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Abstract—We evaluate a hybrid automatic repeat request
(HARQ) scheme adopting incremental redundancy (IR) type
under a finite-length codeword condition in AWGN channels.
In the IR-type HARQ scheme, a long codeword is divided into
L blocks, so that L becomes the maximum number of HARQ
rounds. Although a finite-length codeword has a transmission
rate loss from the channel capacity, IR-type HARQ schemes can
significantly reduce the loss due to an early-termination effect.
We find the sub-optimal coding rate of a codeword for given
parameters such as signal-to-noise ratio (SNR), error probability
constraint, and L. In addition, we scale the gap between the
channel capacity and the average transmission rate of the IR-
type HARQ and show that the gap decreases in the order of
1/L when a specific condition is satisfied while the gap of the
non-HARQ case decreases in the order of 1/

√
L.

Index Terms—Incremental redundancy, AWGN, finite-length
packet

I. INTRODUCTION

Information-theoretic channel capacity has been used to
measure the maximum coding rate with an arbitrarily low error
probability in the regime of infinite block-length [1]. In reality,
however, the block-length must be finite. Moreover, real-time
applications such as voice over IP and gaming traffic usually
generate small-sized packets. Therefore, information-theoretic
channel capacity may mislead in such an environment. In the
regime of finite block-length, block error probability (BEP)
is non-zero even under a coding rate lower than the capacity
and it should be evaluated. The upper bound of the block
error probability for given block-length and coding rate was
studied by Feinstein [2] and Shannon [3]. Recently, Polyanskiy
et al. [4] found lower and upper bounds of the maximal coding
rate achievable at given block-length and error probability.
These bounds also provide tighter BEP bounds for given
coding rate and block-length than the conventional bounds.
For a finite-length packet, the mutual information is recognized
as a random variable and the above error probability bound
depends on the distribution of the mutual information. Buck-
ingham et al. [5] defined the information outage probability
(IOP) as the probability that the mutual information is lower
than the coding rate and showed that the IOP well estimates
the BEP achieved by the actual codes.

In order to reduce the error probability or increase the

coding rate, we need to increase the block-length. However, if
we use acknowledgement (ACK) or non-ACK(NACK) feed-
back in automatic repeat and request (ARQ) schemes, error
probability performance or the achievable coding rate may be
improved. To obtain this gain, we consider an incremental re-
dundancy type hybrid ARQ (IR-HARQ) scheme which yields
higher spectral efficiency than other ARQ schemes [6], [7]. In
the IR-HARQ scheme, a transmitter makes a long codeword
composed of several blocks (e.g., L blocks) and sends the
first block in the initial HARQ round. If the receiver feeds
back NACK, additional redundancy blocks are transmitted and
this process repeats until the whole blocks of a codeword
are transmitted. Polyanskiy et al. [8] showed that the max-
imal achievable rate can be significantly improved by using
variable-length coding and feedback in general discrete, mem-
oryless channels (DMCs), and provided numerical examples
only for binary symmetric channel (BSC) and binary erasure
channel (BEC). In their variable-length coding, the receiver
attempts to decode a codeword at every symbol reception and
requests the transmitter not to send another symbol right after
the decoding is successful. Moreover, the maximum number of
symbols is not limited. In a practical scheme, however, a unit
of transmission and reception is a block composed of typically
several tens of symbols. Therefore, a block retransmission
scheme based on ACK/NACK feedback and the limitation on
the number of blocks should be considered together. Moreover,
performance analysis in an AWGN environment is required
in reality. Williamson et al. [9] considered the transmission
of a group of symbols and showed that the capacity can be
approached with small block lengths by using rate compatible
sphere-packing (RCSP) analysis and a numerical optimization.
However, they did not intuitively present how the external
parameters such as L affect the performance.

In this paper, we evaluate the performance gain of the IR-
HARQ over the non-HARQ scheme under a finite block-length
regime in AWGN channels by scaling the gap between the
capacity and the performance of the IR-HARQ according to L.
We measure a long-term average transmission rate (LATR) de-
fined as the total number of information-bits transmitted over
the total number of symbols used to send the information-bits.
The coding rate of the IR-HARQ is optimized to maximize the
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LATR while keeping the error probability not exceeding the
a given limit. A random encoding and sup-optimal decoding
scheme is used in our IR-HARQ protocol. Moreover, by using
a sub-optimal rate selection scheme, we scale the gap between
the LATR performance of the IR-HARQ and the channel
capacity with parameter L. Through scaling, we show that the
performance gap to the capacity has two different tendencies:
one scaling law indicates that the gap decreases approximately
on the order of 1/L when the size of the block-length is small,
and L is large. The other scaling law indicates that the gap
decreases on the order of 1/

√
L for a large block-length, and

the small L. We show the criterion distinguishing these two
scaling laws.

