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Abstract

Among the computational prediction methods, domain based protein interaction prediction
approaches are getting popular. However, since conventional domain based approaches use only
domain to identify proteins, two different proteins cannot be distinguished if they share same
domains. Moreover, proteins which have no domain information cannot be used in the domain
approaches, so not all interaction pairs are available. In this paper, two different ideas are proposed;
first one is an increasing domains by adjusting e-value of InterProScan which extracts domains
from a raw sequence, and the other is a utilizing gene ontology (GO) which describes structural
and functional information of genes. In Yeast proteins, newly generated domains cover 49.84%
more by adjusting e-values and 77.06% more by utilizing GO. In addition, an average number of
proteins which share same patterns are reduced to 1.27 with e-value adjusting, 1.55 with utilizing
GO. To reduce an average number of GO for one protein, an abstraction rule for GO acyclic
graph is also proposed in this paper. Taking all results we have done into consideration, we found
that both approaches improve determinability and utilization of proteins, and they can be used
complementary.
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1 Introduction

With a large amount of biological data published through the Internet, many computational protein-
protein interaction prediction methods have been developed. A domain based approach is one of
the approaches, and it uses structural information of protein which is known as a domain [3]. Thus,
most of domain based approaches infer protein-protein interaction according to domain patterns in
protein pairs [1, 2, 4]. Typically, domain based prediction methods gather protein interaction data
from several databases [12, 13], and find related domains from other sides [5, 10]. However, a lot
of protein interaction information would be abandoned during this process because domains of some
proteins have not been discovered yet. In addition, even though two proteins have different functions,
they are considered as same unless their domain information is not identical.

Among all possible solutions, one easy but time consuming task is increase domains by a direct
extraction of domains from protein raw sequences. InterProScan is a tool for analyzing protein se-
quences that combines different protein signature recognition methods into one resource. Current
InterPro [10] (http://www.ebi.ac.uk/interpro/) frequently publishes domain information screened by
a certain expect value. In this paper, we adjusted an expect value of InterProScan and extracted
more domains of Yeast proteins. On the other hands, characteristics of protein can be expressed by
other alternations such as Gene Ontology (GO) [7]. GO consortium provides structural description
of protein functions with diverse views of protein structure, cellular component, molecular function,
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and biological process, so it may allow more determinable information. GO is annotated on a rooted
directed acyclic graph (DAG), and there are hierarchical relationship among the GO terms. These
hierarchical relationships mean that an ancestor of a certain node always has a general meaning of the
node, and all nodes exist on the same path from the root to leaf may be defined by time-sequential
efforts. To validate a feasibility of using GO for a protein prediction, test result was compared to
a conventional domain based approach. Since one protein usually has far more GO terms than cur-
rently reported domain annotations we pruned away the DAG until average number of GO for one
protein becomes small enough to handle in a statistical method. Every leaf node which has a few
gene products was abstracted according to a path of GO graph. This abstraction was efficient for
reducing an average number of GO terms for one protein from 6.5 to 4.6. As a result of evaluation, In
Yeast proteins, newly generated domains cover 49.84% more by adjusting e-values and 77.06% more
by utilizing GO. Moreover, a number of proteins sharing same patterns is reduced to 1.27 with e-value
adjusting, 1.55 with utilizing GO.

This paper is organized as follows. In Related Work Section, we briefly enumerated other researches
to clarify the problem. In Section Method, biological databases we used and validation procedures
are illustrated. An abstraction algorithm of GO is also introduced in this section. Our test results is
reported in Section Results with a comparison of each idea. Some issues about different approaches
are discussed in Section Discussion, and finally we draw conclusion in Section Conclusion.

2 Related Work

Domain based prediction methods and service systems usually integrate protein and domain informa-
tion into local repository to predict interaction of unknown protein pairs [2]. PreSPI, for an instance,
integrates protein interaction data from DIP [12] and domains from [10]. Since this system uses do-
mains to infer protein interaction, PreSPI maps proteins to corresponding domains. One problem
during this process is that since this system uses domain information only, two different proteins may
be considered as identical. As an example, four different Yeast proteins P25611, P40971, P19541,
and P46954 have ”IPR001138” domain, so they are considered as same protein in this system. How-
ever, UniProt [13] categorizes these proteins into transcriptional regulatory proteins for P25611 and
P19541, activator for P19541, and an interaction protein with the SNF1 protein kinase for P46954.
”IPR001138” is an accession ID of InterPro which stands for a fungi transcriptional regulatory domain.
This domain annotation for a protein seems to be roughly right, however, it is not enough to address
slight differences among the proteins. It is natural that domain information cannot be differentiated
though an accession ID is changed to other databases because all annotations were made by cross
reference mechanisms. To make matters worse, only about 50% protein interaction pairs are usable
out of 15,000 pairs in Yeast proteins. This information loss occures, for some domains have not been
discovered or relationship between proteins and domains has not been established yet.

