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Abstract until now have focused on indexing or searchipmge

Time-series data, which are a series of one-dimensionafimensional sequences of data. As the use of multimedia
real numbers, have been studied in various databasélata is widely spread in many application domains, the
applications. In this paper, we extend the traditional efficient retrieval of voluminous and complex information,
similarity search methods on time-series data to support avhich is the intrinsic characteristic of multimedia data, is
multidimensional data sequence, such as a video streanfletting increasingly important.

We investigate the problem of retrieving similar multi- ~ The problem we address in this paper is to design a
dimensional data sequences from a large database. Técheme for searching a database to find multidimensional
prune irrelevant sequences in a database, we introducé&lata sequences efficiently that are similar to a given query
correct and efficient similarity functions. Both data seq- sequence. A multidimensional data sequence is a series of
uences and query sequences are partitioned into subsedlata elements, each element being represented by a
uences, and each of them is represented by a Minimurfultidimensional vector. Time-series data can be modeled
Bounding RectanglMBR). The query processing is based DY replacing each vector entry of a sequence with a single
upon these MBRs, instead of scanning data elements gicalar value. Typical examples of a multidimensional data
entire sequences. sequence include:

Our method is designed) to select candidate segq- 1) video streamlt consists of multiple frames and each
uences in a database, af®) to find the subsequences of a frame is characterized by multiple feature attributes such as
selected sequence, each of which falls under the givegolor, texture or shape. For example, a frame can be
threshold. The latter is of special importance in the case ofepresented by a multidimensional vector in the RGB or
retrieving subsequences from large and complex sequencesCPCr color space, by averaging color values of pixels of
such as video. By using it, we do not need to browse tha@ frame or segmented blocks of a frame. The video stream
whole of the selected video stream, but just browse the sulis modeled as a trail of points in a multidimensional data
streams to find a scene we want. We have performed afPace such that each frame of the stream constitutes a
extensive experiment on synthetic, as well as real datdnultidimensional vector (or point), whose components are
sequencega collection of TV news, dramas, and docu- feature values of a frame.
mentary videdsto evaluate our proposed method. The 2) image.It can be represented as a multidimensional
experiment demonstrates that 73-94 percent of irrelevandata sequence with spatial information considered. An
sequences are pruned using the proposed method, resultingage is segmented to a number of regions that can be

in 16-28 times faster response time compared with that oPrdered appropriately, based on space filling curves such as
the sequential search. the Z-curve, gray coding, or the Hilbert curve [8]. This ord-

ering forms a series of regions, each of which is repre-
sented by a vector of multiple feature values of a region.

1. Introduction Over a collection of sequences in a large database, the
following are some examples of typical similarity queries:

In the last decade, time-series data became important i©@ne-dimensional sequenceQueries on traditional time-
various database applications such as data mining or datseries data, such ddentify companies whose stock prices
warehousing. It includes a sequence of real numbers whicBhow similar movements during the last year to that of a
represent values at time points, such as prices of stocks @iven company,or ‘Determine products with similar sel-
commercial goods, weather patterns, sales indicatorsling patterns to a given product’
biomedical measurements [12]. It is however basically aMultidimensional sequence:Queries on video streams or
series ofonedimensional data, and thus the existing works images, such a§ind video streams that are similar to a

