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Abstract—For fast motion estimation, a gradient descent search
is widely used due to its high efficiency. However, since it does not
examine all possible candidates within a search area, it suffers from
PSNR degradation for sequences having fast and/or random mo-
tions. To alleviate this problem, we propose a hybrid search scheme
wherein a hierarchical search scheme is selectively combined with
an existing gradient descent search. For the selective combination,
we introduce a measure estimating the distance between the cur-
rent search point and the optimal point. Since this measure greatly
reduces the need to perform hierarchical searches, their compu-
tational burden is not noticeable in the overall motion estimation
while their contribution to the PSNR improvement is considerable.
Using the estimated distance, we can also noticeably improve the
early termination performance in a local search. Experimental re-
sults show that the proposed algorithm outperforms the other pop-
ular fast motion estimation algorithms in terms of both PSNR and
search speed, especially for sequences having fast or random mo-
tions.

Index Terms—Block matching, diamond search, fast motion es-
timation, hierarchical search, random motion vector.

I. INTRODUCTION

I N VIDEO CODING standards, such as H.263 and
MPEG-1/2/4 [1]–[4], the block matching algorithm (BMA)

is usually adopted to reduce temporal redundancy. In the BMA,
a current frame to be encoded is divided into nonoverlapped
blocks and the best matching block of each current block is
found within the previous frame. Since the full search block
matching algorithm (FSBMA) examines all possible candidates
within a search area to find a motion vector (MV), it provides
optimal PSNR performance, but requires a heavy computa-
tional burden. Hence, over a period of many years, fast motion
estimation (ME) algorithms have been developed to reduce the
computational complexity. These algorithms can be divided
into several categories according to the employed approach.
Among them, a fast search by limiting the candidates of MVs
under the unimodal error-surface assumption is usually adopted
due to its high speed-up ratio [5]–[14].
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In these algorithms, since different shapes and sizes of search
patterns significantly affect the search speed and PSNR in ME,
appropriate selection of search patterns is critical. The large and
sparse search pattern used in the three-step search (TSS) often
leads the search center in a wrong direction so that TSS may
fail to find the optimum point [6]. Meanwhile, the small search
pattern of a size of 3 3 in the block-based gradient descent
search (BBGDS) can be easily trapped into a local minimum
for sequences having fast or random motions [8]. To overcome
this problem, the diamond search (DS) first finds a MV using a
large diamond search pattern (LDSP), and then adopts a small
diamond search pattern (SDSP) to refine the search result [9].
Similar approaches, the hexagon-based search (HEXBS) [10]
and the cross-diamond search (CDS) [12] have also been pro-
posed. Compared to DS, they somewhat improve the search
speed while maintaining PSNR performance.

To improve the search performance, BBGDS, DS, HEXBS,
and CDS focus on search patterns with an initial search
center of (0, 0). Meanwhile, the proper selection of an initial
search center is addressed by considering the neighborhood
information [13], [15]. In addition, the motion vector field
adaptive search technique (MVFAST) attempts to reduce the
computational load by introducing a thresholding technique
for terminating the search early [13]. By adopting a better
initial search center and an adaptive thresholding technique,
the predictive MVFAST (PMVFAST) is an improved version
of MVFAST. Here, it should be noted that all the algorithms
mentioned above, i.e., TSS, BBGDS, DS, HEXBS, CDS, MV-
FAST, and PMVFAST, do not examine all possible candidates
within a search area. Hence, their PSNR performances tend
to be degraded for sequences having fast or random motions
compared to the FSBMA or a hierarchical approach [16]–[18],
which attempts to examine the overall search area by sacrificing
the search speed.

In this paper, we propose a new hybrid search to provide a
fast search speed and smaller distortion errors. The proposed al-
gorithm properly combines an existing gradient descent search
(GDS) and a hierarchical search, by using a newly defined dis-
tance between a current search point and the optimal point.
It also adaptively terminates the search according to the mea-
sured distance. Thereby, it is especially proper for the sequences
having fast or random motions compared to the existing GDS-
based algorithms. In Section II, we describe the proposed al-
gorithm. Experimental results are given in Section III. Finally,
conclusions are presented in Section IV.
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Fig. 1. Matching positions of current block pixels in the previous frame.

II. PROPOSED ALGORITHM

In this section, we first introduce a scheme to estimate the
distance between a search point and the optimal point, and de-
scribe a novel decision procedure for early termination based on
the estimated distance. We then explain the adopted hierarchical
scheme for a random MV search. Finally, we describe the pro-
posed ME algorithm.

