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Abstract
Time-series data, which are a series of one-dimensional
real numbers, have been studied in various database
applications. In this paper, we extend the traditional
similarity search methods on time-series data to support a
multidimensional data sequence, such as a video stream.
We investigate the problem of retrieving similar multi-
dimensional data sequences from a large database. To
prune irrelevant sequences in a database, we introduce
correct and efficient similarity functions. Both data seq-
uences and query sequences are partitioned into subseq-
uences, and each of them is represented by a Minimum
Bounding Rectangle (MBR). The query processing is based
upon these MBRs, instead of scanning data elements of
entire sequences.
   Our method is designed (1) to select candidate seq-
uences in a database, and (2) to find the subsequences of a
selected sequence, each of which falls under the given
threshold. The latter is of special importance in the case of
retrieving subsequences from large and complex sequences
such as video. By using it, we do not need to browse the
whole of the selected video stream, but just browse the sub-
streams to find a scene we want. We have performed an
extensive experiment on synthetic, as well as real data
sequences (a collection of TV news, dramas, and docu-
mentary videos) to evaluate our proposed method. The
experiment demonstrates that 73-94 percent of irrelevant
sequences are pruned using the proposed method, resulting
in 16-28 times faster response time compared with that of
the sequential search.

1. Introduction

   In the last decade, time-series data became important in
various database applications such as data mining or data
warehousing. It includes a sequence of real numbers which
represent values at time points, such as prices of stocks or
commercial goods, weather patterns, sales indicators,
biomedical measurements [12]. It is however basically a
series of one-dimensional data, and thus the existing works

until now have focused on indexing or searching one-
dimensional sequences of data. As the use of multimedia
data is widely spread in many application domains, the
efficient retrieval of voluminous and complex information,
which is the intrinsic characteristic of multimedia data, is
getting increasingly important.
   The problem we address in this paper is to design a
scheme for searching a database to find multidimensional
data sequences efficiently that are similar to a given query
sequence. A multidimensional data sequence is a series of
data elements, each element being represented by a
multidimensional vector. Time-series data can be modeled
by replacing each vector entry of a sequence with a single
scalar value. Typical examples of a multidimensional data
sequence include:
   1) video stream. It consists of multiple frames and each
frame is characterized by multiple feature attributes such as
color, texture or shape. For example, a frame can be
represented by a multidimensional vector in the RGB or
YCbCr color space, by averaging color values of pixels of
a frame or segmented blocks of a frame. The video stream
is modeled as a trail of points in a multidimensional data
space such that each frame of the stream constitutes a
multidimensional vector (or point), whose components are
feature values of a frame.
   2) image. It can be represented as a multidimensional
data sequence with spatial information considered. An
image is segmented to a number of regions that can be
ordered appropriately, based on space filling curves such as
the Z-curve, gray coding, or the Hilbert curve [8]. This ord-
ering forms a series of regions, each of which is repre-
sented by a vector of multiple feature values of a region.
   Over a collection of sequences in a large database, the
following are some examples of typical similarity queries:
One-dimensional sequence: Queries on traditional time-
series data, such as ‘Identify companies whose stock prices
show similar movements during the last year to that of a
given company,’ or ‘Determine products with similar sel-
ling patterns to a given product’
Multidimensional sequence: Queries on video streams or
images, such as ‘Find video streams that are similar to a
given stream of news video,’ or ‘Find all images in a
database that contain regions similar to regions of a given
image’
   The traditional query processing on time-series data
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uses the concept of a sliding window to get a smoother trail
[5]. By using the window (size w) over a data sequence, a
one-dimensional data sequence is converted to a w dimen-
sional sequence. The w dimensional sequence is partitioned
into subsequences, each of which is represented by a
Minimum Bounding Rectangle (MBR) which tightly
encloses all points in the subsequence. Its dimensionality is
reduced in this process to avoid the ‘dimensionality curse
problem.’ The generated MBRs are indexed and stored into
a database. On the other hand, a query sequence is divided
into one or more subsequences of size w, each of which is
represented by a w dimensional point. This query point acts
as a representative of w values in the query sub-sequence.
Query processing is based upon each query point and the
MBRs of a data sequence stored in a database. However,
the semantics of a point in natural multidimensional
sequences such as video streams is different from that of
one-dimensional time-series data. In the case of a multi-
dimensional sequence, a point itself is a vector in a multi-
dimensional space which holds various feature values.
Traditional methods may not be applicable since we cannot
map multiple multidimensional points of a query subse-
quence into one representative point, like time-series data.
In this case, a query should be processed based upon every
point in a query sequence, which causes a severe overhead.
It is usual in video search that a key frame is selected for
each shot, and a query is processed on the selected frames
[6]. But the search by a key frame does not guarantee the
correctness since it cannot always summarize all the
frames of a shot. This is the motivation of our proposed
method. It is designed to retrieve multidimensional seq-
uences efficiently in a large database with the correctness
preserved. A brief sketch of our proposed method is as
follows:
   Index construction. A multidimensional data sequence
is generated from raw materials such as a video stream or
an image by an appropriate parsing and dimensionality
reduction process. It is partitioned into subsequences, and
each of them is contained in an MBR which will be
indexed and stored into a database for later processing, by
using the R-tree [7] or its variants [2, 3, 4, 9].
   Query processing. A query sequence is also divided
into one or more MBRs upon which query processing is
based. Two distance metrics are developed to handle the
similarity search between MBRs and some pruning
algorithms are proposed to minimize ‘false hits’ while
guaranteeing the correctness of ‘no false dismissal’. The
method is designed, first, to select candidate sequences
from a database, and next, to find the subsequences of a
selected sequence, each of which falls under the given
threshold.
   In the case of retrieving subsequences from large and
complex sequences such as video data streams, we believe
the method can be of benefit. In video browsing, for
example, we do not need to browse the whole stream of a
selected video, but just browse the sub-streams found by