Thi N red by the Basic R hp ( iven stream of news videogr ‘Find all images in a
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uses the concept of a sliding window to get a smoother traithe process. Another desirable property of our method is
[5]. By using the window (size) over a data sequence, a that it does not restrict the length of sequences. Both data
one-dimensional data sequence is convertedwalemen- sequences and query sequences are of arbitrary length. It is
sional sequence. Thedimensional sequence is partitioned also allowed that a given query sequence may be longer
into subsequences, each of which is represented by than a data sequence, In this case, a query is processed to
Minimum Bounding Rectangle (MBR) which tightly find data sequences to which the subsequences of the given
encloses all points in the subsequence. Its dimensionality iguery sequence are similar. In addition to the typical
reduced in this process to avoid tlidémensionality curse  queries mentioned above, the following types of queries
problem’ The generated MBRs are indexed and stored intocan be handled by the proposed method:
a database. On the other hand, a query sequence is divid€iery on finding sub-streams:‘Select videos in a data-
into one or more subsequences of sizeach of which is  base which contain the sub-streams that are similar to a
represented by a dimensionapoint This query point acts  given news video, and play those sub-streams only.’
as a representative of values in the query sub-sequence. Long query (A query sequence is longer than a data
Query processing is based upon each query point and theequence.)!Find video streams in a database to which the
MBRs of a data sequence stored in a database. Howevesub-streams of a given video are similar.’
the semantics of a point imatural multidimensional The rest of the paper is organized as follows: Section 2
sequences such as video streams is different from that gfrovides a survey of related works with a discussion of the
one-dimensional time-series data. In the case of a multisimilarity search for time-series data. Our proposed work is
dimensional sequence, a point itself is a vector in a multi-described in Section 3 including formal definitions of
dimensional space which holds various feature valuesdistance metrics used in this paper and a similarity search
Traditional methods may not be applicable since we cannoalgorithm. Section 4 presents experimental results. We give
map multiple multidimensional points of a query subse-conclusions in Section 5.
guence into one representative point, like time-series data.
In this case, a query should be processed based upon eve?y Related works
point in a query sequence, which causes a severe overhead.
It is usual in video search that a key frame is selected for ~Several similarity search methods on time-series data
each shot, and a query is processed on the selected framegve been proposed. Agrawal et al. [1] studied the whole
[6]. But the search by a key frame does not guarantee theéequence matching, in which the sequences to be compared
correctness since it cannot always summarize all theare of the equal length. They introduced the Discrete
frames of a shot. This is the motivation of our proposedFourier Transform (DFT) to map time sequences to the
method. It is designed to retrieve multidimensional seg-frequency domain, to solve the dimensionality curse pro-
uences efficiently in a large database with the correctnesblem. Each sequence, whose dimensionality is reduced by
preserved. A brief sketch of our proposed method is agising DFT, is mapped to a lower-dimensional point in the
follows: frequency domain, and is indexed and stored using the R*
Index constructionA multidimensional data sequence tree. This technique, however, has a restriction that a
is generated from raw materials such as a video stream dglatabase sequence and a query sequence should be of equal
an image by an appropriate parsing and dimensionalityength. Faloutsos et al. [5] proposed a fast subsequence
reduction process. It is partitioned into subsequences, anthatching technique that allows the similarity search
each of them is contained in an MBR which will be between different-length sequences. They used a sliding
indexed and stored into a database for later processing, byindow over a data sequence and extracted its features. A
using the R-tree [7] or its variants [2, 3, 4, 9]. transformed data sequence is divided into subsequences,
Query processingA query sequence is also divided each of which is represented by an MBR. This MBR is
into one or more MBRs upon which query processing isindexed and stored using ‘tI8T-index. Rafiei et al. [12]
based. Two distance metrics are developed to handle theroposed a set of safe linear transformations of a given
similarity search between MBRs and some pruningsequence that can be used as the basis for similarity queries
algorithms are proposed to minimize ‘false hits’ while on time-series data. They formulated operations such as
guaranteeing the correctness of ‘no false dismissal’. Thenoving average, reversing, and time warping. These
method is designed, first, to select candidate sequencdsansformations are extended to the multiple transformation
from a database, and next, to find the subsequences ofia [10], where an index is searched only once and a
selected sequence, each of which falls under the givewollection of transformations are simultaneously applied to
threshold. the index, instead of searching the index multiple times and
In the case of retrieving subsequences from large an@ach time applying a single transformation. Yi et al. [13]
complex sequences such as video data streams, we belie@so addressed the time warping function which permits
the method can be of benefit. In video browsing, for local accelerations and decelerations.
example, we do not need to browse the whole stream of a All above methods address the similarity search for
selected video, but just browse the sub-streams found bgne-dimensional time-series data, and thus do not handle



multidimensional data sequences. They also focus orbecomes large if they are quite different. But the similarity
selecting candidate sequences in a database which fai$ the opposite. It is close to 1 when two objects are similar,
under the given threshold with a query sequence. To ouwhile it is close to zero when they are very dissimilar. The
knowledge, there has been no approach that is designed thstance between two objects can be transformed into the
handle the sophisticated similarity search, such as findingimilarity by an appropriate mapping function. In this
subsequences of a selected sequence as described paper, a data space is normalized in the Thgper-cube,

Section 1. where the length of each dimension is 1, and thus the
maximum allowable distance igh, a diagonal of the cube.
3. Proposed work This distance will be easily mapped to the similarity. We

. ] . ~will use the distance for the similarity measure for

In this section, we discuss our proposed method insimplicity. Now, let us consider the distance between two
detail. Table 1 summarizes the notations used in this papermyitidimensional data sequenc&,andS,. The distance
between two arbitrary points in each-dimensional