Table 1: Diverse domain accession IDs for four proteins

InterPro SMART Pfam PROSITE
P25611 IPR001138; Fungi Trscrp N. SM00066; GAL4; 1. PF00172; Zn clus; 1. PS00463; ZN2 CY6 FUNGAL 1; 1.

PS50048; ZN2 CY6 FUNGAL 2; 1.
P40971 IPR001138; Fungi Trscrp N. SM00066; GAL4; 1. PF00172; Zn clus; 1. PS00463; ZN2 CY6 FUNGAL 1; 1.

PS50048; ZN2 CY6 FUNGAL 2; 1.
P19541 IPR001138; Fungi Trscrp N. SM00066; GAL4; 1. PF00172; Zn clus; 1. PS00463; ZN2 CY6 FUNGAL 1; 1.

PS50048; ZN2 CY6 FUNGAL 2; 1.
P46954 IPR001138; Fungi Trscrp N. SM00066; GAL4; 1. PF00172; Zn clus; 1. PS00463; ZN2 CY6 FUNGAL 1; 1.

PS50048; ZN2 CY6 FUNGAL 2; 1.

As a Table 1 shows, different IDs cannot give more determinability of protein but only support
wider choices to use. As a result of that, accuracy of prediction based on domain approach cannot
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help decreasing. In this paper, we propose two ideas to clear away these obstacles; find more domains
which were filtered during extraction from a protein raw sequence and use gene ontology annotations
instead of domains. Currently, InterPro [6] screens out some domains with a certain cut-off value
to maintain high quality of data. However, it would be better for machine learning systems like a
PreSPI to give more training data in spite of having some noises if the noises do not harm prediction
accuracy seriously. GO consortium provides functional annotations of proteins as a rooted directed
acyclic graph (DAG) form [7]. These annotations are categorized by cellular component, molecular
function, and biological process. Each category has GO terms which have hierarchical relationship. As
of July 3, 2006, GO reports 10728 biological processes, 1746 cellular components, and 7432 molecular
functions. Recently, Minhua Deng, and his colleague used GO annotation in a Markov Random Field
(MRF) method to the prediction of Yeast proteins [8]. In their research, a functional path for a GO
node was defined as the path from the root to the node, and three categories of GO annotation were
used MRF method separately. In a recent approach of Xiaomei Wu et al, they suggested to making
a Yeast protein-protein interaction network using GO annotation [9]. In Wus research, they devised
a process that defines a similarity between two GO terms in terms of a path distance. Since GO
is a DAG, we should define a method which can determine similarity between two GO terms. Note
that there are lots of duplicated GO annotations for one protein none the less because only the most
specific term should exist. Major method to remove such duplication was finding very informative GO
terms. If there are two or more GO terms for one protein on the same path from root to a certain GO
term, we selected a leaf node among them. The selected leaf node was evaluated in terms of a count
of gene products corresponded to the node. Though a leaf node was found, we replaced the node to
an ancestor GO term if a count of gene product is less than 50. Detail validation procedures will be
illusterated in Section Methods. Average usability of protein interaction pairs after this abstraction
is compared to a conventional domain approach in Section Result. In Section Result, we also report
a determinability of GO about a protein is compared to one of domain concept.

3 Methods

In this section, we explain several biological databases which were mainly used in our research. Then,
two different validation procedures are described. Both approaches are adopted to increase protein
utilization and improve protein determinability.

