
Design and Implementation of

Parallelized Linked List Class Library

Using Pthread Library

Hong-Soog Kim, Young-Ha Yoon, Dong-Soo Han

School of Engineering

Information and Communications University

P.O. Box 77, Yusong, Taejon 305-600, Korea

Abstract In this paper, we introduce the PLLCL:

Parallelized Linked List Class Library as the pre-

treatment approach of parallelism in business com-

puting areas, where the automatic parallelizing

compiler is not yet successful. The primitive op-

erations of linked list are parallelized using POSIX

thread library for the compatibility across the vari-

ous platforms. From the implementation, we iden-

ti�ed the shortcomings of POSIX thread library and

devised thread pool scheme in order to overcome

the limitations. Experimental results showed the

promising results for the pre-treatment approach of

parallelism.

Keywords: parallelized library, linked list, SMP,

Pthread, parallelization

1 Introduction

Although parallel processor systems are get-
ting popular, many hurdles such as the over-
head of parallelization, maintaining sustained
degree of parallelism and the di�culty of paral-
lel programming are still in unsolved state [1].
Albeit the �rst two obstacles are inherent and
unavoidable, the last one can be mitigated by
proper techniques. In order to exploit the ben-
e�ts of parallel processor system, it is prereq-
uisite to parallelize application programs with
appropriate parallel programming paradigm.
In case of parallelizing the existing sequential
program, automatic parallelizing compiler can
be used [2, 3].

With the view of the parallelism, the au-
tomatic parallelizing compilers take the form
of \post-treatment" of parallelism: program-
mer codes application programs with the se-
quential programming paradigm, then the au-
tomatic parallelizing compilers extract the po-
tential parallelism from the source codes and
generate parallelized programs using the spe-
ci�c parallel programming paradigm. Auto-
matic parallelizing compiler techniques, how-
ever, have mainly focused on the scienti�c com-
putations that have regular computation pat-
terns [4].

In the business application domains, current
automatic parallelizing compiler is not so much
useful as in the scienti�c computation areas.
The reason originates from the di�erences be-
tween the two application domains.

In scienti�c computations, FORTRAN has
been used as major language and DO loop is
used as main control construct and array as
main data structure [5, 6]. In business appli-
cation domains, however, the major languages
support pointer operations that make compli-
cated the analysis of program for paralleliza-
tion of the existing sequential program [7].
Moreover, in these languages, WHILE loop is
often used as control construct with dynamic
data structure such as linked list, tree and
graph.

To cope with the di�erent situations and the
limitations of automatic compiler techniques
in business domains, we propose the \pre-

treatment" of parallelism: the parallelized
class libraries, which prepare the parallelized
methods for common operations, if possible.
The idea is as follows: First, the well designed
class libraries are prepared by parallel pro-
gramming experts, then the normal program-
mers use the methods which provide the par-
allelized operations but hide their complicated
parallel mechanism. The normal programmers
have only to use the methods provided by par-
allelized class library.

The paper is organized in �ve sections. Our
parallelized linked list library is introduced in
section 2. Here, we explain the related data
structure, partition management and imple-
mentation of parallelized search. In section 3,
performance evaluation results are presented
with the experiment environment. In section
4, we summarize related work. Finally, we re-
view our approach and discuss the future work
in section 5.

2 Parallelized Linked List

Class Library

For the evaluation of the validity of pre-
treatment approach, we selected the linked list
because it is common data structure for busi-
ness applications such as table lookup, web
search and search engine. We have designed
and implemented the parallelized linked list
class library (PLLCL) on the shared memory
parallel processor systems. In implementing
parallel operations, the POSIX thread is used.

To raise the reusability and extendibility
of the library, the basic operations, such as
insertion, deletion and search, of linked list
are implemented as methods of class. Hence,
other more complicated operations can be built
by combining the functionality of these opera-
tions.

The parallelized operations that require the
thread manipulations are hidden as private
methods while the public methods, which use
parallelized private methods internally, are ex-
posed. Therefore, normal programmers have
only to use the public methods to exploit the

bene�ts of the hidden parallelized operations.