A. Distance Estimation Scheme

To simplify distance estimation, we consider this problem as a
one-dimensional one. We assume that there are only translation
motions between the previous and current frames, and that all
of the pixels within a block have the same motion. We also as-
sume that the pixels in the previous frame can be reconstructed
by the linear interpolation of pixels in the current block. Under
these assumptions, the distance between the search point and the
optimal point can be estimated. Fig. 1 shows the matched pixel
positions in the previous frame, of the current
block pixels, , where and d denote an integer MV and a
sub-pixel MV, respectively. So, is the true MV of the
current block, and the corresponding dotted circles represent the
exactly matched points in the previous frame. From Fig. 1, we
can describe that the following relation:

(1)

In the integer-pixel ME, the minimum sum of absolute differ-
ences (SAD) value at MV is given as

(2)

From (1) and (2), we obtain

(3)

where SADNP denotes the sum of absolute differences between
neighboring pixels and equals .

Therefore, the distance can be estimated as

(4)

It should be noted that (4) holds true if the distance between the
current search point and the optimal MV is less than 1 pixel.
However, if we assume that the SAD value monotonously in-
creases starting from the optimal MV, we can still know from
the estimated distance , which is larger than 1 pixel, that a cur-
rent search point locates more than 1 pixel off from the optimal
one. Note here that is not quantitatively meaningful aside from
the information above.

Since ME for video coding is performed in two-dimensional
(2-D) space, the derivation above should be extended into the
two-dimensional case. In the 2-D space, the distance between a
current search point and the optimal point is denoted as ( ).
And the horizontal SADNP and the vertical SADNP are given
as follows:

(5)

where denotes a pixel at the current block. Then, each
component of the distance is independently predicted as fol-
lows:

and (6)

where denotes the current search point. According to
(6), should be zero if (or ) is zero. However,
even though (or ) is zero, or the (or ) component of
the current search point is matched to that of the optimal point,

may not be zero if the ) component of the
current search point is not matched to that of the optimal point.
Therefore, the predicted (or ) could be larger than the real
distance.

B. Adaptive Thresholding Techniques

In MVFAST, if the block SAD value at the search point
(0, 0) is smaller than a fixed value of 512, a search is stopped
without additionally examining search points. However, this
fixed threshold value can be too large or too small depending
on the block characteristic. In particular, most of the minimum
SAD values for the blocks having fast or random motion
are usually larger than 512. Hence, a thresholding technique
adopted in MVFAST does not improve the search speed for
those sequences. To solve this problem, an adaptive thresh-
olding technique is proposed in PMVFAST. In this algorithm,
the threshold value of a current block is determined among
the minimum SAD values of the three adjacent (or three left,
top, and top-right) blocks so that it may efficiently terminate a
search for blocks having fast or random motions. However, we
should notice that the thresholding value is determined by only
considering the SAD values of neighboring blocks, without
taking into account its own characteristic of the current block.
Hence, the determined value may not be suitable for every
block. In particular, if its characteristic is different from those
of their neighboring blocks, the improper thresholding value
may cause PSNR degradation or limit the speedup performance.
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Fig. 2. One-dimensional search patterns: (a) horizontal and (b) vertical.

To alleviate this problem, we propose a new adaptive thres-
holding scheme based on estimated distances described in the
previous subsection. In this scheme, the displacement and

are predicted using (5) and (6). Then, if (or ) is smaller
than the pixel size, we regard the (or ) component of
the current search point as that of the optimal point having an
integer-pixel accuracy, and a search along the (or ) direction
is not performed. Therefore, if both and are smaller than
the pixel size, a search is terminated and a current search
point becomes the final integer-pixel MV. However, if only
(or ) is smaller than a pixel, we perform the one-dimen-
sional search along the (or ) direction, using the search pat-
tern shown in Fig. 2. After finding the component, the search is
terminated. Meanwhile, if both and are larger than a
pixel size, we proceed to the next search step based on a search
range.

In thresholding, the SAD value of the current search point and
the SADNP value of a current block are required. Since the SAD
value of the current search point must always be examined, it
does not increase the total computational burden. However, the
computational load for calculating SADNP is additional. Since
it can be reused during ME, SADNP for each block is calculated
once. In order to further reduce the computation load of SADNP,
we approximate SADNP in (5) as follows:

(7)

Then, it is experimentally found that the approximated
rarely affects thresholding results, and the additional compu-
tational load of for a block becomes a half of the
one-point SAD calculation.

C. The Random MV Search

Since the shape and size of search patterns significantly affect
the search speed and matching error in ME, we have performed
several experiments to examine their effects on ME. The results
are given in Fig. 3. In the figure, NSP denotes the number of
search points required for finding a MV. Besides existing fast
algorithms, DS, CDS, BBGDS, and HEXBS, we intentionally
made a simplified version of DS, , by utilizing only SDSP
rather than using both SDSP and LDSP as in the algorithm DS
(see Fig. 4). Experimental conditions for these data are given
in detail in Section III-A. The difference among the compared
algorithms is only the adopted search pattern. It is noted that

Fig. 3. PSNR degradation from FSBMA versus the number of search points
for various fast search algorithms.