the process. Another desirable property of our method is
that it does not restrict the length of sequences. Both data
sequences and query sequences are of arbitrary length. It is
also allowed that a given query sequence may be longer
than a data sequence, In this case, a query is processed to
find data sequences to which the subsequences of the given
query sequence are similar. In addition to the typical
queries mentioned above, the following types of queries
can be handled by the proposed method:
Query on finding sub-streams: ‘Select videos in a data-
base which contain the sub-streams that are similar to a
given news video, and play those sub-streams only.’
Long query (A query sequence is longer than a data
sequence.): ‘Find video streams in a database to which the
sub-streams of a given video are similar.’
   The rest of the paper is organized as follows: Section 2
provides a survey of related works with a discussion of the
similarity search for time-series data. Our proposed work is
described in Section 3 including formal definitions of
distance metrics used in this paper and a similarity search
algorithm. Section 4 presents experimental results. We give
conclusions in Section 5.

2. Related works

   Several similarity search methods on time-series data
have been proposed. Agrawal et al. [1] studied the whole
sequence matching, in which the sequences to be compared
are of the equal length. They introduced the Discrete
Fourier Transform (DFT) to map time sequences to the
frequency domain, to solve the dimensionality curse pro-
blem. Each sequence, whose dimensionality is reduced by
using DFT, is mapped to a lower-dimensional point in the
frequency domain, and is indexed and stored using the R*
tree. This technique, however, has a restriction that a
database sequence and a query sequence should be of equal
length. Faloutsos et al. [5] proposed a fast subsequence
matching technique that allows the similarity search
between different-length sequences. They used a sliding
window over a data sequence and extracted its features. A
transformed data sequence is divided into subsequences,
each of which is represented by an MBR. This MBR is
indexed and stored using ‘the ST-index.’ Rafiei et al. [12]
proposed a set of safe linear transformations of a given
sequence that can be used as the basis for similarity queries
on time-series data. They formulated operations such as
moving average, reversing, and time warping. These
transformations are extended to the multiple transformation
in [10], where an index is searched only once and a
collection of transformations are simultaneously applied to
the index, instead of searching the index multiple times and
each time applying a single transformation. Yi et al. [13]
also addressed the time warping function which permits
local accelerations and decelerations.
   All above methods address the similarity search for
one-dimensional time-series data, and thus do not handle



multidimensional data sequences. They also focus on
selecting candidate sequences in a database which fall
under the given threshold with a query sequence. To our
knowledge, there has been no approach that is designed to
handle the sophisticated similarity search, such as finding
subsequences of a selected sequence as described in
Section 1.
  

3. Proposed work

   In this section, we discuss our proposed method in
detail. Table 1 summarizes the notations used in this paper.