2.1 Primitive Operations of Linked

List

There are three primitive operations in linked
list: the insertion, deletion and search of the
node with certain conditions. In case of imple-
menting the linked list using array, insertion,
deletion and conditional search operations on
linked list with n nodes require O(n) time com-
plexity. When implementing the linked list
at the cost of extra memory for pointer, the
pure insertion and deletion operations with n
nodes can be performed in O(1) time complex-
ity. However, the search operation with condi-
tions still requires O(n) time complexity.
Since the insertion and deletion operation

also require search operation to locate the in-
sertion point or the node to be deleted, search
operations are critical. In order to speed up
the search operation, we divide a linked list
into p partitions, allocate one thread to each
partition and get each thread search the their
own partition. Partitions are also repartitioned
as insertion and deletion operations make the
partitions unbalanced.

2.2 Data Structure for Parallelized

Search

For e�cient parallel search operations, The
PLLCL tries to keep the even partition
size. PLLCL has a private variable
concurrency level that keeps the number of
threads used for parallelized searches. The
number of partition p is determined by concur-
rency level. The position array and partition
pointer array are added to facilitate the search
operation. Figure 1 depicts the eight partitions

0

p_ptr[0]

... 8 ...

p_ptr[1]

16 ...

p_ptr[2]

24 ...

p_ptr[3]

32 ...

p_ptr[4]

40 ...

p_ptr[5]

48 ...

p_ptr[6]

56 ...

p_ptr[7]

62

p_ptr[8]

Figure 1: Data structures for partition balanc-
ing

of 63 nodes with position array and pointer ar-
ray when the concurrency level is eight.

p_ptr[1]

0

p_ptr[0]

1 2 X 3 4 5 6 7

p_ptr[2] p_ptr[3] p_ptr[4]

p_ptr[1]

0

p_ptr[0]

1 2 3 4 5 6 7

p_ptr[2] p_ptr[3] p_ptr[4]

Figure 2: Node insertion

p_ptr[1]

0

p_ptr[0]

1 2 X 3 4 5 6 7

p_ptr[2] p_ptr[3] p_ptr[4]

record to be
deleted

p_ptr[1]

0

p_ptr[0]

1 2 X 3 4 5 6 7

p_ptr[2] p_ptr[3] p_ptr[4]

Figure 3: Node deletion

When the number of partitions is p, the posi-
tion array position[] is an array of p+1 integers,
which hold the position number of beginning
node of each partition. The partition pointer
array p ptr[] is an array with p + 1 pointers,
which point the beginning node and ending
node of each partition. In this scheme, parti-
tion Pi is designated by p ptr[i] and p ptr[i+1].
The position number of the beginning node in
the partition Pi is stored in position[i]. Po-
sition array is used to determine the size of
partition as well as choosing an appropriate
partition to locate the node for insertion and
deletion without searching the whole nodes.

2.3 Partition Management

As the insertion and deletion operations are
performed, the balanced partitions would be-
come jagged. In order to keep the balanced
partitions, the linked list is repartitioned.

For every insertion operation, the partition
pointers p ptr[i] moves one backward when the
node is inserted in partition Pj ,where i > j.
This makes the all partitions even except for
the last partition. Figure 2 depicts the inser-
tion operation and related activities for main-
taining balanced partition size.

When the last partition becomes large com-
pared to other even partition, the speed of par-
allel search may depend on the search opera-
tion on the last partition. Therefore, repar-
tition is needed. Current implementation of
PLLCL adopts seven repartitioning polices.
They are categorized into micro-repartitioning
and macro-repartitioning policies.

The micro-repartition policies determine
the time of repartitioning based on the
concurrency level (i.e. the number of par-
titions). When the number of nodes in the
last partition exceeds the concurrency level,
repartitioning is performed. These policies
have an advantage of keeping the partitions
balanced always but incur frequent repartition-
ings. The micro-repartitioning polices are sub-
divided into three polices: micro-immediate,
micro-moderate and micro-delayed repartition-
ing policy. Each of micro-repartitioning polices
performs the repartitioning when the exceed-
ing number of nodes in the last partition be-
comes one, half of the concurrency level and
concurrency level respectively.

