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Abstract: In this paper, an approach is proposed for relative state estimation for satellites in formation 
flying. To estimate the relative states of two satellites, the Kalman Filter algorithms (EKF, UKF) are 
adopted with the relative range and range rate between two satellites and attitude of a satellite as 
measurement variables. In case that the initial state and measurements errors are moderate, both EKF and 
UKF perform well. As those errors increase, however, the EKF degrades unlike the UKF. Numerical 
simulations are performed under two circumstances. The first one presented both chief and deputy 
satellites are orbiting a circular reference orbit around a perfectly spherical Earth model with no disturbing 
acceleration, in which the elementary relative orbital dynamics are taken into account. In reality however, 
the Earth is not a perfect sphere, but rather an oblate spheroid. Both satellites are under the effect of 2J  
geopotential disturbance, which causes the relative distance between two satellites to increase gradually. 
The near-Earth orbit decays as a result of atmospheric drag. In order to remove the modeling error, the 
second scenario incorporates the effect of 2J  geopotential disturbing force, atmospheric drag, and the 
eccentricity. 

 

1. INTRODUCTION 

In many future space mission designs, satellite formation 
flying technology will be applied to the areas such as 
stereographic imaging, long baseline interferometery, and 
synthetic aperture radar (SAR). Formation flying contains 
advantages of structural flexibility in that even when one of 
the satellites which form the cluster fails, the mission can be 
carried out by reconfiguring the rest of the them, and the fine 
economical feasibility in that multiple satellites can provide a 
large size of aperture of radar dish without attempting to 
build up a large size radar dish by way of forming a 
formation with its radius ranging from several meters to 
kilometres. Recently the global positioning system (GPS) is 
adopted to measure the relative position among satellites, but 
these systems are applicable only to near-Earth orbiting 
satellites and are subjected to its deficiencies such as 
geometric dilution of precision, and multipath. Some papers 
made use of a vision-based navigation (VISNAV) system, 
which provides line-of-sight (LOS) vectors between two 
satellites as a relative sensor measurement to surmount the 
drawback of GPS. In this paper, however, relative distance 
and speed between two satellites, and satellite’s attitude are 
adopted for relative sensor measurement. With such 
information the Kalman filter algorithms (EKF, UKF) are 
implemented to estimate the system state. This paper consists 
of an overview of the relative orbit dynamics of two satellites 
with/without the effects of 2J  disturbing force, atmospheric 
drag, and eccentricity of orbit, and the estimation of relative 
state variables using the Kalman filter algorithms. Finally, the 
simulation results are presented.  

2. RELATIVE ORBIT DYNAMICS 

2.1 The Hill-Clohessy-Wiltshire equations 

The chief satellite is the one about which all other satellites 
are orbiting. The remaining satellites referred to as the deputy 
satellites, are orbiting the chief and constitute a formation 
with the chief as their center. The equations of relative 
motion are derived under the assumptions that the chief orbit 
is circular, the relative distance between the chief and deputy 
satellites is small compared with the chief orbit radius, the 
Earth is perfectly sphere and homogeneous, and there is no 
force acting on the two bodies other than the inverse-squared 
gravitational force. The relative motion of satellites are 
described in terms of Cartesian coordinates vector in the chief 
satellite-centered rotating reference frame, referred to as Hill 
frame with its vector components{ , , , }r ho o oθ

 

 

 

 

 

 

 

Fig. 1. Illustration of the Hill’s frame 
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where is in the orbit radius direction, oro θ is in along track 
direction, and completes a vector triad. ho

 ( , , )Tx y zρ =  (1) 

The deputy satellite position vector can be expressed as 

 ˆ ˆ ˆ( )d c c rr r r x o yo zoθ hρ= + = + + +  (2) 

where and  are the inertial chief and deputy position 
vectors, respectively. The acceleration vector of the chief 
satellite, taking the second derivatives with respect to the 
inertial frame, is given by 

cr dr

 2
3

ˆ ˆ ˆ = ( )c c c r c
c c

r r r f o r o
r r 2

ˆr
µ µ

− = − = −  (3) 

Because the chief orbit angular momentum magnitude can be 
expressed as h r  and  is constant for unperturbed case, 
taking derivative of  with respect to time yields 