Table 1. Notations used in this paper
Symbol Definition
S
S[i]
S[i:j ]
Q
mbrk(S)
ε

Data sequence in a database
The i-th entry of S
Subsequence of S from entry i to j
Query sequence
The k-th MBR of S
User-specified threshold

d(*,* )

D(*,* )
Dmean(*,*)

Dmbr(*,* )
Dnorm(*,* )

Euclidean distance between two
multidimensional points
Distance between two sequences
Mean distance between two sequences of
equal length
Distance between two MBRs
Normalized distance between two MBRs

 

3.1. Nature of multidimensional data sequence

   A multidimensional data sequence can be represented
by a trail of points in a multidimensional data space. More
formally, we describe it by the following definition:

Definition 1  A multidimensional data sequence S is
defined as a series of its component vectors, S = (S[1],S[2],
…,S[k]), where each vector S[k] is composed of multiple
(n) scalar entries, that is, S[k] = (S[k,1],S[k,2],…,S[k,n]).

   We can formulate time-series data as a special case of
this data model, by replacing each element S[k] of S with a
one-dimensional scalar component. Thus, it becomes a
sequence of real numbers, each number representing a
value at a time point.
   The similarity of two objects, each of which is repre-
sented by a multidimensional vector, is generally defined
as a function of the Euclidean distance (hereafter, referred
as ‘distance’) between those two vectors. For example,
images or video frames are represented as feature vectors,
such as color, texture, or shape. The similarity between
images or video frames can be described as a function of
the distance between the corresponding feature vectors.
The value range of the similarity between two objects is
usually [0,1] while the range of the distance is [0, ∞]. The
distance is close to zero when two objects are similar, and

becomes large if they are quite different. But the similarity
is the opposite. It is close to 1 when two objects are similar,
while it is close to zero when they are very dissimilar. The
distance between two objects can be transformed into the
similarity by an appropriate mapping function. In this
paper, a data space is normalized in the [0,1]n hyper-cube,
where the length of each dimension is 1, and thus the
maximum allowable distance is n , a diagonal of the cube.
This distance will be easily mapped to the similarity. We
will use the distance for the similarity measure for
simplicity. Now, let us consider the distance between two
multidimensional data sequences, S1 and S2. The distance
between two arbitrary points in each n-dimensional
sequence S1 and S2, is given as:
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where S1[i] and S2[j] are i-th and j-th points of sequences S1

and S2, respectively.
   The distance between sequences, however, has the
different semantics from that between points. In the case of
multidimensional data sequences, each sequence is comp-
rised of a number of multidimensional points. It is not
suitable if we just use the sum of distances between all
pairs of points in the two sequences to represent the
distance between two sequences, since a pair of similar
sequences with more points may produce the greater
distance value than dissimilar sequences with fewer points.
The following example shows this.

Example 1  Let us consider two pairs of sequences, (S1,
S2) with 9 points each, and (S3, S4) with 3 points each. As
we can see intuitively in Figure 1, the sequences S1 and S2

are apparently more similar than the sequences S3 and S4
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Figure 1. Distance between sequences



since pairs of points of the former are placed closer than
those of the latter. But, if we adopt the sum of distances as
a similarity measure, we may get the result that the
sequences S3 and S4 are closer (more similar). It shows that
the sum of distances is not appropriate for the similarity
measure of sequences. ■
   The first metric we introduce is to measure the distance
between two sequences. First, it is defined for same-length
sequences, and then, extended to different-length seq-
uences.
 
Definition 2  The distance D(S1,S2) between two multi-
dimensional sequences S1 and S2 of equal length, each of
which has k points, is defined as the mean distance of the
two, where the mean distance is defined as follows:
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   Next, let us consider the different-length sequences
which cannot be compared directly, point by point. In this
case, the shorter sequence is compared with the other by
sliding from the beginning to the end. The shortest distance
of each pair is adopted as the distance between two
sequences. The following definition describes it more
formally.

Definition 3  The distance D(S1,S2) between two multi-
dimensional sequences S1 and S2 of different length, each
of which has k and m points respectively (Without loss of
generality, we assume k ≤ m.), is defined as the minimum
mean distance of every pair, where the minimum mean
distance is defined as follows:
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3.2. Distance metrics between MBRs

   To measure the distance between MBRs, we introduce
the MBR distance Dmbr between two MBRs. Generally, an
MBR M in the n-dimensional Euclidean space is
represented by two endpoints L(low point) and H(high
point) of its major diagonal [11]. It will be:

   ),( HLM =
where L=(l1,l2,..,ln), H=(h1,h2,..,hn), l i≤hi for 1≤i≤n.