II. ERROR PROBABILITY OF A FINITE-LENGTH PACKET

A. System model

We consider the following communication model. A set
M := {1, 2, · · · ,M} represents a message set and messages
are chosen equiprobably. A and B represent the input and
output sets, respectively. A mapping F : M 7→ A represents
an encoder. A mapping G : B 7→ M represents a decoder. A
channel follows a conditional probability, pY n|Xn : A 7→ B,
where Xn and Y n represent the length-n random variables
in A and B, respectively. If the error probability of ev-
ery message is less than or equal to φ, i.e., Pr[G(Y n) ̸=
m|Xn = F(m)] ≤ φ, ∀m ∈ M, then the codebook is called
(n,M,φ)-code. Xn and Y n follow the marginal probabilities
of pXn(xn) and pY n(yn), respectively, and a joint probability
of pXn,Y n(xn, yn). The set A can be an n-fold Cartesian
product of input alphabet A. If we consider a constraint on
the cost of codewords such that F = {xn : c(xn) ≤ P}
where c(xn) is the cost function and P is a constraint, then
the distribution pXn is defined only on F. We consider the
random coding in which we randomly choose M codewords
from F by pXn(xn).

B. Lower bound of coding rate in AWGN channels

We briefly introduce to find the lower bound of the achiev-
able coding rate of (n,M,φ)-code. Coding rate is defined as
R , log2 M

n . A sub-optimal decoding method is introduced
to find a lower bound (achievability) of coding rate. For a
given codebook C = (c1, · · · , cM ), M likelihood testers are
operated in parallel such as

Zci(y
n) = 1

{
pY |X=ci(y

n)

pY (yn)
≥ γ

}
, (1)

where the optimal γ value is defined in [4]. The decoder
returns

min j s.t. {j|Zcj (y
n) = 1,∀j ∈ M}. (2)

We consider a real-valued AWGN channel where pY |X=xn =
N (xn, In) which denotes a real Gaussian random vector with
mean vector xn and covariance matrix In. We consider an
equal-power constraint on the input set where, i.e., Fn ,
{xn : ∥xn∥2 = nP} ⊂ Rn. And we choose a zero-mean,
circularly symmetric, real, Gaussian distribution as an output

distribution, pY (yn) = N (0, σ2
Y In). In this environment, the

lower bound of coding rate was derived by Polyanskiy et al.
in Theorem 67 of [4] as follows:

Theorem 1 (Polyanskiy’s bounds in AWGN): For the AWGN
channel with SNR P and the equal-power constraint, the
coding rate of (n,M,φ)-code is lower-bounded by

R ≥ C −
√

V

n
Q−1(φ) +

O(1)

n
, (3)

where C = 1
2 log(1 + P ) is the channel capacity and V =

P
2

P+2
(P+1)2 (log e)

2 is the channel dispersion. For a sufficiently
large n ≥ 100, the last term of the right-hand side (RHS)
in (3) rapidly decreases, compared with other terms. Using
Theorem 1, φ(R) is upper-bounded as

φ(R) ≤ Q

(
C − (R−O(1/n))√

V/n

)
. (4)

(4) implies that we can achieve a rate R with at least φ(R) =

Q

(
C−(R−O(1/n))√

V/n

)
. For a sufficiently large n > 100, we

can approximate the upper bound of the error probability of
(n,M,φ)-code as follows:

φ(R) ≤ Q

(
C − (R−O(1/n))√

V/n

)
≈ Q

(
C −R√
V/n

)
= φ̂(R).

(5)

III. OPTIMIZATION OF THE IR-HARQ

A. Error probability on the kth HARQ round

We consider the following IR-HARQ protocol in AWGN
channel. An encoder maps a message into a length-n code-
word. A chosen codeword xn is divided into L blocks
of n′ symbols, i.e., xn = (x(1), · · · , x(L)) where x(k) =
(xn′(k−1)+1, · · · , xn′k). The first block is transmitted on the
first HARQ round. If an ACK is fed back, the transmitter
sends a new message. Otherwise, the transmitter sends the
next block. It repeats until the Lth block is sent. Let Ak (Ak)
denotes an event that the decoder declares the ACK (NACK)
on the kth HARQ round. We define Rf , log2(M)

n′ which is
the initial transmission rate, i.e. the transmission rate when the
first block is transmitted. We use Rf as a control parameter.