The macro-repartitioning policies reparti-
tion the linked list based on the current parti-
tion size. Current partition size is the num-
ber of nodes in each partition except for
last one. There are four macro-repartitioning
policies: macro-quarter, macro-half, macro-
3quarter and macro-delayed repartitioning pol-
icy. Each of these macro-repartitioning policies
repartitions the linked list when the exceeding
number of nodes in the last partition becomes
quarter, half, three quarter and whole of cur-
rent partition size respectively. These policies
minimize the number of repartitioning but the
last partition is more likely to unbalanced.

In case of node deletion, PLLCL moves the
partition pointers p ptr[i] one forward if the
deleted node is in partition Pj ,where i > j.
Activities related to deletion operations are de-
picted in Figure 3. The repartition policies for
deletion operation are similar to those of inser-
tion operations.

2.4 Parallelized Search and Parti-

tion Management

Parallel search is implemented by threaded
search operations. Each thread Ti (1 � i �

concurrency level) searches the nodes in par-
tition Pi with the given key. A thread, which
�rstly �nds the node with the given key, halts
the executions of other search threads and re-
turns the pointer of the node. For the com-
patibility of PLLCL across the various plat-
forms, Pthread library is used for the imple-
mentation. As the Pthread standard supports
C language interface only [8, 9], the creation
of search threads of PLLCL is implemented as
follows: First, we de�ne the dummy C linkage
interface function that is declared as friend in
C++ class and then call the threaded search
method in dummy C linkage interface func-
tion. Finally, the dummy C linkage interface
function is passed to the pthread create() as
third argument [10, 11, 12].

In management of search threads, our initial
implementation was to create threads when-
ever a search request occurs and get them
away when search request is completed. The
check on search completion was implemented
with pthread join() function, which does not
support anonymous join. Consequently, par-
allelized search operation had to wait until
all threaded searches were completed although
only the result of �rstly successful threaded
search was meaningful in most cases. Anony-
mous join is required in this case, when the re-
sult of �rstly completed thread is meaningful,
such as parallel search in PLLCL. Hence, the
initial thread management scheme is revealed
to provoke the considerable overheads that di-
minish the speed-up gains from the parallelized
search.

To avoid this overhead, we reimplemented
the thread management as thread pool in
which threads were prepared in the PLLCL
initialization, activated and deactivated in ac-
cordance to the search request initiation and
search request completion. This implementa-
tion reduced the overhead related to thread
creation and destruction. The Pthread stan-

dard, however, does not support anonymous
join, which is indispensable for situations such
as parallel search method of PLLCL. This
shortcoming was resolved by using primitive
semaphores and some ag variables. By using
semaphores and some ag variables, threads in
thread pool are activated by the search request
and deactivated by the search completion noti-
�cation of other thread or failure of the search
with non-existing key.

3 Performance Evaluations

To evaluate the current implementation of
PLLCL, we measured the performance over-
head of partition management and execution
time of parallelized search in PLLCL over se-
quential search. The experiment environment
is as follows.

H/W : 4-way Pentium III Xeon
500MHz with 512K L2 cache, 1GB
main memory
OS : Solaris 8 Beta Refresh Intel Plat-
form
Compiler : GNU C++ compiler 2.8.1

Figure 4 presents the relationship between
number of repartitions and number of ap-
pended node. This result con�rms the expec-
tation that the macro-repartitioning policy is
inferior to micro-repartitioning policy with re-
spect to number of repartitioning.

Figure 5 shows the relationship between cu-
mulative time of append operations and num-
ber of appended nodes. This result reveals
that the append time is independent on the
partition management policies. Moreover, the
time of append with the partition manage-
ment is approximately equal to or slightly more
than that of serial append without the par-
tition management. From the Figure 4 and
Figure 5, our partition management does not
invoke overheads in append (or insert) op-
erations. Therefore, we can conclude that
the micro-repartitioning policies are superior
to macro-repartitioning policies in maintaining
balanced partitions for parallelized search.