2
c f= h

h
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From Eqs. (2), (3), and (4), the acceleration vector of the 
deputy satellite can be expressed as 
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If the relative distance between the chief and the deputy 
satellites is small compared with the chief orbit radius, then 
the relative orbit equations of motion are described as 
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where is true anomaly and f p  is the semilatus rectum of the 
chief satellite. It is referred to the literature [Schaub and 
Junkins 2003] for further details. If the chief orbit is chosen 
to be circular, then the well-known Hill-Clohessy-Wiltshire 
(HCW) equations are given by 

  (7) 
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where  represents the mean orbital rate of the chief satellite. n

 
 Fig. 2. Illustration of Gravitational Potential

2.2 The 2J  modified HCW equations 

The HCW equations derived in the previous section are based 
on the assumption that the Earth is perfectly sphere and its 
mass distribution is homogeneous. In reality, however, it is 
not true. In this section, we take the effect of 2J  on relative 
orbit dynamics into account by adding the 2J induced 
gravitational acceleration to the right side of the HCW 
equations as a forcing term [Schweighart et al 2001]. The 
gravitational potential of the earth, accounting for only 
latitude variation, takes on the following  
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where  denotes the radius of the earth at its equator, the 

 refer to the Legendre polynomial functions of order k . 
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latitude. From Fig. 2 it is evident that sin . Hence, the 

disturbing potential in spherical coordinates caused by 
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The 2J  induced gravitational acceleration acting on a satellite 
can be derived by taking partial derivative and transforming 
coordinates from the inertial frame to the LVLH frame using 
the direction cosine matrix 
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Application of Eq. (10) into Eq. (7) brings forth the following 
equations; 
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2.3 The modified HCW equations accommodating 
Atmospheric Drag 

In this section we take the effects of atmospheric drag on the 
satellites formation into account. The previous works done by 
[Carter and Humi 2002] will be reviewed and applied as 
system dynamics for estimating the relative state between 
two satellites in the following section. In the inertial frame 
the equations of motion of a satellite can be expressed as 

 ( ) ( )c c c cr f r r g r rα= − − c cr  (12) 

The first term on the right hand side accounts for 
gravitational acceleration due to a central force field and the 
second indicates atmospheric drag acceleration. The scalar 
α is a constant associated with the atmospheric drag 
coefficient and the geometry of the satellite. The function  
is atmospheric density, which is dependent only on altitude. 
Equation (12) can be rewritten as 

g

 ( ) ( )c c c c cr f r r g r r crα θ= − −  (13) 

under the assumption that the orbit is initially not of high 
eccentricity but decays due to drag, in which the magnitude 
of the radial velocity is very small compared with that of the 
transverse velocity, that is, c cr rθ<< . In the same way the 
motion of the deputy satellite is governed by 

 ( ) ( )d d d d dr f r r g r r drβ φ= − −  (14) 

where  and  is the relative position vector 
between the chief and the deputy satellites, and 

d cr r r= + r
β  is the 

atmospheric drag constant associated with the deputy. φ  is 
the angular rate of the deputy in orbit. Transforming into a 
rotating frame and changing independent variables from time 
to the chief satellite’s true anomaly with some algebraic 
processes lead to a simpler form such that 
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where ( )E θ  is a transformation for simplifying the governing 
equations, and further details are given in the reference. In 
Newtonian gravitational field, 3( ) /c cf r rµ=  and ( ) 1/c cg r r= . 
The acceleration due to the atmospheric drag is, therefore, 

( / )c c cr r rα− . Under the assumption that the chief and the 
deputy satellites are close enough to each other, they have 
identical drag constants, i.e.,α β= . Therefore, we are led to 
the following elegant form 

 

2

2
0

3(1 4 )2
1 cos(

2

xx y
e

y x
z z

αθ

α
)ε θ θ−

+′′ ′= +
+ −

′′ ′= −
′′ = −

 (16) 

whereε  is eccentricity of the chief satellite. 

3. RELATIVE STATE ESTIMATION 

In this section, estimation of the relative state between two 
satellites will be presented using EKF and UKF as estimators. 
Neither of the estimators is new. Both can be found in the 
several literature and text books (for instance, Juilier and 
Uhlmann 1995). 