We evaluate the performance of the IR-HARQ based on
the lower bound of the coding rates on the kth HARQ
round similar to Theorem 1. However, we need to modify
some conditions to apply the theorem to the IR-HARQ case.
The equal power constraint is set on each HARQ round
as
∥∥x(k)

∥∥2 = n′P, for 1 ≤ k ≤ L. Then, a codebook
C is constructed by randomly selecting M codewords from
Fn , {xn :

∥∥x(k)
∥∥2 = n′P, for 1 ≤ k ≤ L} ⊂ Rn. After

the kth HARQ round, the decoder has an output sequence
yn

′k = (y(1), · · · , y(k)). The decoder operates the M likeli-
hood testers for yn

′k:

Zci(y
n′k) = 1

{
pY |X=ci(y

n′k)

pY (yn
′k)

≥ γ

}
. (6)
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Fig. 1. Approximated maximum error probability at the kth HARQ round for
varying Rf when P = 3 dB and n′ = 100.

Since we use the same sub-optimal decoder and the equal
power constraint for the length-n′k codeword, the achievable
coding rate of the (n′k,M,φ)-code is also achieved by de-
coding on the kth HARQ round1:

Rf/k =
log2 M

n′k
≥ C −

√
V

n′k
Q−1(φ) +

O(1)

n′k
, (7)

Then, the maximum error probability after the kth HARQ
round is approximated as

φ(k,Rf ) ≈ φ̂(k,Rf ) = Q

(
kC −Rf√
kV/n′

)
. (8)

For a fixed n′, Rf depends only on M and is assumed to be
a real number. Fig. 1 shows the φ̂(k,Rf) for varying Rf for
k = 1, · · · , 4 when P = 3 dB, and n′ = 100. We can observe
that φ (k, kC) = 0.5 where C = log2(1 + P ). And the slope
of φ(k,Rf) becomes lower as k increases.

B. Expected number of HARQ rounds

Since the number of HARQ rounds used for each message
is a random variable, the spectral efficiency of the IR-HARQ
scheme should be observed for a very long time. Si denotes
the number of HARQ rounds used for transmission of the ith
message. The average transmission rate 2 over K messages
becomes K log2 M∑K

i=1 n′Si
= Rf

1
K

∑K
i=1 Si

. If K goes to infinity, we

obtain the long-term average transmission rate (LATR) as Rf
E[S]

[bps/Hz]. Now, we derive E[S].
The probability of S = k can be written as

P[S = k]=

{
P[A1, · · · ,Ak−1]− P[A1, · · · ,Ak], for k < L
P[A1, · · · ,AL−1], for k = L

(9)

1Rigorous proof will be presented at a journal version and is omitted in
this version.

2[the total number of information-bits attempted to be transmitted]/[the total
number of symbols used]

The expected number of HARQ rounds per message is derived
as

E[S] =
L∑

k=1

kP[S = k] = 1 +
L−1∑
k=1

P[A1, · · · ,Ak], (10)

where P[A0] is 1 since NACK always occurs if there is no
transmission. And it is upper-bound and approximated as

E[S] ≤ 1 +
L−1∑
k=1

P[Ak] (11)

≈ 1 +

L−1∑
k=1

φ(k,Rf) (12)

≈ 1 +
L−1∑
k=1

Q

(
kC −Rf√
kV/n′

)
, (13)

where (12) follows from the assumption that the NACK event
is identical to the error event3.

C. Optimization Problem

We find the maximum Rf to satisfy that the maximum error
probability is less than or equal to ϵ for given n′ and L.
Parameter n′ can be given from resource allocation rules in
a specification and L can be given from a delay constraint.
If we obtain the optimal Rf, M =

⌊
2n

′Rf

⌋
is selected as the

optimal M . We optimize Rf to maximize the LATR for given
n′, ϵ and L as follows:

R∗
f = arg

Rf

max
Rf

E[S|n′, Rf, L]
s.t. φ̂(L,Rf) ≤ ϵ. (14)

T (Rf) denotes the objective function of (14). T (Rf) has
multiple local maximum points. Therefore, we have to use
a numerical search to find the optimal solution, R∗

f .

IV. SCALING PERFORMANCE

We scale the LATR performance in both non-HARQ and
IR-HARQ cases and compare two schemes using scaling law
equations in terms of L.