The distance between two MBRs in the 2-dimensional
space is depicted in Figure 2, depending on their relative
placement.
   It is straightforward that the distance for the 2-dimen-
sional space is extended to the n-dimensional space. Thus
the following definition holds.
      
Definition 4  The MBR distance Dmbr between two MBRs
A=(LA, HA) and B=(LB, HB), in the n-dimensional Euclidean
space, is defined as the minimum Euclidean distance
between two hyper-rectangles. That is:
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Observation 1  The distance Dmbr is shorter than the dis-
tance between any pair of points, one in a sequence S1 and
the other in a sequence S2. That is:
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where A and B are the MBRs containing S1 and S2,
respectively.

Lemma 1  (Lower Bounding Distance Dmbr)
The shortest MBR distance Dmbr between any pair of
MBRs in a query sequence Q and a data sequence S is the
lower bound of the distance D(Q,S) of two sequences.
When N, R are the sets of MBRs in Q, S respectively, the
following holds:
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Proof:  Let Q, S have k, l points respectively. Without loss
of generality, we can assume k ≤ l.
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Let δ be the shortest distance between arbitrary two points,
one in a sequence Q and the other in a sequence of S, then
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Figure 2. Distance between two MBRs in the 2-dimensional space
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So, if D(Q,S) ≤ ε, there exist a, b such that a∈N, b∈R,
Dmbr(mbra(Q),mbrb(S))≤ε. ■

   Based on Lemma 1, we can use the distance Dmbr to
prune irrelevant sequences from a database without ‘false
dismissals,’ since it provides the lower bound for the
distance between sequences. The next metric we introduce
is the normalized distance Dnorm between two MBRs which
considers the number of points in MBR. The distance Dnorm

between a query MBR(mbrq) and a target MBR(mbrt) in a
data sequence is informally defined as the distance which
considers not only the Dmbr between mbrq and mbrt, but the
Dmbr’s between mbrq and the neighboring MBRs of mbrt
when the number of points of mbrt is less than that of mbrq.
The neighboring MBRs of mbrt are included one by one in
the Dnorm calculation until the number of points of the
participating MBRs reaches that of mbrq. This distance is
intuitively illustrated in Example 2 and the formal defi-
nition follows.

Example 2  Let data sequence S be divided into mbrj
(j= 1,2,3,4), Dj (D2<D1<D3<D4) be the MBR distance
between mbrj and the query MBR, the number of points in
mbrj be 4,6,5,5 for j= 1,2,3,4 respectively, and the number
of points in mbrq be 12, as shown in Figure 3. Then, the
normalized distance Dnorm(mbrq, mbr2) is:
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If the number of points in mbr2 is equal or greater than that
of mbrq, the D2 will be the Dnorm. Otherwise, one of two

adjacent MBRs which has the shorter Dmbr (D1 in this
example) is selected. When the total number of points
involved in the Dnorm calculation still does not reach the
number of  points in mbrq, then the next adjacent MBR
which has the shorter Dmbr is selected. This process
continues until the condition is satisfied. ■

Definition 5  Let r be the number of MBRs in the data
sequence S, and k, l, p, q be the indices of MBRs of S such
that 1≤k≤j<l≤r, 1≤p<j≤q≤r. Then, the normalized distance
Dnorm between two MBRs is defined as follows:
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qi is the set of points of Q in the i-th MBR, mj is the set of
points of S in the j-th MBR, and
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   The objective of this metric is (1) to provide the greater
lower bound than the MBR distance Dmbr to promote the
pruning of irrelevant sequences, and (2) to make it possible
to find the subsequences of each selected sequence, each of
which falls under a given threshold. The following two
lemmas show that the Dnorm distance guarantees ‘no false
dismissal’ to prune irrelevant sequences from a database.
  