Table 1. Notations used in this paper Sequencgl andSZ, is given as:
Symbol Definition i ) — Ce1 Cs112\Y2
S Data sequence in a database d(S0iS.0) (EZJSl[l,t] S
gi] Thei-th entry ofS whereS[i] andSJj] arei-th andj-th points of sequenceé
giij] Subsequence &from entryi toj andsS,, respectively.
Q Query sequence The distance between sequences, however, has the
mbr(S) | Thek-th MBR of S different semantics from that between points. In the case of
£ User-specified threshold multidimensional data sequences, each sequence is comp-
d(*,*) Euclidean distance between two rised of a number of multidimensional points. It is not
multidimensional points suitable if we just use the sum of distances between all
D(*,*) Distance between two sequences pairs of points in the two sequences to represent the
Dmead®*) | Mean distance between two sequences of distance between two sequences, since a pair of similar
equal length sequences with more points may produce the greater
D..(*,*) | Distance between two MBRs distance value than dissimilar sequences with fewer points.
D,.(*,*) | Normalized distance between two MBRs The following example shows this.
3.1. Nature of multidimensional data sequence F2 sequence,

A multidimensional data sequence can be represented
by a trail of points in a multidimensional data space. More
formally, we describe it by the following definition:

Definition 1 A multidimensional data sequenc® is sequences,

defined as a series of its component vect®rs(§1],92],

...,9K]), where each vectaf§Kk] is composed of multiple

(n) scalar entries, that iS[K] = (§k,1],9k,2],...,9Kk,n). 1
We can formulate time-series data as a special case of F2 sequence,

this data model, by replacing each elent§k} of Swith a
onedimensional scalar component. Thus, it becomes a
sequence of real numbers, each number representing a
value at a time point.

The similarity of two objects, each of which is repre-
sented by a multidimensional vector, is generally defined
as a function of the Euclidean distance (hereafter, referred
as ‘distance’) between those two vectors. For example,
images or video frames are represented as feature vectors, F1
such as color, texture, or shape. The similarity between
images or video frames can be described as a function of
the distance between the corresponding feature vectorgExample 1 Let us consider two pairs of sequences, (
The value range of the similarity between two objects isS)) with 9 points each, and{ S,) with 3 points each. As
usually [0,1] while the range of the distance iso), The we can see intuitively in Figure 1, the sequergesndS,
distance is close to zero when two objects are similar, anére apparently more similar than the sequergesnd S,

sequencé,

Figure 1. Distance between sequences



since pairs of points of the former are placed closer tharThe distance between two MBRs in the 2-dimensional
those of the latter. But, if we adopt the sum of distances aspace is depicted in Figure 2, depending on their relative
a similarity measure, we may get the result that theplacement.

sequences; andS, are closer (more similar). It shows that It is straightforward that the distance for the 2-dimen-
the sum of distances is not appropriate for the similaritysional space is extended to thelimensional space. Thus
measure of sequencas. the following definition holds.

The first metric we introduce is to measure the distance
between two sequences. First, it is defined for same-lengtiefinition 4 The MBR distanc®m,: between two MBRs
sequences, and then, extended to different-length sedq®=(L,, H,) andB=(Lg, Hg), in then-dimensional Euclidean
uences. space, is defined as the minimum Euclidean distance
between two hyper-rectangles. That is:
Do (A B) = (Y %)%
1<

<ksn

Definition 2 The distanceD(S,,S,) between two multi-
dimensional sequencé&; andS, of equal length, each of
which hask points, is defined as the mean distance of the
two, where the mean distance is defined as follows:
d(S{il, SJil) where, X, = [lay —hgy| if hgy <l
D(S.,S,) = Dpeal S, S,) = QST otherwise.

Next, let us consider the different-length sequencegObservation 1 The distancé®,,, is shorter than the dis-
which cannot be compared directly, point by point. In this tance between any pair of points, one in a sequnard
case, the shorter sequence is compared with the other g}ie other in a sequené That is:
sliding from the beginning to the end. The shortest distance D (A B) < au?LQszd(a’ b)
of each pair is adopted as the distance between tWQ/vhereA and B are' the MBRs containings, and S,
sequences. The following definition describes it more respectively. '
formally. '

hA,k - IB,k| if hA,k < IB,k;

Definiton 3 The distanceD(S,S) between two mult- témmal (Lower Bounding DistanceDy,) .
dimensional sequencé& andS, of different length, each The shortest MBR distanc®,, between any pair of
of which hask andm points respectively (Without loss of MBRS in a query sequencg and a data sequengas the

generality, we assume< m.), is defined as the minimum lower boundof the distanceD(Q,9 of two sequences.

mean distance of every pair, where the minimum mear}vc\)/l?fwni':é E;Zjes_the sets of MBRs ). S respectively, the

distance is defined as follows: in D b br (S)) < D(O. S
D(S,S,) =, Min Dpea(SIL:K], ST 1] +k=1) e Do (MEF(Q). B (5) = BQ. 9
. L Proof: LetQ, Shavek, | points respectively. Without loss
3.2. Distance metrics between MBRs of generality, we can assurkes|.