In the non-HARQ case, the only way to increase the
achievable rate is to increase the codeword length n, as
shown in (3). We assume that n′ is the minimum number
of symbols assigned to one transmission. Then, the codeword
length increases as a multiple of n′, such as n = n′L. If L
goes to infinity, the achievable rate converges to the channel
capacity. However, the maximum allowable HARQ rounds, L,
is limited by the delay or buffer limitation in reality. We can
easily observe how fast the achievable rate goes to the channel
capacity by scaling the gap between the achievable rate and
the channel capacity according to L such as

∆NH = C −RNH ≈
√

V

Ln′Q
−1(ϵ), (15)

3This assumption helps to make the analysis tractable. The study on the
effect of mismatch between the NACK event and the error event remains for
future work.
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where RNH is the achievable coding rate of the non-HARQ
case as indicated by (3). From (15), we can observe that the
gap decreases on the order of 1/

√
L as L increases.

Now, we scale the gap between the LATR of IR-HARQ and
the channel capacity. A difficulty in scaling the LATR of the
IR-HARQ occurs due to a complicated form of the objective
function in (14) and numerical searches for R∗

f . We define Rf,ϵ
as the maximum initial transmission rate satisfying the error
probability constraint after the Lth HARQ round. Then, from
(8), Rf,ϵ is expressed as

Rf,ϵ = LC −
√

LV

n′ Q
−1(ϵ). (16)

We use Rf,ϵ as a sub-optimal solution instead of R∗
f . As shown

in Fig. 2, T (Rf,ϵ) approaches T (R∗
f ) as L increases especially

at low P . The difference between the channel capacity and the
LATR of IR-HARQ with Rf,ϵ is derived as

∆IR = C − Rf,ϵ

E[S]
=

C

E[S]

(
E[S]−

(
Rf,ϵ

C

))
. (17)

We approximate the upper bound of E[S] using (13), which
approximately yields the worst case of T (Rf,ϵ), as follows
(see Appendix A for the detail calculation)

E [S|Rf,e] ≈ min

(
L− 1

C

√
LV

n′ Q
−1(ϵ) + 0.5(1− ϵ), L

)
.

(18)

Note that the sign of 0.5(1 − ϵ) − 1
C

√
LV
n′ Q

−1(ϵ) de-
termines the value of E [S|Rf,e]. We set B = 1 if

0.5(1− ϵ) < 1
C

√
LV
n′ Q

−1(ϵ) and B = 0, otherwise. If we
substitute (18) into (17), the gap is approximated as

∆IR ≈


C0.5(1−ϵ)

L− 1
C

√
LV
n′ Q−1(ϵ)

, if B = 1,√
V
Ln′Q

−1 (ϵ) , if B = 0.
(19)

In the case of B = 1, the scaling law can be further
approximated for a large L as

C0.5(1− ϵ)

L− 1
C

√
LV
n′ Q−1(ϵ)

≈ C0.5(1− ϵ)

L
. (20)

From (20), we can observe that the gap decreases inversely
with L if B = 1. Otherwise, the gap decreases inversely with√
L which is the same scaling with the non-HARQ case. As

n′ is smaller, ϵ is smaller, or L is larger, the probability that
B becomes 1 increases.

A. Numerical Results

Fig. 3(a) shows the gap to the channel capacity as L
increases for P = 0 dB, n′ = 100, and ϵ = 10−2. Since these
parameters satisfy 0.5(1− ϵ) < 1

C

√
LV
n′ Q

−1(ϵ), the first law
in (19) is applied. We can observe that the two gaps of the IR-
HARQ schemes with the optimal rate selection, R∗

f , and with
the sub-optimal rate selection, Rf,ϵ agree well with the scaling
law (19) especially for L larger than 8. The approximated
scaling law (20) is also close to the two gaps especially for L
larger than 14.

The LATR gap between the IR-HARQ and non-HARQ is
approximately 0.04 bits per channel use (BPCU) at L = 10.
In order to obtain 0.05 bps/Hz gap from the channel capacity,
the non-HARQ scheme requires only L = 18 while the IR-
HARQ scheme requires L = 6. Since the scaling law in (20)
well agree with the LATR of the IR-HARQ with the optimal
solution, we can know that the gap decreases on the order of
1/L.

Fig. 3(b) shows the gap to the channel capacity as L
increases for P = 10 dB, n′ = 1000, and ϵ = 10−2. Since
these parameters satisfy 0.5(1 − ϵ) > 1

C

√
LV
n′ Q

−1(ϵ), the
second law in (19) is applied. We can observe that the gap
between the LATR and the channel capacity decreases on the
similar order with that of the non-HARQ scheme. Therefore,
if the condition 0.5(1 − ϵ) > 1

C

√
LV
n′ Q

−1(ϵ) is satisfied, we
do not need to use the IR-HARQ schemes.