3.1 Biological Databases

Most of the statistical protein interaction prediction methods need protein interaction data and rel-
evant feature information of proteins such as a domain. In our research, we used such information
extracted from several biological databases. Protein interaction data was extracted from the Database
of Interacting Proteins (DIP) [12], and domain data was gathered from Integrated documentation
resource of Protein families, domains and functional sites (InterPro) [10] and Protein Information
Resource (PIR) [11]. To compare a gene ontology concept to a domain based approach, gene ontol-
ogy information was gathered from iProClass of PIR. iProClass provides diverse accession IDs and
related GO terms. Practically, GO consortium only provides Yeast proteins as SGD accession ID, we
should find another database to map UniProt accession ID of DIP proteins to GO terms. iProClass is
suitable database to easily extract GO terms with UniProt accession ID. Even though it is true that
UniProt [13] itself gives us GO terms, it takes a lot of time to store UniProt database locally, so we
utilized iProClass instead. DIP is an ideal starting point to extract protein interactions because we
can get interaction data of seven representative species D. melanogaster, S. cerevisiae, C. elegans, H
.pylori, H. sapiens, E. coli, and M. musculus and each data has UniProt accession ID which helps
us find domain information easily. Besides, they are periodically updated in reasonable span of time
(The full sets: a month, CORE subsets: 3 months). In this paper, we use protein interaction data
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of DIP database released on April 2, 2006, and iProClass database of July 25, 2006. InterPro was
initially built in order to integrate scattered databases into one site. Nowadays, its abundant data
leads to make itself possible to be a major domain repository. Each organism listed in DIP has a
taxonomy ID, and ”IPRXXXXXX” formatted domain information can be searched with the ID. The
latest release of InterPro contains 12,953 entries and covers 78.1% of UniProtKB which means that
2207141 of 2826393 proteins (as of release 13.0). One way to map DIP ID to InterPro domain ID
is using UniProt accession ID which is commonly used for both databases. Since most statistical
prediction methods produce good results only when enough features of protein are provided, finding
associated domains and gene ontology of a protein is really important. Thus, one of the purposes of
this research is to gather plenty of domains and gene ontology information of various species as much
as possible.

3.2 InterProScan and e-value adjustment

InterProScan is a tool for analyzing protein sequences that combines different protein signature recog-
nition methods into one resource. It takes sequence data in a recognized sequence format such as
raw, FASTA or EMBL as an input and calculates checksum to identify previously analyzed data. If
there is no preexisting result matched with checksum, it starts searching using search method such
as HMMer and Blast from each of member databases. It figures out information of input sequence
and show matches which have similarity with input sequence. InterProScan has member databases
such as PROSITE, PRINTs, PFAM, ProDom, SMART, TIGRFAMs, PIR SuperFamily (PIRSF), SU-
PERFAMILY, Gene3D, and PANTHER. InterProScan shows filtered results which are considered as
relevant matches. E-values are used as cut-off values of filtering process in most of databases. As
shown in Table 2 the e-values may be different according to each of member databases and scanning
methods.

Table 2: Default e-values of member databases

Database E-value
Pfam 1000
PRINTs 0.001
Gene3D 59.5
Panther 0.001
ProDom 0.01
TIGRFAMs 20
SUPERFAMILY 0.02
SMART 0.01

E-value (expect value) is used as a criterion of significance of matches that is found from subject
sequence databases as a result of scanning from the inputs. Generally, it shows a tendency that e-value
of sequence having biological meaning is very smaller than 1. It means small number of e-value has
high possibility to be a correct hit. E-value tends to be high if database of subject sequence is big,
length of input sequence is long, and bit score is small. The reason that the databases have different
e-values is details of processing step are different for every database. To take Pfam as an example,
it has three processing steps using three cut-off values to find the maximum number of true positive
hits during a search but no false positive hits. In first step, e-value is set artificially high because
Pfam want to make sure that no true positive hits are missed. As a result of a high e-value, lots of
false positives are represented on the result. Second cut-off value is bit score (so called GA) which is
manually adjusted by Pfam curators. In this step if bit score is smaller than GA cut-off then it will
be removed. After that, if there are Pfam models overlap on the sequence, one of them is removed in
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a last process called Clan filtering [5, 6]. In this paper, we manually changed e-value of databases in
order to extract more hits from raw sequences.

3.3 Gene Ontology and Abstraction

To use gene ontology (GO) terms for a feature of protein, we should be able to extract GO terms
as many as possible. Moreover, among the GO terms, there should be some patterns to discriminate
between interaction proteins GOs and non interaction proteins’ ones. The former requirement of GO
was easily convinced by a small test. For seven different species of DIP, we made a statistical table
about gene ontology utilization.