To measure the distance between MBRs, we introduce® (@ S) = _Min  Dyeq,(QIL:K], Sfutu+k 1)
the MBR distancd,,,, between two MBRs. Generally, an

MBR M in the n-dimensional Euclidean space is :K{IQ[QHH Z d(Q[v], Ju +V—1])/|<E

represented by two endpointglow point) and H(high O fsos ) E_ _

point) of its major diagonal [11]. It will be: Let & be the shortest distance between arbitrary two points,
M =(L,H) one in a sequend@ and the other in a sequencespthen

whereL=(1I,,l,,..1.), H=(hy,h,,.. h), li<h for 1<i<n.

X2 X2 X2
mbr A mbr A Drnor =0
Drmor Drmor mbr A
mbrB
mbrB mbrB
X1 X1 X1

Figure 2. Distance between two MBRs in the 2-dimensional space



B EE adjacent MBRs which has the shortey,, (D, in this
D@, 5)‘Luﬁ<]lrk1+l d(Qv], S[U+V—]l)/k (k*o/k)=0 example) is selected. When the total number of points
vk O involved in theD,,,, calculation still does not reach the
By Observatiol, = min Dy, (mbf(Q),mbr (S)) - number of points irmbr, then the next adjacent MBR
' which has the shorteD,,, is selected. This process

Therefore, D(Q, S) 2 mT,'ER D i (Mbr; (Q), mbr; (S)) - continues until the condition is satisfiel.

So, if D(Q,9 < ¢ there exista, b such thatallN, bOR,
o(Mbr(Q),mbr.(9)<e. m Definition 5 Let r be the number of MBRs in the data

sequence, andk, I, p, q be the indices of MBRs & such

Based on Lemma 1, we can use the distdhge to that kk<j<l<r, 1<p<j<gsr. Then, the normalized distance
prune irrelevant sequences from a database witfalae D,.m between two MBRs is defined as follows:
dismissals,’ since it provides the lower bound for the D, (mby(Q),mbr(S))= mm{L D, (Mbr(Q).{mbf (S),..mbr(9)}),
distance between sequences. The next metric we introduce =
is the normalized distand2,,,, between two MBRs which RD,,, (mbr(Q).{mby (S),..mb (S})}
considers the number of points in MBR. The distaDgg, -
between a query MBR{br,) and a target MBRiibr) in a where, LD, (b, (Q) {mzr"(s)’ I,;an (S
data sequence is informally defined as the distance whichp,, (mbr(Q),mby(S)) [ﬂ‘qi‘—Z‘m‘)+ZDmbr(mbr(Q),mbg(S))[I]'rg‘
considers not only thB,,,, betweermbr, andmbr, but the 5 =
Dyi's betweenmbr, and the neighboring MBRs ahbr, al
when the number of points afbr, is less than that ahbr, and, RD,,,,, (mbr (Q),{mbr, (S),..,mbr, (S)}) =
The neighboring MBRs ahbr, are included one by one in
the D, calculation until the number of points of the Duu(Mbr(Q).mby(9)Mg|- Z\m\)+ szbr(mbr(Q) mbi(S)) |
participating MBRs reaches that ofbr,. This distance is L &L

intuitively illustrated in Example 2 and the formal defi- _ _ [l ) )
nition follows. g is the set of points @ in thei-th MBR, m is the set of

points ofSin thej-th MBR, and

- q
X2 MBRs in a data sequence ‘lms<qi, ‘ m.| = [q,], m| <
b ;HH;HHSZJ\

q
Y Imy[ =}
&P

The objective of this metric is (1) to provide the greater
Q lower bound than the MBR distan€&®,,, to promote the
' mbr, pruning of irrelevant sequences, and (2) to make it possible

N to find the subsequences of each selected sequence, each of
D, D, which falls under a given threshold. The following two

lemmas show that thB,,,, distance guaranteead false
: mbi//[ dismissalto prune irrelevant sequences from a database.
a query MBR _ _
\‘“ Lemma 2 (Lower Bounding Distance D,,,, when a
guery sequence has a single MBR)
Let Q be a query sequence contained in a single MBR

X1 , :
Figure 3. Sketch forthe D__ distance mbr(Q) andS be a subsequence _afthe Ie_ngth _of which
is the same as that . SinceS' is contained in one or
more MBRsmbr (9 (Igk<s), then the following holds:
Example 2 Let data sequenc8 be divided intombr; minD,,..(mbr(Q),mby (S)) < D(Q,S)
I<kss

(=1,2,3,4), b; (D,<D,<Ds;<D,) be the MBR distance
betweermbr, and the query MBR, the number of points in
mbr, be 4,6,5,5 foj=1,2,3,4 respectively, and the number
of points inmbr, be 12, as shown in Figure 3. Then, the
normalized distancB,,(mbr, mbr,) is:

weighteddistancefor mbr,

Proof: LetD, be an MBR distance betweerbr(Q) and
mbr(S), and m, m, be the set of points imbr(Q) and
mbr(S). Then, a set of indices of MBRs in a sequeBce
involved for theD,,, calculation is a subset of {+1,..,s}.