V. CONCLUSIONS

The performance of the IR-type HARQ scheme was eval-
uated under a finite-length codeword condition in AWGN
channel. We formulated an optimization problem and proposed
a numerical searching method in order to optimize the coding
rate of a codeword for given parameters such as average
SNR, error probability constraint, the size of a block, and
L. We scaled the gap between the channel capacity and the
average transmission rate of the IR-type HARQ and showed
that the gap decreases in the order of 1/L if the condition
0.5(1− ϵ) < 1

C

√
LV
n′ Q

−1(ϵ) is satisfied while the gap of the

non-HARQ case decreases in the order of 1/
√
L.
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Fig. 3. The LATR gap to the channel capacity versus L at ϵ = 10−2.

APPENDIX A
APPROXIMATION OF E[S]

Note that we use Rf,ϵ instead of Rf,∗. By substituting Rf,ϵ
in (16) into φ̂(k,Rf), φ̂(k,Rf,ϵ) can be expressed as

φ̂(k,Rf,ϵ) = Q

 (k − L)C +
√

LV
n′ Q

−1(ϵ)√
kV/n′

 . (A.1)

From (13),

E[S|Rf,ϵ] ≤ 1 +
L−1∑
k=1

φ̂(k,Rf,ϵ) (A.2)

≈ 1 +

∫ L

1

φ̂(x,Rf,ϵ)dx+

L−1∑
k=1

1

2
[φ̂(k,Rf,ϵ)− φ̂(k + 1, Rf,ϵ)]

(A.3)

= 1 +

∫ L

1

φ̂(x,Rf,ϵ)dx+ 0.5φ̂(1, Rf,ϵ)− 0.5φ̂(L,Rf,ϵ)

(A.4)

≈ 1 +

∫ L

1

φ̂(x,Rf,ϵ)dx+ 0.5(1− ϵ), (A.5)

where (A.5) follows from the fact that φ̂(1, Rf,ϵ) =

Q

(
(1−L)C+

√
LV
n′ Q−1(ϵ)√

V/n′

)
≈ 1 for a sufficiently large L

and φ̂(L,Rf,ϵ) = ϵ. Using the fact φ(L,Rf,ϵ) = ϵ and
1 − Q(α) = Q(−α), x satisfying φ̂(x,Rf,ϵ) = 1 − ϵ can

be found as x0 =

(√
L−

√
V/n′Q−1(ϵ)

C

)2

. Therefore, for a

small ϵ (< 0.01), φ̂(x,Rf,ϵ) ≥ 1 − ϵ for x ≤ x0. We are

interested in a point x1 = L − 2Q−1(ϵ)
C

√
LV
n′ which is less

than x0 since x0 − x1 =
(

Q−1(ϵ)
C

√
V
n′

)2
. By dividing the

integral in (A.5), E[S|Rf,ϵ] is approximated as

E [S|Rf,e] ≈ 1 +

∫ x1

1

φ̂(x,Rf,ϵ)dx

+

∫ L

x1

φ̂(x,Rf,ϵ)dx+ 0.5(1− ϵ) (A.6)

≤ x1 +

∫ L

x1

φ̂(x,Rf,ϵ)dx+ 0.5(1− ϵ). (A.7)

The integral in (A.7) is approximated as∫ L

x1

φ̂(x,Rf,ϵ)dx

=

∫ L

x1

Q

 C√
V/n′

x−
(
L+ 1

C

√
LV
n′ Q

−1(ϵ−)
)

√
x


dx

(A.8)

=

∫ Q−1(ϵ)
C

√
LV
n′

−Q−1(ϵ)
C

√
LV
n′

Q

 Cx
√
n′/V√

x+ L+ 1
C

√
LV
n′ Q−1(ϵ)

dx

(A.9)

≈
∫ Q−1(ϵ)

C

√
LV
n′

−Q−1(ϵ)
C

√
LV
n′

Q

 Cx√
V
n′

√
L+ 1

C

√
LV
n′ Q−1(ϵ)

dx

(A.10)

=
1

C

√
LV

n′ Q
−1(ϵ), (A.11)
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where 1 − Q
(
λ
[

x√
x+α

])
is regarded as the CDF of a

Gaussian random variable with zero-mean and variance with
(x+ α)/λ2 at each point x and we simplify the Q-function by
fixing the variance into n′

C2V

(
L+ 1

C

√
LV
n′ Q

−1(ε)
)

in (A.10).
By the symmetric property, Q(α) = 1 − Q(−α), (A.11) is
obtained.

Finally, E[S|Rf,ϵ] is approximated as

E [S|Rf,e] ≈ min

(
L− 1

C

√
LV

n′ Q
−1(ϵ) + 0.5(1− ϵ), L

)
,

where min is used because E [S|Rf,e] should be less than or
equal to L.
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