Table 3: Statistics of domains and gene ontology terms of interacting proteins in seven different species

I II III IV V VI VII VIII IX X
Yeast 4953 2187 3897 44.32 78.97 2.05 2.40 2.01 2.09 6.50
Human 872 462 625 52.98 71.67 3.04 3.94 1.88 3.39 9.20
Mouse 197 101 122 51.27 61.93 3.38 3.97 2.03 3.29 9.29
Fruit Fly 1519 487 812 32.06 53.46 2.49 3.78 1.53 2.23 7.54
C.elegans 2141 921 899 43.02 41.99 2.06 0.90 0.62 1.76 3.28
H.pylori 704 133 203 18.89 28.84 2.71 1.81 0.69 3.01 5.52
E.coli 1631 726 824 44.51 50.52 2.36 1.61 0.79 2.67 5.08

I: A count of proteins extracted from interaction protein pairs
II: A count of proteins whose domains are already known
III: A countof proteins whose gene ontology terms are already known
IV: II / I x 100.00
V: III / I x 100.00
VI: An average count of domains for one protein
VII: An average count of molecular function in gene ontology for one protein
VIII: An average count of biological process in gene ontology for one protein
IX: An average count of cellular component in gene ontology for one protein
X: An average count of all categories in gene ontology terms for one protein

As shown in Table 3, interacting proteins have sufficient GO terms. However, the amount of GO
terms is too large to construct a learning set. In yeast proteins, an average count GO for one protein is
over 6.0 (in the column X). In some prediction method, especially in PreSPI, this high average count
may lead to a huge space complexity. One alternative way is that we adapt only one category of gene
ontology. Nevertheless, we decided to use all categories in order to merge structural and functional
features of proteins. Since GO terms have been annotated by different manners for a while, one
proteins may have several GOs existing on the same path from root to a leaf. Note that GO graph has
hierarchical relation between ancestors and children. In this case, we need a treatment about selecting
the most representative GO. Thus, following abstraction rules were devised.

1. Remove unknown gene ontology terms
2. Remove all ancestors which exist in the same path from root to the gene ontology
3. Replace leaf nodes to their ancestors until they have more than 50 gene products
4. Dont abstract when the gene ontology term is direct child of category gene ontology
term

In the gene ontology, each category has unknown terms. Biological process unknown is GO:0000004,
molecular function unknown is GO:0005554, and cellular component unknown is GO:0008372. Since
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Figure 1: An example graph of GO (G1 − G6: GO terms and a count of their gene product).

these terms are not informative at all, we eliminated them firstly. In addition, if a protein has two
or more GOs for a one category, we should inspect a correlation among the GOs. Practically, some
proteins have unique ontology among the same path from the root to the leaf, but some proteins have
two or more ontology terms which exist on the same path from the root to the leaf node. In this
situation, if one term is a child of another term, we can remove a parent node because child node
has more specific meaning. After that, we reconfigured GO graph to have informative nodes only. In
our research, when a node has more than 50 gene products, we considered the node as informative.
4152 children among 13763 were replaced to their parents due to this rule. A cut off value 50 of gene
products is remained here as an open question. In the future, we can adjust the value to make a
learning set has reasonable size. This abstraction is applicable only when a GO node is not a direct
child of category GO term such as ”GO:0008150”, ”GO:0005575”, or ”GO:0003674” which stand for
biological process, cellular component, and molecular function, respectively. Suppose that there are
two proteins, A and B, and related GO terms are A = {G1, G3, G4, G6} and B = {G3, G4, G5}. If a
gene ontology graph looks like a Figure 1, GO terms of protein A were firstly change to {G3, G4, G6}
due to rule 2. Then, by the rule 3, G3 is replaced to its parent G2. Note that G6 is not changed
during this process because of rule 4. Likewise, GO terms of protein B is changed to {G2, G5}. In
Section Result, we represent an abstraction result of interaction proteins of Yeast.

4 Result

In this section, we enumerate comparisons between a domain and gene ontology approaches. As we
can see in Table 4, both e-value adjusting and GO replacing increase a utilization of proteins in Yeast.
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Table 4: Overall comparison between a domain and gene ontology approaches

Maximum count Count of Count of Average proteins Average domains
of domains or domains or usable proteins sharing same or GO per one

GO terms GO terms patterns protein
Original 11 1123 2201 1.96 2.05
eVal 13 2588 3298 1.27 2.36
Normal GO 22 2514 3897 1.55 6.50
Abstraction 18 1218 3895 3.20 4.60

Number of Protein

Figure 2: A count of proteins which have X domains or GO terms

Adjusting improves a utilization of proteins by 49.84% , and GO also enhances by 77.06%. Moreover,
proteins sharing same patterns were commonly reduced in both methods. Abstraction rule we devised
was really good in the point that it decreasesd average number of GOs per one protein without any
harm about protein utilization. However, it may reduce diversity of proteins because the abstraction
result shows that more proteins share same GO patterns. (1.55 to 3.20) Table 5 and Figure 2 show a
comparison of a count of proteins. In a conventional domain based approach, most of proteins have a
small number of domains while proteins are well distributed to diverse number of GO terms in a new
approach. As a result of changing cut of value of InterPro machine, a total count of usable protein was
enormously increased. From an abstraction row in Table 6, we found that even though abstraction
algorithm decrease an average count of GO terms for one protein, it may harm to a diversity of
interaction proteins.