When we letin be a set of points imbr(S) actually

Dnom(mbr,, mbr,) = # pointsin mbr, involved for the Dy, calculation, then |m, |5 [+
q
(D, x6) + (D, x4) + (D, x 2) M., [+..+]|Mm |. Since each MBR distandg, is shorter
- 12 than the distance between any pair of points, one in a

If the number of points imbr, is equal or greater than that sequenceQ and the other in a subsequence Sfby
of mbr,, the D, will be the D, Otherwise, one of two Observation 1,



MinD, ,,(MbIQ),mbE(S) = Dx|m [+ +Dx|m | _ D(@Q.S) 3.3. Finding subsequences

Im |
- Given a query such &Select sequences in a database
Lemma 3 (Lower Bounding Distance D,,, when a which contain the subsequences that are similar to a query
query sequence has multiple MBRS) o sequence, and report those subsequendes,hormalized

The shortesD,,,, between any pair of MBRs in a query distance[.)norm is.used tp find the answer subsequeng:es, as
sequence) and a data sequen&eis the upper boundof we mentloned in Section 3._2. Now we need to define the
the shortesD,,, between two sequences, and theer term, Solut|o_n Interval the mterva_l (_)f a data sequence
bound of the distanceD(Q,S. When N, R is the set of w_h|ch contains subsequences within a given threshold,
MBRs inQ, Srespectively, the following hold: with respect to a query sequence.

merRD"‘bf(mbi'(Q)’mbr (S))siErmEnRDmm(mbir(Q),mb[(S))sD(Q,S) Definition 6 The Solution Interval(Sl) is defined as a set
Proof: Let us assume that tH®,,,, has the minimum of points which are contained in subsequences, whose
value ati=x andj=y, and a set of indices of MBRs in a distance from a query sequence falls within a specified
sequencé&involved for theD,,,, calculation is {,.., y,.., $. threshold. That is, the solution interval 81:m] with

Let g, m be the set of points imbr(Q) andmbr(S). By respect to a query sequer@gL:K], is formally defined as:
Definition 5, at the marginal MBR=l orj=s), the number  (Without loss of generality, we assutg m)

of points involved in thé®,,, calculation may be less than  S|={gt] | Jt{]09p:q], Ip:q] is a subsequence 6f

Im| or ny, respectively. Lefjriy | and |, | be the number such thaD(Q[1:K], §j:j+k-1]) < ¢ for p<j < g-k+1}.
of points actually involved in th®,,,, calculation for . . . . .
mbr(S) andmbr(S). Then The solution interval in Definition 6 describes the

actual answer subsequences that can be obtained by a
Let sequential scan. To avoid an overhead of the sequential
_ . _ scan, we will approximate it by using the normalized

Dk_Dmbf(mbr(Q)’mb[(s))anqquRD (mbr(Q),mby () =C, distance D,,,,, When we calculate th®,,, between

Then, min D,,(mbf(Q),mbr(S)) = D,,,(mby, mby) mbr,(Q) and mbr(S), one or more MBRs of a data
IR . . R sequence are involved. . (mbr(Q), mbi(9) < & we
:qx|m|+...+Dy><|m/|+...+Ds><|n1|2q><|m|+...+q><|m/|+...+q><|n;|:q can approximate the solution interval as the set of all points

o la which are involved in th®,,,, calculation. The example 3
Therefore, _ illustrates it intuitively.
iDWI!QR Dmbr(m br(Q)'mbf(S)) < iDWI!QR Dnorm(mbir(Q)!mbr(S))
Next, we need to show that the shortegt,, between any
pair of MBRs in a query and a data sequence idother
boundof the distanc®(Q,9). Let the shortedd, ., be C,,
and two sequence® and S have the minimum mean
distance at the interv&[1:k] and Sh:h+k-1]. Let Q[1:K]
be partitioned into subsequenc&s (1<i<n) which are . . - . . .
contained inmbr(Q). We also partitiongh:h+k-1] into pobmts OfTbr3'2Tha.t IS’SfIm_b{a" points contained irmbr,
subsequences (1<i<n), such thaf) andS are of the same ™ r} O {first 2 points ofmbry}. =

length for1<isn. WhensS is contained irmby(S) (Istss), While theD,,,,,, metrics guarantees¢ false dismissal
the following holds for a pair of subsequen@s&ndS, by for selecting candidate sequences from a database, it does