3.1 EKF State Estimation 

From given system dynamic and measurement models, we 
would like to obtain the minimum mean squared 
error(MMSE) estimate of the system state vector. The EKF 
makes use of linearized system dynamics and measurement 
models, assuming that the nonlinearity in system and 
measurement models is sufficiently smooth and small. To 
obtain the MMSE, the EKF is applied to the nonlinear 
discrete time system of the form 
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where ( )x k  is the state of the system at time step k ,  is 
the system noise,

( )v k
( )z k  is the measurement vector, and  

is the measurement noise. The control input is not considered 
here. It is assumed that all the noises are zero-mean white 
Gaussian and there is no correlation between them. 
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where  and  represent the covariance of system noise 
and measurement noise, respectively. The problem of 
determining the MMSE is equivalent to computing the 
conditional mean from given measurements. The EKF 
propagates the first two moments of the distribution of 

Q R

( )x k , 
mean and covariance, through the system and measurement 
equations, recursively, and then the transformed mean and 
covariance are updated with a new current measurement. To 
sum up, 

1) Predicted quantities at time step  k
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where fJ and hJ , vvP denote the Jacobian matrices of the 
process and measurement models, and the predicted 
measurement covariance, respectively. 

2) Estimated quantities at time step  with a new current 
measurement at time step  

1k +
1k +
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(20) 

where nd ( 1), ( 1)W k v k+ +  , a xvP  represent the Kalman gain, 
the discrepancy between the actual measurement and the 
predicted measurement, and the cross-covariance, 
respectively. In this paper, the relative distance, speed, and 
attitude of the chief satellite are to be used as measurements 
to estimate the relative state. Fig. 3 shows the illustration of 
the measurement geometry between two satellites. 

 
Fig. 3. Illustration of Measurement Geometry between two satellites 

, , ,c c dN B B  and L  denote the LVLH frame, chief satellite’s 
body frame, deputy satellite’s body frame, and the sensor 
frame, respectively. We assume that the origins of N B  
and

, ,c c

L  frames coincide with each other assuming that the 
offset distance of the laser range finder from the origin of the 
chief satellite is small enough compared to the relative 
distance between two satellite. The relative position vector 
between the two satellites can be obtained through the 
coordinate transformation, which makes use of the relative 
distance and the attitude of the chief satellite equipped with a 
laser range finder. 

 0
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r
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where 
c

LVLH
BC  and cB

LC  represent the rotational matrices which 
convert a vector expressed in the chief satellite’s body frame 
to a vector expressed in the LVLH frame, and convert a 
vector expressed in the sensor frame to a vector expressed in 
the chief satellite’s body frame, respectively. Furthermore, 

LVLHR  and   denote the relative position vector between 

two satellites expressed in the LVLH frame and relative 
distance measured from the laser range finder, respectively. 
We assume that the laser range finder is aligned along the x-
axis of the sensor frame, and the attitude of the chief satellite 
with respect to the LVLH frame is known very accurately to 
the extent of 0.0001 degree from the secondary attitude 
measuring devices such as star sensor. The relative position 
vector obtained in (21) suffices to estimate the relative state, 
however, for the sake of improved observability we adopt 
relative speed as additional measurement, which is obtained 
from a Doppler radar. The measurement vector is given by 

r

 4 1 3 1 1 1[  
T

]LVLH Th R ρ× × ×=  (22) 

where (xx yy zz) /ρ ρ= + +  represents the relative range rate. 
Note that the measurement vector is originally linear, but 
becomes nonlinear due to the augmented additional 
measurement. Taking the partial derivative of the 
measurement vector with respect to the state yields the output 
sensitivity equations as  
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where 2 2 2(x y zρ = + +  denotes relative range between the 
two satellites. 

