that each aims for. Hackystat
is a tool for data collection and analyses rather than a PSP supporting tool since it
focuses on only automated data collection and analyses. Therefore, Hackystat does
not support the other PSP activities such as planning, plan tracking, and estimation. It
also provides the limited data analysis capabilities. This insufficiency of Hackystat is
caused by not supporting manual data recording and not collecting automatically all
necessary information of the PSP data.

 Jasmine: A PSP Supporting Tool 81

Table 2. Comparison of sensor-based automated data collection

Data Jasmine Hackystat
Time spent on
source modification

Eclipse Eclipse, Visual Studio,
JBuilder, IntelliJ Idea

Time spent on
modification of
other documents

X Microsoft Office,
OpenOffice, Emacs

Time spent on code
review

X Jupiter

Time

Time spent on
manual testing

Internet Explorer (for
web application testing),
Eclipse (for windows
application testing)

X

Failed unit tests JUnit JUnit, CPPUnit
Compile errors Eclipse X
Runtime errors Eclipse X

Defect

Post-release bugs X Bugzilla, Jira

On the other hand, the Jasmine aims for supporting the whole PSP activities. In the
Jasmine, the automatically collected time and defect data are recorded in the time and
defect log respectively in order to allow developers to modify the data or insert neces-
sary information to the data, which enables more various data analyses compared to
Hackystat. Also, it provides an EPG for the PSP guide incorporating with an ER.

In a comparison of sensor-based automated data collection, while currently the
Jasmine does not support as many development-related tools as Hackystat does, it
collects automatically time spent on manual testing, compile and runtime errors which
Hackystat does not collect, as shown in Table 2. The Jasmine would be easily ex-
tended to support various tools by reusing the Hackystat sensors, since Hackystat has
been developed as an open source.

5 Conclusion and Future Work

This paper has described the Jasmine developed to help developers perform the PSP.
The Jasmine not only automates large parts of data collection to mitigate the problems
of manual data recording, but also supports planning and plan tracking. It also pro-
vides various kinds of data analyses. These features help developers identify process
deficiencies, make a process improvement plan to remove the identified deficiencies,
and make a reliable estimate on effort and quality for more effective and efficient
process management. Moreover, the Jasmine includes an EPG to allow easy naviga-
tion of the PSP process elements and an ER to allow storing and sharing additional
process-related information. This integrated EPG and ER would help developers un-
derstand and perform the PSP more effectively. A number of collected experiences
would be used as resources to solve problems that they can run up against in the PSP
process.

82 H. Shin, H.-J. Choi, and J. Baik

This work has been done as a first step of the project that aims to develop a
TSP/PSP supporting tool. TSP (Team Software Process) support is planned as one of
future works, which includes providing automated data collection and analyses for
team data and supporting team planning process and plan tracking, in order to help
developers as well as team managers follow the TSP. Also, the sensor-based auto-
mated data collection and analyses will be extended continuously with more features.
New sensors for various development-related tools (e.g., Visual Studio, Microsoft
Office) and new sensor data types (e.g., test coverage, post-release bugs, and code
quality metrics) will be developed. We will also provide diverse data analyses to
facilitate identification of process deficiencies and product’s quality problems. Fur-
ther, Six Sigma analysis techniques such as control charts, regression analyses will be
integrated to help systematic process control. Finally, to improve and extend the tool
based on real usage, we will apply this tool to student projects in a class or industrial
projects.

Acknowledgement. This research was supported by the MIC(Ministry of Information
and Communication), Korea, under the ITRC(Information Technology Research
Center) support program supervised by the IITA(Institute of Information Technology
Advancement) (IITA-2006-(C1090-0603-0032)).

References

1. W. S. Humphrey. PSP(sm): A Self-Improvement Process for Software Engineers, SEI Se-
ries in Software Engineering, Addison-Wesley Professional, 2005

2. P. M. Johnson, H. B. Kou, J. M. Agustin, C. Chan, C. A. Moore, J. Miglani, S. Zhen, and
W. E. Doane. Beyond the personal software process: Metrics collection and analysis for
the differently disciplined. In Proceedings of the 2003 International Conference on Soft-
ware Engineering, Portland, Oregon, May 2003.

3. Disney, A. & Johnson, P. Investigating Data Quality Problems in the PSP, Sixth Interna-
tional Symposium on the Foundations of Software Engineering (SIGSOFT'98), Orlando,
FL., November, 1998.

4. Felicia Kurniawati, Ross Jeffery. The Long-term Effects of an EPG/ER in a Small Soft-
ware Organisation, 2004 Australian Software Engineering Conference.

5. L. Scott, L. Carvalho, R. Jeffery, J. D’Ambra and U. Becker-Kornstaedt, “Understanding
the use of an Electronic. Process Guide,” Information and Software Technology 44. (10),
2002, pp. 601-616.

6. Kurt Schneider, Jan-Peter von Hunnius, "Effective Experience Repositories for Software
Engineering," icse, p. 534, 25th International Conference on Software Engineering
(ICSE'03), 2003.

7. Louise Scott, Lucila Carvalho, Ross Jeffery, "A Process-Centred Experience Repository
for a Small Software Organisation," apsec, p. 603, Ninth Asia-Pacific Software Engineer-
ing Conference (APSEC'02), 2002.

8. M. Kellner, U. Becker-Kornstaedt, W. Riddle, J. Tomal, M. Verlage, “Process guides: ef-
fective guidance for process participants,” in: Proc. of the Fifth International Conference
on the Software Process, Chicago, IL, USA, June 1998, ISPA Press, 1998, pp. 11-25.

 Jasmine: A PSP Supporting Tool 83

9. Johnson, P.M.; Hongbing Kou; Agustin, J.M.; Qin Zhang; Kagawa, A.; Yamashita, T.,
"Practical automated process and product metric collection and analysis in a classroom set-
ting: lessons learned from Hackystat-UH," International Symposium on Empirical Soft-
ware Engineering, 2004.

10. Raymund Sison, David Diaz, Eliska Lam, Dennis Navarro, Jessica Navarro, "Personal
Software Process (PSP) Assistant," apsec, pp. 687-696, 12th Asia-Pacific Software Engi-
neering Conference (APSEC'05), 2005.

11. Process Dashboard, http://processdash.sourceforge.net/
12. Sillitti, A.; Janes, A.; Succi, G.; Vernazza, T., "Collecting, integrating and analyzing soft-

ware metrics and personal software process data," Euromicro Conference, 2003. Proceed-
ings. 29th , vol., no.pp. 336- 342, 1-6 Sept. 2003.

13. Pekka Abrahamsson, Karlheinz Kautz, “The Personal Software Process: Experiences from
Denmark”, EUROMICRO 2002: 367-375.

14. Lutz Prechelt, Barbara Unger, "An Experiment Measuring the Effects of Personal Soft-
ware Process (PSP) Training," IEEE Transactions on Software Engineering,
vol. 27, no. 5, pp. 465-472, May, 2001.

15. Hayes W., and J. Over. The Personal Software Process (PSP): An Empirical Study of the
Impact of PSP on Individual Engineers, Technical Report SEI-97-TR-001, December
1997.

16. LOCC, http://csdl.ics.hawaii.edu/Tools/LOCC/

	Introduction
	Background
	Sensor-Based Automated Data Collection
	EPG and ER

	High-Level Architecture and Main Features of Jasmine
	PPMT
	PSPG/ER
	Interaction Between PPMT and PSPG/ER

	Comparative Analysis of Related Tools
	Conclusion and Future Work
	References