[y fslmy [ Img llmg |, o, =1y [+ Tmy [+.+ Mg ]

mbr

Example 3 Figure 3 in Section 3.2 shows that theér,,

mbr,, andmbr; of a data sequence are involved to calculate
the normalized distanceD,,(mbr, mbr). When
D.om(mbr,, mbr) < & we can approximate the solution
interval Sl as a subsequence of a data sequence which is
composed of 4 points @hbr,, 6 points ofmbr,, andfirst 2

Lemma2. not guaranteeno false dismissalfor determining the
D(Q,S) 2 MinD,,(Mbr(Q), mby(S)) solution interval to find subsequences of each selected
2.DTi.QRDnorm(mbr(Q)7mb'}(S))=C2' sequence. However, the experimental result in Section 4
LN,

shows that the determination demonstragdsost no false

Thus, D(Q,S) =D(f1:K], §h:h+k-1)) dismissal with the recall over 98%. The false dismissal

z|m |xD(@, S) z|m |xC, arises from the fact that few points between subsequences
= 1s=n > L=n =C, involved in theD,, calculation may be missed. Therefore,
;n'm | KZJ ml a small amount of false dismissal does not cause a severe
Therefore, we conclude that prob]em. In a real situation, we can choose the interval f_or
min Dyr(MbF(Q), mbr (S)) < D(Q, S) _playmg a selected_v!deo based on an a_ppromma}ted solution
N, JCR interval, by containing few false-dismissed points. Now,
= we are ready to describe the proposed algorithm for the

similarity search of multidimensional data sequences.



3.4.3. Partitioning of a sequence

A multidimensional sequence is partitioned into sub-

In this section, we present the overall process of ousequences, each of which is contained in an MBR. To do
proposed method. Before a query is processed, we shall dis, our method uses the partitioning algorithm proposed
some pre-processing to extract the feature vectors from rawn [5] with a slight modification of its cost function. The
materials such as video streams or images, and then talgorithm uses a cost function, which estimates the number
construct an index for later processing. After the index isof disk accesses for an MBR. They defined the marginal
constructed, the similarity search is performed to selecitost MCOST) of a point in an MBR as the average number
candidate sequences from a datab®&ege2 and 3), and  of disk accesses (DA) divided by the number of points in
to find the solution interval of each selected sequencehe MBR. The grouping of points into subsequences is

3.4. Similarity search processing

(Phase3).

3.4.1. Pre-processing

1. Generation of multidimensional sequendeaw mater-

done in such a way that if tHdCOSTis increased for a
successive point of a sequence, then another subsequence
is started from the point, otherwise it is included in the
current subsequence. We slightly modifidiCOST to

ials are parsed to extract the feature vectors. Each vectQgfiect the MBRs of a query sequence in addition to the
is represented by a multidimensional point in the hyperyigrs of a data sequence, since the similarity search is

data space. When the vector is of high dimension,pased upon the MBRs of both a query sequence and a data
various dimension reduction techniques such as DFT OGequence in our proposed method. Consider nan

Wavelets can be applied to avoid the dimenSiO”amYdimensional subsequence with points, an enclosing
curse problem. A series of vectors constitutes a multi-\gR of which has the sidds=(L,L,,...,L,). If we assume

dimensional sequence.

that a query MBR has the sid€(Q,,Q,,...,Q,) and a

2. Index constructionEach multidimensional sequence is i en threshold ig, then theMCOSTof each point in this
partitioned into subsequences by using the partitioningy,gr will be:

algorithm in Section 3.4.3. Each subsequence is enclo-
sed by an MBR. Every MBR is indexed and stored into

a database by using any R-tree variant.

3.4.2. Similarity search

After an index has been constructed, we perform thecan choose an appropriate value @te.

(L +Q *e)
woos=0A_ 73
m m

By evaluating various combinations @Qf and ¢, we
We adopt 0.3

similarity search against a given query sequence. A threefor this value, since it demonstrates the best partitioning by
phase algorithm for the similarity search is describedan extensive experiment. The partitioning algorithm is

below.