Lemma 2  (Lower Bounding Distance Dnorm when a
query sequence has a single MBR)
Let Q be a query sequence contained in a single MBR
mbr(Q) and S′ be a subsequence of S, the length of which
is the same as that of Q. Since S′ is contained in one or
more MBRs mbrk(S) (l≤k≤s), then the following holds:
    ),())(),((min SQDSmbrQmbrD knorm
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Proof:  Let Dk be an MBR distance between mbr(Q) and
mbrk(S), and mq, mk be the set of points in mbr(Q) and
mbrk(S). Then, a set of indices of MBRs in a sequence S
involved for the Dnorm calculation is a subset of {l, l+1,..,s}.
When we let km̂  be a set of points in mbrk(S) actually

involved for the Dnorm calculation, then += |ˆ||| lq mm

|ˆ|...|ˆ| 1 sl mm +++ . Since each MBR distance Dk is shorter

than the distance between any pair of points, one in a
sequence Q and the other in a subsequence of S′ by
Observation 1,

query MBR

MBRs in a data sequence
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Figure 3. Sketch for the Dnorm  distance
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Lemma 3  (Lower Bounding Distance Dnorm when a
query sequence has multiple MBRs)
The shortest Dnorm between any pair of MBRs in a query
sequence Q and a data sequence S is the upper bound of
the shortest Dmbr between two sequences, and the lower
bound of the distance D(Q,S). When N, R is the set of
MBRs in Q, S respectively, the following hold:
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Proof:  Let us assume that the Dnorm has the minimum
value at i=x  and j=y , and a set of indices of MBRs in a
sequence S involved for the Dnorm calculation is {l,.., y,.., s}.
Let qi, mj be the set of points in mbri(Q) and mbrj(S). By
Definition 5, at the marginal MBR (j=l  or j=s), the number
of points involved in the Dnorm calculation may be less than
|ml| or |ms|, respectively. Let |ˆ| lm  and |ˆ| sm  be the number

of points actually involved in the Dnorm calculation for
mbrl(S) and mbrs(S). Then,

.|ˆ|...|||ˆ|||   |,||ˆ||,||ˆ| 1 sllxssll mmmqmmmm +++=≤≤ +

Let

1
,

))(),((minand ))(),(( CSmbrQmbrDSmbrQmbrDD jimbr
RjNi

kimbrk ==
∈∈

),())(),((min  Then,
, yxnormjinorm

RjNi
mbrmbrDSmbrQmbrD =

∈∈

1
111

||

|ˆ|...||...|ˆ|

||

|ˆ|...||...|ˆ|
C

q

mCmCmC

q

mDmDmD

x

syl

x

ssyyll =
×++×++×

≥
×++×++×

=

Therefore,
))(),((min))(),((min

,,
SmbrQmbrDSmbrQmbrD jinorm

RjNi
jimbr

RjNi ∈∈∈∈
≤

Next, we need to show that the shortest Dnorm between any
pair of MBRs in a query and a data sequence is the lower
bound of the distance D(Q,S). Let the shortest Dnorm be C2,
and two sequences Q and S have the minimum mean
distance at the interval Q[1:k] and S[h:h+k-1]. Let Q[1:k]
be partitioned into subsequences Qi (1≤i≤n) which are
contained in mbri(Q). We also partition S[h:h+k-1] into
subsequences Si (1≤i≤n), such that Qi and Si are of the same
length for 1≤i≤n. When Si is contained in mbrt(S) (l≤t≤s),
the following holds for a pair of subsequences Qi and Si, by
Lemma 2.
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3.3. Finding subsequences

   Given a query such as ‘Select sequences in a database
which contain the subsequences that are similar to a query
sequence, and report those subsequences,’ the normalized
distance Dnorm is used to find the answer subsequences, as
we mentioned in Section 3.2. Now we need to define the
term, Solution Interval, the interval of a data sequence
which contains subsequences within a given threshold,
with respect to a query sequence.

Definition 6 The Solution Interval (SI) is defined as a set
of points which are contained in subsequences, whose
distance from a query sequence falls within a specified
threshold. That is, the solution interval of S[1:m] with
respect to a query sequence Q[1:k], is formally defined as:
(Without loss of generality, we assume k ≤ m.)
 SI = {S[t] | S[t]∈S[p:q], S[p:q] is a subsequence of S
     such that D(Q[1:k],S[j:j+k-1]) ≤ ε, for p ≤ j ≤ q-k+1}.

   The solution interval in Definition 6 describes the
actual answer subsequences that can be obtained by a
sequential scan. To avoid an overhead of the sequential
scan, we will approximate it by using the normalized
distance Dnorm. When we calculate the Dnorm between
mbrq(Q) and mbrs(S), one or more MBRs of a data
sequence are involved. If Dnorm(mbrq(Q), mbrs(S)) ≤ ε, we
can approximate the solution interval as the set of all points
which are involved in the Dnorm calculation. The example 3
illustrates it intuitively.