1.0e+01

1.0e+02

1.0e+03

1.0e+04

1.0e+05

1.0e+06

0.0e+00 1.0e+05 2.0e+05 3.0e+05 4.0e+05 5.0e+05 6.0e+05 7.0e+05 8.0e+05 9.0e+05 1.0e+06

N
um

. o
f R

ep
ar

tit
io

ns

Number of Appended Nodes

Number of Repartitionings by Repartitioning Policies
 (Concurrency Level = 4)

MICRO_IMMEDIATE
MICRO_MODERATE

MICRO_DELAYED
MACRO_QUATER

MACRO_HALF
MACRO_3QUATER
MACRO_DELAYED

Figure 4: Number of repartitionings

0

1

2

3

4

5

6

0.0e+00 1.0e+05 2.0e+05 3.0e+05 4.0e+05 5.0e+05 6.0e+05 7.0e+05 8.0e+05 9.0e+05 1.0e+06

T
im

e
(s

ec
)

Number of Appended Nodes

Cumulative Time to Append by Repartitioning Policies
 (Concurrency Level = 4)

Serial Append
MICRO_IMMEDIATE
MICRO_MODERATE

MICRO_DELAYED
MACRO_QUATER

MACRO_HALF
MACRO_3QUATER
MACRO_DELAYED

Figure 5: Cumulative time to append

In Figure 6, the average search time of par-
allelized version is compared to that of se-
rial version. The average time is calculated
over one hundred experiments. Here, micro-
moderate repartitioning policy is used and the
concurrency level (i.e. number of threads in
thread pool) is varied. Across all concurrency
levels, parallelized search has less execution
time than serial search. Figure 7 presents the
average search time varying the repartitioning
policies. This shows every repartitioning policy
has approximately minimum search time when
concurrency level is four.

4 Related Works

The approaches to utilize the parallelism can
be categorized into post-treatment and pre-
treatment by the extraction time of paral-
lelism. The latter includes the parallelized li-
brary, and language extension to support the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.0e+00 1.0e+05 2.0e+05 3.0e+05 4.0e+05 5.0e+05 6.0e+05 7.0e+05 8.0e+05 9.0e+05 1.0e+06

tim
e(

se
c)

Number of Nodes

Average Search Speed Comparison by Concurrency Level

Serial Search
2
4
8

16
32
64

Figure 6: Average search time

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

tim
e(

se
c)

Concurrency Level

Average Search time Comparison by Concurrency Level (num_of_nodes=10000)

MICRO_IMMEDIATE
MICRO_MODERATE

MICRO_DELAYED
MACRO_QUATER

MACRO_HALF
MACRO_3QUATER
MACRO_DELAYED

Figure 7: Average search time vs. Repartition-
ing policy

parallelismwhile the former indicates the auto-
matic parallelizing compilers. With this classi-
�cation, the related works can be summarized
as follows.

Related to automatic parallelizing compil-
ers, there have been many research projects
that mainly deal with the FORTRAN lan-
guages. Examples of these projects are
PIPS [13], ParaScope [14], Polaris [15] and
SUIF [16].

Related to the expressing parallelism and
multi-threading construct at user level, there
have been two approaches. The �rst one is
de�ning user-level multi-thread packages, like
POSIX threads [17], Solaris thread [9] and
DECthread [18]. The other one is extending
sequential languages, such as C, with multi-
threading functionality or de�ning new lan-
guage with multi-threading functionality such
as Java [19].

Related to the parallelized library approach,

Elmasari et al. implemented a threaded com-
munication library (TCL) [20]. The TCL
is a user-level thread package that provides
primitives to support programs under a multi-
threaded program execution model. While the
POSIX threads is solely for multi-threading,
The TCL tightly coupled multi-threading and
communication/synchronization.

Compared to TCL, PLLCL is distinguished
from TCL in that the PLLCL is based on the
POSIX thread for compatibility across the dif-
ferent platforms and mainly focused on the bal-
anced load distribution among the threads for
speed-up. In the PLLCL, prepared thread pool
and partition management scheme are used to
minimize the thread creation overhead and to
speed-up the critical operation.