Table 5: A count of proteins which have X domains or gene ontology terms

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+
Original 1010 569 334 171 68 25 11 7 1 1 4 0 0 0 0
eVal 1286 835 492 368 175 73 36 16 8 3 1 1 4 0 0
Normal GO 297 298 270 369 374 425 439 395 317 233 143 94 85 51 107
Abstraction 329 390 614 746 641 513 248 178 103 32 33 28 19 13 8
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Table 6: A count of domains or gene ontology patterns in the proteins which have X domains or GO
terms

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+
Original 400 313 179 104 43 22 8 6 1 1 2 0 0 0 0
eVal 811 528 334 220 125 56 33 13 6 3 1 1 2 0 0
Normal GO 51 167 231 332 327 366 401 365 299 210 136 90 76 47 95
Abstraction 55 230 458 619 577 457 236 171 92 31 33 22 11 12 8

Number of Pattern

Figure 3: A count of domains or gene ontology patterns in the proteins which have X domains or GO
terms

5 Discussions

Protein interaction prediction methods become sensitive if they can consider more diverse features
of protein. In our research, both a changing e-value of InterProScan and a using GO terms without
abstraction showed the best results in the sense of diversity of feature patterns. However, an amount
of usable protein is much larger in GO adaptation so it can give us large learning set. In this paper, we
used all categories of GO; Biological Process (BP), Cellular Component (CC), and Molecular Function
(MF). In comparison to conventional domain approach, more diverse information about protein can
be considered, but we should observe differences when we use each category independently for a
comprehensive study. Obtaining hidden domains using adjusting e-value have several limitations.
One of them is that it is hard to adjust proper line of e-values because all of member databases have
their own e-values and they have post-processing steps their own. This diversity of member databases
makes difficulties to adjust proper line of e-values. Another one is that annotation process of InterPro
is doing manually. This manual step means that proper InterPro accession ID cannot be annotated
immediately even if we find a reference ID of other biological databases. In other words, there may be
no InterPro accession ID correspond to domains that we found with low e-value. Note that low e-value
has high probability to possess a biological meaning. Table 7 shows an example of analysis sequence,
hidden domains resulted from filtering process. Protein P09798 reported that it has four domains,
IPR001440, IPR008940, IPR011990, and IPR013026 in InterPro. Table 7 shows other domains which
can be found in different e-values. PF07719 of Pfam database can be annotated by InterPro ID,
IPR013105 with a reasonable e-value. If we make e-value very high, PD000191 of ProDom can be
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found as well. However, subsequences of Panther, SUPERFAMILY, and Gene3D cannot be found
from InterProScan because they have no correspond InterPro ID in spite of very high realiability.

Table 7: A result of analysis protein, P09798

Database ID of Database E-value InterPro ID
Panther PTHR12558 6.8e-123 NULL
SUPERFAMILY SSF48452 3.7e-43 NULL
Gene3D 1.25.40.10 1.9e-42 NULL
Pfam PF07719 1.1e-05 IPR013105
ProDom PD000191 1e+01 IPR001963

6 Conclusion

Most of machine learning approaches should have enough size of learning sets to predict protein-protein
interaction. Similarally, domain based prediction methods should obtain sufficient protein-protein
interaction data and relevent domains as well. However, since domains are not well discovered yet,
we suffered from loss of protein interaction data. In conventional domain approaches, proteins are
categorized by their domain patterns, so we cannot distinguish two different proteins if they have same
domain patterns. In this paper, we proposed two different ideas; adjusting e-value of InterProScan
and using GO instead of domains. Both approaches are good for increasing utilization of proteins, and
they improved diversity of proteins. We also divised an abstraction algorithm of GO graph, and it
reduce a space complexity of GO terms. Currently, the result of an abstraction algorithm doesn’t show
very good result we expected in the sense of improving diversity of proteins. However, we convinced
that the abstraction rule decrease an average number of proteins per one protein without any harm
about a protein utilization. In the future, we will evaluate our approaches to practical prediction
system and report accuracy differences.
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