Example 3  Figure 3 in Section 3.2 shows that the mbr1,
mbr2, and mbr3 of a data sequence are involved to calculate
the normalized distance Dnorm(mbrq, mbr2). When
Dnorm(mbrq, mbr2) ≤ ε, we can approximate the solution
interval SI as a subsequence of a data sequence which is
composed of 4 points of mbr1, 6 points of mbr2, and first 2
points of mbr3. That is, SI = {all points contained in mbr1,
mbr2} ∪ { first 2 points of mbr3}. ■

   While the Dnorm metrics guarantees ‘no false dismissal’
for selecting candidate sequences from a database, it does
not guarantee ‘no false dismissal’ for determining the
solution interval to find subsequences of each selected
sequence. However, the experimental result in Section 4
shows that the determination demonstrates ‘almost no false
dismissal’ with the recall over 98%. The false dismissal
arises from the fact that few points between subsequences
involved in the Dnorm calculation may be missed. Therefore,
a small amount of false dismissal does not cause a severe
problem. In a real situation, we can choose the interval for
playing a selected video based on an approximated solution
interval, by containing few false-dismissed points. Now,
we are ready to describe the proposed algorithm for the
similarity search of multidimensional data sequences.



3.4. Similarity search processing

   In this section, we present the overall process of our
proposed method. Before a query is processed, we shall do
some pre-processing to extract the feature vectors from raw
materials such as video streams or images, and then to
construct an index for later processing. After the index is
constructed, the similarity search is performed to select
candidate sequences from a database (Phase 2 and 3), and
to find the solution interval of each selected sequence
(Phase 3).

3.4.1. Pre-processing
1. Generation of multidimensional sequences. Raw mater-

ials are parsed to extract the feature vectors. Each vector
is represented by a multidimensional point in the hyper
data space. When the vector is of high dimension,
various dimension reduction techniques such as DFT or
Wavelets can be applied to avoid the dimensionality
curse problem. A series of vectors constitutes a multi-
dimensional sequence.

2. Index construction. Each multidimensional sequence is
partitioned into subsequences by using the partitioning
algorithm in Section 3.4.3. Each subsequence is enclo-
sed by an MBR. Every MBR is indexed and stored into
a database by using any R-tree variant.

3.4.2. Similarity search
   After an index has been constructed, we perform the
similarity search against a given query sequence. A three-
phase algorithm for the similarity search is described
below.

Algorithm SIMILARITY_SEARCH
 /* i is an index for MBRs in Q, j is an index for MBRs in a
data sequence S, and k is an index for a data sequence in a
database */
ASmbr := {}   /* the set of answer sequences by Dmbr   */
ASnorm := {}  /* the set of answer sequences by Dnorm    */
SIk := {}     /* the solution interval of the sequence Sk */
 /* By using the partitioning algorithm in Section 3.4.3. */
Phase 1 . Partitioning of a query sequence
Partition query sequence Q into one or more mbri(Q)
Phase 2 . First pruning. (Index search)
For each mbri(Q) of query sequence Q,
   Search a database
      If Dmbr(mbri(Q), mbrj(Sk)) ≤ ε  Then
         Insert Sk into the set ASmbr    
Phase 3 . Second pruning and solution interval finding
For each selected sequence Sk in the set ASmbr   
   For each mbri(Q) of a query sequence
      If Dnorm(mbri(Q), mbrj (Sk)) ≤ ε  Then
         Insert Sk into the set ASnorm

         SIk = {all points which are involved in the
                Dnorm calculation} ∪ SIk
         Report the set ASnorm and the set SIk

3.4.3. Partitioning of a sequence
   A multidimensional sequence is partitioned into sub-
sequences, each of which is contained in an MBR. To do
this, our method uses the partitioning algorithm proposed
in [5] with a slight modification of its cost function. The
algorithm uses a cost function, which estimates the number
of disk accesses for an MBR. They defined the marginal
cost (MCOST) of a point in an MBR as the average number
of disk accesses (DA) divided by the number of points in
the MBR. The grouping of points into subsequences is
done in such a way that if the MCOST is increased for a
successive point of a sequence, then another subsequence
is started from the point, otherwise it is included in the
current subsequence. We slightly modified MCOST to
reflect the MBRs of a query sequence in addition to the
MBRs of a data sequence, since the similarity search is
based upon the MBRs of both a query sequence and a data
sequence in our proposed method. Consider an n-
dimensional subsequence with m points, an enclosing
MBR of which has the sides L=(L1,L2,…,Ln). If we assume
that a query MBR has the sides Q=(Q1,Q2,…,Qn) and a
given threshold is ε, then the MCOST of each point in this
MBR will be:
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   By evaluating various combinations of Qk and ε, we
can choose an appropriate value for Qk+ε.  We adopt 0.3
for this value, since it demonstrates the best partitioning by
an extensive experiment. The partitioning algorithm is
described as follows:

Algorithm PARTITIONING_SEQUENCE
P := {}        /* the set of points in sequence S */
M := {}        /* the set of MBRs in sequence S */
count : the number of points in MBR
max : the predefined value of maximum points per MBR
Allocate the first point of P in current MBR
For each point in P
   If it increase MCOST or count > max  Then
       Insert current MBR into M
       Start another MBR
   else
       Insert it into current MBR
       Increment count
   
4. Experiments

   In order to measure the effectiveness and performance
of our proposed method, we have conducted compre-
hensive experiments on real video data sets, as well as
synthetic data sets generated by using a Fractal function.
The video data sets include a collection of TV news,
dramas, and documentary films. Our experiment focuses
on showing the efficiency of the method to prune a



database of irrelevant sequences and to find the solution
interval. The system is written in Microsoft VC++ under
Windows NT, on a HP NetServer.

4.1. Generation of experimental data

   For the experiment, we have used synthetic multi-
dimensional data sequences and real video data stream.
All data sets are, for convenience, 3-dimensional, but any
dimensional data sequences can be used. Synthetic data
sequences are obtained using a Fractal function as follows:

1. Two 3-dimensional initial points, Pstart for the beginning
point of a sequence and Pend for the end point, are
selected randomly in the 3-dimensional unit cube [0,1)3.

2. The middle point Pmid of Pstart and Pend is calculated as
follows:

         Pmid = (Pstart + Pend ) / 2 + dev*random()
where the dev is selected to control the amplitude of a
sequence in the range [0,1), and random() is the function
for generating a random real number from 0 to 1.

3. After getting Pmid, two subsequences (Pstart, Pmid) and
(Pmid, Pend) are generated. The process 2 is repeated
recursively for each subsequence, with a new dev.

         dev = scale * dev
where scale is a real number in the range [0,1). We use a
lower dev value for the successive recursive call, since
the lengths of the two subsequences are shorter than
their parent.

  Figure 4. A synthetically generated sequence

  Figure 5. A sequence generated from video data

   Video data streams are generated from various video
data sources, by extracting color features from each frame.
Thus, each frame is mapped to a 3-dimensional point in the
unit cube. Figure 4 and 5 show the sample sequences
generated synthetically and from a real video stream.
   The following table summarizes the parameter setting
used in the experiment.

Table 2. Experimental parameters
Synthetic data Real video data

# of data sequences 1600 1408
Length

 of data sequences
arbitrary

(56-512 points)
arbitrary

(56-512 frames)
Range of threshold

values(ε)
0.05-0.50 0.05-0.50

# of query sequences
for each ε 20 20

  
4.2. Experimental results

   The range search is to find similar sequences in a
database to a given query sequence within a specified
threshold. We have executed test cases which are
composed of various combinations of test parameters. The
threshold range 0.05-0.50 is chosen since it provides
enough coverage for the low and high selectivity in the
[0,1)3 cube which has a diagonal of 3 . A query diameter
will be 0.1 through 1.0. For each test, we have issued
randomly selected 20 queries and taken the average of
query results. Several aspects of our method are examined
in the experiment.

4.2.1. Pruning efficiency for selecting sequences in a
database
   The pruning efficiency of the Dmbr and Dnorm to select
candidate sequences from a database was examined by
varying the threshold value. To measure it, we define the
pruning rate (PR) as follows:

seq.relevant seq. total

seq. retrievedseq. total

pruned be  tosequences

prunedactually  sequences
PR

−
−

==

where |S| denotes the number of elements in the set S.
   Figure 6 and 7 show the results by using the metrics
defined in this paper for synthetic and real video data sets.
We can observe that the pruning rate of the Dmbr is 70-90%
on synthetic data sets and 65-91% on video data sets for
the range of a threshold value, 0.05 through 0.50. The
pruning rate of the Dnorm shows constantly 3-10 % better
than that of the Dmbr in the whole range, 76-93% for
synthetic data sets and 73-94% for the video data sets. The
experiment also shows that the pruning rate decreases as a
given threshold value increases. This is because the
number of retrieved sequences for a larger threshold
increases more rapidly than the number of relevant
sequences.
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 Figure 6. Pruning rate of the Dmbr and the Dnorm