Algorithm SIMILARITY_SEARCH

[*iis an index for MBRs in Q, j is an index for MBRs ina p:={}
data sequence S, and k is an index for a data sequence ing := {}

database */
AS,,-:={} [I*the set of answer sequences hy,D */
AS,.m ={} [I*the set of answer sequences by P */
Sl=1{} /* the solution interval of the sequencg's
/* By using the partitioning algorithm in Secti@m.3.*/
Phase 1. Partitioning of a query sequence
Partition query sequence @ into one or more mbr{Q)
Phase 2. First pruning. (Index search)
For each mbr(Q) of query sequence Q,
Search a database
If D, {mbr{Q), mbr(Sy)) <& Then
Insert S, into the set AS,,,,
Phase 3. Second pruning and solution interval finding
For each selected sequence S, in the set AS,,,,
For each mbr(Q) of a query sequence
If Dporm(mbr{Q), mbr; (Sy)) <& Then
Insert S, into the set AS,,,,
SI, = {all points which are involved in the
D, calculation} O Si,
Report the set AS,,,, and the set Si,

described as follows:

Algorithm PARTITIONING_SEQUENCE
[* the set of points in sequence S */
/* the set of MBRs in sequence S */
count : the number of points in MBR
max : the predefined value of maximum points per MBR
Allocate the first point of P in current MBR
For each point in P
If it increase MCOST or count> max Then
Insert current MBR into M
Start another MBR
else
Insert it into current MBR
Increment count

4. Experiments

In order to measure the effectiveness and performance
of our proposed method, we have conducted compre-
hensive experiments on real video data sets, as well as
synthetic data sets generated by using a Fractal function.
The video data sets include a collection of TV news,
dramas, and documentary films. Our experiment focuses
on showing the efficiency of the method to prune a



database of irrelevant sequences and to find the solution Video data streams are generated from various video
interval. The system is written in Microsoft VC++ under data sources, by extracting color features from each frame.
Windows NT, on a HP NetServer. Thus, each frame is mapped to a 3-dimensional point in the
unit cube. Figure 4 and 5 show the sample sequences
generated synthetically and from a real video stream.

i ) i The following table summarizes the parameter setting
For the experiment, we have used synthetic multi-seq in the experiment.

dimensional data sequences and real video data stream.
All data sets are, for convenience, 3-dimensional, but any

4.1. Generation of experimental data

Table 2. Experimental parameters

dimensional data sequences can be used. Synthetic data Synthetic data] Real video dala
sequences are obtained using a Fractal function as follows
# of data sequences 1600 1408
1. Two 3-dimensional initial point$),, for the beginning Length arbitrary arbitrary
point of a sequence and,, for the end point, are of data sequences (56-512 points)| (56-512 frames
selected randomly in the 3-dimensional unit cube {0,1) Range of threshold
2. The middle poinP,,;, of P, andP,,, is calculated as valuesé) 0.05-0.50 0.05-0.50
follows:
# of query sequences
Fr)nid = (Pstart + Pend) / 2 + dev*randonq) for eachg 20 20

where thedevis selected to control the amplitude of a
sequence in the range [0,1), aaddon() is the function
for generating a random real number from 0 to 1.
. After gettingP,,, two subsequence®(,., P.o and . . L .
P Fgend) agr]emg(]jenerated. Tﬂe proces(a'; 2":;) repeated The range se_arch is to find similar sequences in a
recursively for each subsequence, with a dew database to a given query sequence within a s_pecmed
dev = scale * dev threshold. We have executed test cases which are
wherescaleis a real number in the range [0,1). We use acomposed of various combm_auons of test_parar_neters._The
lower dev value for the successive recursive call, sincethresmId range 0.05-0.50 is chosgn since .'t. pr_owdes
the lengths of the two subsequences are shorter tha nousgh coverage for thg low and_high selectlylty in the
their parent. ,1)’ cube which has a diagonal qf3. A query diameter
will be 0.1 through 1.0. For each test, we have issued
randomly selected 20 queries and taken the average of
guery results. Several aspects of our method are examined
in the experiment.

4.2. Experimental results

#a
0.8 4.2.1. Pruning efficiency for selecting sequences in a
ne database
e The pruning efficiency of th®,,,, andD,,, to select

candidate sequences from a database was examined by
varying the threshold value. To measure it, we define the
pruning rate(PR) as follows:

lsequenceactuallypruned _|totalsed|.- |retrievedseq].

[sequencet bepruned  |totalseq.—|relevantsed).

where § denotes the number of elements in theSset

Figure 6 and 7 show the results by using the metrics
defined in this paper for synthetic and real video data sets.
We can observe that the pruning rate oflhg is 70-90%
on synthetic data sets and 65-91% on video data sets for
the range of a threshold value, 0.05 through 0.50. The
pruning rate of theéD,,,, shows constantly 3-10 % better
than that of theD,, in the whole range, 76-93% for
synthetic data sets and 73-94% for the video data sets. The
experiment also shows that the pruning rate decreases as a
given threshold value increases. This is because the
number of retrieved sequences for a larger threshold
increases more rapidly than the number of relevant
seguences.