3.2 UKF State Estimation 

For nonlinear process and/or measurement model, however, 
the state distribution is approximated by a Gaussian random 
variable and then propagated through the first order 
linearized equations of system dynamics. As nonlinearity of 
system becomes dominant, the errors in the true posterior 
mean and covariance of the transformed Gaussian random 
variables may also become larger, deteriorating the filter 
performance. To overcome the linearization issue in the EKF, 
the UKF makes use of carefully chosen deterministic sample 
points called sigma points whose transformed ensemble mean 
and covariance capture the true mean and covariance. The 
sigma points are obtained as follows: 
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where  is the scaling parameter for the forth and higher 
moments of the distribution, W  is the weight of each point. 
The calculated sigma points are then passed through the 
nonlinear system equations to produce a set of transformed 
sample points. The predicted mean and covariance are 
calculated from the transformed sample points such that 

k
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In a similar manner, the sigma points are transformed through 
the nonlinear measurement equations, then, used to calculate 
the mean and covariance of predicted measurements as 
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In summary, the Kalman filter algorithms have the structure 
“predictor-corrector” in common where the means and 
covariances of a system and a measurement are propagated 
using the system and measurement model, and then they are 
updated with new current measurement. For a linear system, 
the mean and covariance are exactly updated by using the 
Kalman filter. However, for a nonlinear case, they are 
approximated by using the EKF which is based on linearized 
model (to the first order). The UKF, however, predicts the 
means and covariance up to the third order for Gaussian 
random variables by carefully chosen deterministic sample 
points, which provides higher accuracy than the EKF. 

 

4. SIMULATION RESULTS 

In this section, simulation results for the satellites relative 
motions incorporating the effects of 2J  geopotential 
disturbing force, atmospheric drag, and eccentricity in the 
chief satellite’s orbit are provided. In addition, the 
performance comparison between the EKF and the UKF for 
estimating the relative state variables with information on the 
relative range and the speed between two satellites, and the 
attitude of chief satellite are presented. The relative dynamics 
described in Section 2 is chosen as the system model, and the 
relative position vector as well as the speed prescribed in 
Section 3 is adopted in the measurement model for both EKF 
and UKF. The simulation is conducted for 2 orbit periods 
with an interval of 1 degree. The measurements have been 
used to update the a priori state with the same rate of system 
propagation. The simulation parameters including the initial 
state errors are described in Table 1. 

Table 1. Simulation Parameters 

 Simulation Parameters 

Eccentricity 0.001 / 0.03 

Altitude 700 km 
Chief 

Satellite 
Inclination 20 deg 

Q 4 2
6 6[(10 / ) ]cdiag r−
×  

Ⅰ 5 2
4 4[(3 10 / ) ]cdiag r−
××  

R 
Ⅱ 4 2

4 4[(3 10 / ) ]cdiag r−
××  

Ⅰ 3 3 3 6 6 6[5 10 3 10 4 10 1 10 1 10 1 10 ]T− − − − − −× × × × × ×       

EKF 

/UKF 
Initial 

State 

Error Ⅱ 3 3 3 3 3 3[5 10 3 10 4 10 1 10 1 10 1 10 ]T− − − − − −× × × × × ×       

Figs. 4~7 show the true and the estimated relative position 
between the chief and deputy satellites. It turns out that the 
applications of the EKF and the UKF to the relative state 
estimation with the satellite’s attitude and range and the 
speed information as their measurements bring forth good 
results for moderate errors in initial states and the 
measurements, irrespective of the 2J  and eccentricity and 
atmospheric drag. For the cases of significantly large errors 
in measurement and initial state, however, the EKF accuracy 
deteriorates due to the first order linearization in the 
measurement equation, while the UKF still shows a good 
performance. 
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Fig. 4. True and Estimated Position with J2, atmospheric drag, and 
eccentricity of 0.001 
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Fig. 5. True and Estimated Position with J2, atmospheric drag, and 
eccentricity of 0.03 
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Fig. 6. True and Estimated Position with small errors in Initial State 
and Measurements  
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Fig. 7. True and Estimated Position with large errors in Initial State 
and Measurements 

5. Conclusion 

In this paper, the EKF and UKF algorithms are applied to the 
problem of estimating the relative position between two 
satellites, in which the measurements system proposed in our 
previous work [Young-Gu Lee et al. 2007], are used. 
Simulation results show that both the EKF and UKF have 
good performances within reasonable initial conditions and 
system parameters, using aforementioned measurement 
system. Furthermore, the performance comparison between 
two nonlinear filters (EKF and UKF) are also presented. As 
uncertainties in system parameters and initial conditions 
become larger, the UKF shows better performance. 
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