Fig. 4. Diamond search patterns: (a) SDSP and (b) LDSP.

DS provides the best PSNR performance among them, while it
requires a larger NSP than others. Meanwhile, requires a
small NSP (or provides a fast search speed) due to its simple
search pattern. But its PSNR performance is the worst, since it
has more chances to be trapped into a local minimum.

To compare the probabilities to be trapped into a local min-
imum in and DS, we examine the consistency of MVs of

, DS and FSBMA under the same experimental conditions,
as in Fig. 3. The consistency of MVs between and FSBMA
is 86.01%, and 89.43% between DS and FSBMA. Hence, the
consistency difference between DS and is only 3.42% on
average. This means that most of the MVs can be correctly
found using SDSP, and LDSP is not always needed to find a
correct MV. Therefore, the proposed algorithm first finds a MV
using SDSP. Then, if it is found that the searched MV corre-
sponds to a local minimum or the block has a random motion,
a random MV searching procedure is performed to find a better
MV instead of a large pattern based search.

Since neighboring blocks are usually highly correlated,
the SAD value of a current block is expected to be sim-
ilar to those of the neighboring blocks. Thus, the exis-
tence of a random MV can be examined by comparing the
SAD value of the current block, which is calculated from
a MV using SDSP, with those of neighboring blocks. If
the SAD value from the MV using SDSP, , is
greater than , the MV is considered incorrect and
a random MV search is performed. Here,

, and
, and denote the minimum

SAD values at the left, top, and top-right neighboring blocks
of the current block, respectively, and is the minimum
SAD value of the block at the same position in the previous
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Fig. 5. Procedure proposed for obtaining a new initial point.

Fig. 6. Overall structure of the proposed ME algorithm. (a) Original image. (b) Full search algorithm. (c) DS, (d) MVFAST, (e) PMVFAST. (f) Proposed algorithm.

frame. In most cases, is smaller than , and
the random MV search is usually not performed.

To efficiently perform the random MV search, we adopt a hi-
erarchical search scheme [18], and modify it for the proposed al-
gorithm as shown in Fig. 5. The modified scheme has two layers,
layer 1 of the image reduced by 1/4 and layer 0 of the orig-
inal image. In layer 1, we first obtain a new initial search center
having the minimum SAD based on FSBMA. In this layer, the
search area reduced by 1/4 1/4, is examined by using
a current block reduced size, . Then, a new initial search
center can be found as

(8)

where denotes the search range of the original image, and
denotes the greatest integer less than or equal to .

The initial search center obtained above is scaled up to the
original size and considered as an initial search center in layer
0 (see Fig. 5). Then, a local search is performed around the ini-
tial center, to find the random MV. Since the new initial search

center is obtained by examining all search points in layer 1, it is
expected to be close to the global minimum. Thus, a SDSP will
be considered adequate in the search in layer 0. Finally, if the
minimum SAD obtained from the random MV search is smaller
than , the corresponding MV becomes the final one of
the current block.

Since the random MV search is performed only when
is greater than and the full search is

performed only in the reduced image, the computational com-
plexity for a random MV search is not significant compared
with the total complexity. Note that the practical computational
burden for a candidate examination in the reduced image is
only times that of the original image. In addition, this
refinement process is rarely performed.

D. Proposed ME Algorithm

The proposed algorithm is based on the adaptive thresholding
techniques and the random MV search scheme described above.
Fig. 6 illustrates its overall structure. The first procedure is sim-
ilar to that of PMVFAST. It predicts using MVs of
the left, top, and top-right blocks of a current block, and if the
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TABLE I
COMPARISON OF THE PROPOSED ALGORITHM WITH EXISTING ALGORITHMS. HERE, NSP DENOTES THE NUMBER OF SEARCH POINTS

SAD at is smaller than T , the search stops. Other-
wise, the SAD values of (0, 0), left, top, and top-right blocks are
examined, and the point having the minimum SAD is considered

. If the SAD at is smaller than T , is
considered as the final MV, and the search stops. Otherwise, the
distance ( ) between the and is pre-
dicted using (6). If both and are smaller than pixel,
the search stops. If only one of and is smaller than
pixel, a search using VSP or HSP, given in Fig. 2(a) and (b), is
performed. However, only if both and are larger than
pixel, a search using SDSP is performed. According to the value
of the SAD of , the random MV search is selectively
performed, as described in Section II-C. Note that the random
MV search is not performed if any one of and is smaller
than pixel. This is because the optimal MV may not be the
random MV in this case. Note that any of and are smaller
than pixel in many cases.