          for synthetic data sets
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 Figure 7. Pruning rate of the Dmbr and the Dnorm

          for real video data sets

4.2.2. Pruning efficiency for finding subsequences
   We have examined the pruning efficiency of the
solution interval estimated by our proposed method. First,
we present the measures to estimate the efficiency of the
selected solution interval. Let Ptotal be a set of total points in
a sequence, Pscan be the answer set of points by using the
sequential scan, and Pnorm be the candidate set of points by
using the Dnorm metrics. Then, the pruning efficiency of the
solution interval PRSI is defined as follows:

scantotal

normtotal
SI PP

PP
PR

−
−

==
pruned be  topoints

prunedactually  points

   As the solution interval computed by using the Dnorm

metrics does not guarantee the correctness, we need to
examine the Recall of a selected solution interval. It is
defined as follows:

scan

normscan

P

PP ∩
=Recall

   Figure 8 and 9 show the results on the pruning
efficiency and the recall of the estimated solution interval.
First, we can observe that the recall values for both
synthetic and real video data sets are very close to 1.0, in
the range of 98-100%. It indicates that our method has
almost ‘no false dismissal.’ The pruning rate PRSI is around
60-80 % on synthetic data sets and 67-94 % on video data
sets for the thresholds with the range 0.05 through 0.50. As
we can see, the pruning rate of video data sets is better than
that of synthetic data sets. It seems that video streams are

well clustered than synthetic data sets as shown in Figure 4
and 5. It is known that the frames in the same shot of a
video stream have very similar feature values. Consequ-
ently, our method demonstrates almost 1.0 recall values,
and 60-94% pruning rate for given thresholds.
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  Figure 8. Efficiency of the solution interval
           for synthetic data sets
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  Figure 9. Efficiency of the solution interval
           for real video data sets

4.2.3. Average Response Time
   We have compared the response time of our method
with the sequential scan. We have run 20 random queries
with the same threshold over synthetic and real data sets to
find similar sequences and solution intervals with given
sequences, by using the Dmbr and Dnorm metrics. The results
were compared against the sequential scan. The ratio of the
response time is obtained as follows:

algorithm proposed by the  timeResponse

scan sequential by the  timeResponse
atior  timeResponse =

where a denominator represents the total elapsed time for
the search by both the Dmbr and Dnorm metrics, since we
consider the total time to select candidate data sequences
and to get the estimated solution interval.
   Figure 10 depicts the ratio of the average response time
of our method compared to the sequential scan. We can
observe that our method performs 22-28 times better for
synthetic data sets and 16-23 times better for real video
data sets than the sequential scan.
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 Figure 10. Response time ratio for synthetic
           and real video data sets

                 

5. Conclusions

   In this paper, we have focused on retrieving similar
multidimensional sequences, such as video streams, from a
large database. To solve the problem, we have first defined
the distance between two multidimensional sequences, and
introduced two lower bounding distance metrics, Dmbr and
Dnorm. Based on the metrics, we proposed the algorithm to
prune a database of irrelevant sequences and to find the
solution interval of the selected sequences. One of potential
applications which is emphasized in this paper is the
similarity query on large video data sets, but we believe
other application areas can also benefit. The desirable
characteristics of our method are summarized as follows:

1. The search algorithm is based upon MBRs, not each
point in sequences. Thus, it is fast and needs small
storage overhead compared with a sequential scan.

2. Our method is designed to handle the sophisticated
similarity search, such as finding subsequences of a
selected sequence, as well as selecting just candidate
sequences from a database.

3. Our method does not restrict the length of sequences.
Query sequences and data sequences are of arbitrary
length. In particular, a given query sequence may be
longer than a data sequence.

4. Any multidimensional access method (such as the R*-
tree or the X-tree) can be used.

   Our major contribution is that the traditional similarity
search method on one-dimensional time-series data is
extended to support multidimensional data sequences, a
more generalized format of sequences. We have performed
an experiment with synthetic and real video data sets, and
examined the pruning efficiency and performance of our
proposed method over the sequential scan. Our method has
shown a remarkable efficiency to prune irrelevant
sequences and to find the solution interval of selected
sequences, consequently the response time is 16-28 times
faster than that of the sequential scan.
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