5 Concluding Remarks and

Future Work

In this paper, we suggested one approach to
deal with parallelism for multiprocessor sys-
tems. Our approach is pre-treatment of paral-
lelism compared to the automatic parallelizing
compiler techniques, which extract parallelism
from existing programs.

Experimental evaluation ascertained the va-
lidity of our approach. We think our ap-
proach is complement to automatic paralleliz-
ing technique rather than orthogonal. Through
the implementation of PLLCL, we found that
the thread management facilities supported
by current Pthread standard are insu�cient.
They are lack of anonymous join, thread en-
abling/disabling and thread pool for e�cient
implementation.

Currently we are trying to extend our expe-
riences in PLLCL to tree data structure which
is another important data structure used in
business applications.

References

[1] J. L. Hennessy and D. A. Patterson. Com-
puter Architecture: A Quantitative Ap-

proach. Morgan Kaufmann Publishers
Inc., San Mateo CA, 1995.

[2] Michael Wolfe. Parallelizing compilers.
ACM Computing Surveys, 28(1), March
1996.

[3] Michael Wolfe. High Performance Com-
pilers for Parallel Computing. Addison-
Wesley Publishing Company Inc., 1996.

[4] Christine Eisenbeis and J. C. Sogno. A
general algorithm for data dependence
analysis. Technical Report RR-1699,
Recherche de l'INRIA, May 1992.

[5] Hans Zima and Barbara Chapman. Su-
percompilers for Parallel and Vector Com-
puter. ACM Press, New York, 1996.

[6] Michael Wolfe. Optimizing Supercompil-
ers for Super-computers. The MIT Press,
Cambridge, MA, 1989.

[7] Dong-Soo Han and Takao Tsuda. Pro-
gram analysis of optimizing compilers for
record handling programs. In Interna-
tional Conference on Parallel and Dis-
tributed Processing Techniques and Appli-
cations, pages 1248{1259, May 1996.

[8] B. Wilkinson and M. Allen. Parallel Pro-
gramming: Techniques and Applications
Using Networked Workstation and Paral-
lel Computers. Prentice Hall, 1999.

[9] Sun Microsystems. Multithreaded Pro-
gramming Guide. Sun Microsystems Inc.,
1997.

[10] Scott Meyers. E�ective C++. Addison
Wesley, 1992.

[11] Magaret A. Ellis and Bjarne Strousrup.
The annotated C++ Reference Manual.
Addison Wesley, 1990.

[12] David R. Butenhof. Programming with
POSIX thread. Addison-Welsley Longman
Inc., 1997.

[13] F. Irigoin, P. Jouvelot, and R. Triolet. Se-
mantical interprocedural parallelization:
An overview of the pips project. In Pro-
ceedings of the 1991 International Confer-
ence on Supercomputing, pages 212{219,
July 1991.

[14] Mary W. Hall et al. Experiences using the
parascope editor: an interactive parallel
programming tool. In Proceedings of the
4th ACM SIGPLAN symposium on Prin-
ciples & practice of parallel programming,
pages 33{43, 1993.

[15] Bill Pottenger and Rudolf Eigenmann. Id-
iom recognition in the polaris paralleliz-
ing compiler. In Proceedings of the 9th
ACM International Conference on Super-
computing, pages 444{448, 1995.

[16] Byoungro So, Sungdo Moon, and
Mary W. Hall. Measuring the e�ective-
ness of automatic parallelization in suif.
In Proceedings of the 1998 International
Conference on Supercomputing, pages
212{219, 1998.

[17] IEEE. Portable Operating System In-
terface (POSIX) - Part 1 : System ap-
plication: Programming Interface (API).
IEEE Standard Press, 1996.

[18] Digital Equipment Corporation. Guide to
DECthreads. Digital Equipment Corpora-
tion, part number AA-2QDPC-TK, 1996.

[19] Stephen J. Hartley. Concurrent Program-
ming : The Java Programming Language.
Oxford University Press, February 1998.

[20] Nasser Elmasri, Herbert H. J. Hum, and
Guang R. Gao. The threaded commu-
nication library: preliminary experiences
on a multiprocessor with dual-processor
nodes. In Proceedings of the 9th ACM
international conference on Supercomput-
ing, pages 195{199, 1995.