III. SIMULATION RESULTS

A. Experimental Environment

For the experiment, we use two video sequences of CIF
format, Carphone (CP) and Foreman (FM), and three video
sequences of SIF format, Football (FB), Table tennis (TT),
and Mobile and calendar (MC). Also, two video sequences
of QCIF format (176 144), Foreman and Table tennis, are
additionally used. Each sequence consists of 100 frames with a
frame rate of 30 Hz. In the simulation, the block size is set to
16 16 and the search range is to 15. Note that the number of
search points for the proposed algorithm in the tables includes
all computational burdens including the thresholding procedure
and the random MV search. In the simulation, and for
the proposed algorithm are set to 512 and 768, respectively.

B. Experimental Results

Table I illustrates the average PSNR and average number
of search points per block for various ME algorithms. The
thresholding values, and , used in the proposed algorithm
are a trade-off between the search speed and PSNR, and the re-
sults given in Table I are obtained using thresholding values of

and . Therefore, by adjusting the threshold
values, the algorithm can achieve a higher speed-up ratio by
sacrificing PSNR performance, or vice versa. Nevertheless, the
results demonstrate that the proposed algorithm requires the
smallest number of search points among BBGDS, HEXBS,
CDS, DS, MVFAST, and PMVFAST algorithms and provides
the best PSNR performance. Its average speed is improved by
20.24% with better PSNRs compared to PMVFAST. Hence,
the proposed algorithm will provide even better PNSR per-
formance than other algorithms if we adjust the thresholding
values so as to provide the same search speed. Also, note that
the algorithm significantly improves the PSNR performance
for the sequences Table tennis and Football. This owes to the
efficient random MV search in the proposed algorithm.

Computational burdens for thresholding in the proposed
algorithm are given in Table II. In the table, we first examine
the “Probability of calculating SADNP” because SADNP needs
not to be calculated if SAD at is less than . Then,
“Equivalent NSP” is obtained by multiplying the probability
with the computational complexity for SADNP. Note here that
the complexity is represented as the number of search points.
As shown in the table, the additional computational load for
SADNP is not significant compared with the total computa-
tional burden of ME. (Note that NSP in Table I includes this
computational burden.) Table III illustrates the computational
complexity for obtaining the initial search center in the random
MV search. Here, NSP denotes the number of search points
in layer 1, and “Equivalent NSP” is obtained by multiplying the
number of search points at layer 0 which corresponds to ,
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TABLE II
COMPUTATIONAL COMPLEXITY REQUIRED FOR CALCULATING SADNP FOR THRESHOLDING

TABLE III
COMPUTATIONAL COMPLEXITY REQUIRED FOR OBTAINING AN INITIAL SEARCH CENTER IN A RANDOM MV SEARCH

Fig. 7. The 14th image of the table tennis sequence reconstructed by using various motion estimation algorithms.

with “Probability of performing a random MV search.” In
Table III, it is noted that the probability of executing a random
MV search is approximately 6% on average. However, this
small portion of additional refinement significantly improves
the PSNR performance, as shown in Table I.

Fig. 7 presents the 14th reconstructed image for various ME
algorithms. The original image is given in (a), and (b)-(f) show

the motion compensated images by using FSBMA, DS, MV-
FAST, PMVFAST, and the proposed algorithm, respectively. As
shown in the figure, DS, MVFAST, and PMVFAST fail to find
the ball within a search area while FSBMA and the proposed
algorithm successfully find it. This demonstrates that the sup-
plement scheme adopted in the proposed algorithm is working
properly in terms of finding random MVs.
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IV. CONCLUSION

In this paper, we introduce a newly defined measure to esti-
mate the distance between the current search point and the op-
timal point in the middle of a search. If the real distance between
them is smaller than 1 pixel, the predicted distance is close to
the real one. If the real distance is larger than 1 pixel, it may
not be correct but provides the information that the real one is
larger than 1 pixel. By predicting fast or random MVs based on
this estimated distance, we properly combine the existing GDS
with the hierarchical search, which requires some computational
burden but improves the ME performance for random MVs.
We also propose a hybrid search scheme. The proposed scheme
performs a hierarchical search only if a fast or random MV
may exist, and fast or random MVs are infrequently found in
video sequences. Therefore, the additional computational com-
plexity due to the hierarchical search is not considerable. Also,
the fairly well estimated distance improves the early termination
performance, and thereby the overall search speed. Simulation
results show that the proposed algorithm is faster than the ex-
isting GDS-based scheme while providing superior PSNR per-
formance, especially for sequences having fast or random MVs.
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