X1

PR=
Figure 4. A synthetically generated sequence

Figure 5. A sequence generated from video data



well clustered than synthetic data sets as shown in Figure 4
and 5. It is known that the frames in the same shot of a
video stream have very similar feature values. Consequ-
ently, our method demonstrates almost 1.0 recall values,
and 60-94% pruning rate for given thresholds.

0.90
0.80

——DMBR
0.60 T —a— DNORM
. Fh—h—bh—h——h—h——h—Ah—h—A
080 o o 1.00
g2 2888 8¢9 8 0.80._././.,./-’-/'/'/-
(@) (@) o (@) (@) o (@) o (@) o
Threshold 0.60 r
Figure 6. Pruning rate of the D, andthe D, 0-40 7 —®—Pruning Rate
for synthetic data sets 0.20 —*—Recall
000 oo
1.00 ¢ n O w O v o wuw o w o
(@] — — ol [a\] [ a2 < < w
0.90 S 6 6 6 6 6 6 S oS o
Threshold
0.80
0.70 r  —e—DMBR Figure 8. Efficiency of the solution interval
060 | —®—DNORM for synthetic data sets
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£ 228 &8 8% % 3 100 [ A—d—h—d—A—h——a—a—
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0.80
Figure 7. Pruning rate ofthe D, , andthe D, 0.70
for real video data sets 0.60 r = Pruning
. . . . . 050 i Rate
4.2.2. Pruning efficiency for finding subsequences 0.40 —4—Recall

We have examined the pruning efficiency of the (.30 T S
solution interval estimated by our proposed method. First, B 2w
we present the measures to estimate the efficiency of the S o o
selected solution interval. LB, be a set of total points in
a sequencel.,, be the answer set of points by using the
sequential scan, arf®,,., be the candidate set of points by
using theD,,.., metrics. Then, the pruning efficiency of the
solution intervaPRy, is defined as follows:

_ |points actually pruned _ |R,.,|~|P.

PR - norml

*  |pointstobepruned  |Puu|—|Pucar

As thesolution intervalcomputed by using thB,,
metrics does not guarantee the correctness, we need
examine theRecall of a selected solution interval. It is

defined as follows:

Threshold

Figure 9. Efficiency of the solution interval
for real video data sets

4.2.3. Average Response Time

We have compared the response time of our method
with the sequential scan. We have run 20 random queries
with the same threshold over synthetic and real data sets to
fthd similar sequences and solution intervals with given
sequences, by using tbe,,, andD,,, metrics. The results
were compared against the sequential scan. The ratio of the
[Pecan N Prorm| response time is obtained as follows:

Peead Responséimeratio = Responsémeby thesequentiadcan

Figure 8 and 9 show the results on the pruning Responsémeby theproposealgorithm
efficiency and the recall of the estimated solution interval.where a denominator represents the total elapsed time for
First, we can observe that the recall values for boththe search by both thB,, and D, metrics, since we
synthetic and real video data sets are very close to 1.0, igonsider the total time to select candidate data sequences
the range of 98-100%. It indicates that our method hasand to get the estimated solution interval.
almost ‘no false dismissal.” The pruning r&®g;, is around Figure 10 depicts the ratio of the average response time
60-80 % on synthetic data sets and 67-94 % on video datef our method compared to the sequential scan. We can
sets for the thresholds with the range 0.05 through 0.50. Asbserve that our method performs 22-28 times better for
we can see, the pruning rate of video data sets is better thaynthetic data sets and 16-23 times better for real video
that of synthetic data sets. It seems that video streams argata sets than the sequential scan.

Recall=




References

28 r
26
24 [1] R. Agrawal, C. Faloutsos, A. Swami. Efficient Similarity
22

Search in Sequence Databadesceedings of Foundations of
fg I Data Organizations and algorithmgFODO), pages 69-84,

16 L —e—Synthetic Evanstone, lllinois, October 1993.
14 | —W—Realvideo [2] S.Berchtold, C. Bohm, H.Kriegel. The Pyramid-Technique:
12 2 ‘ o ‘ o ‘ o ‘ . ‘ = ‘ p ‘ o ‘ P ‘ o ‘ Towards Breaking the Curse of DimensionalRyoceedings of
S 8 8 S8 6 & & &5 & o ACM SIGMOD Int'l Conference on Management of Datages
Threshold 142-153, Seattle Washington, June 1998.
[3] S. Berchtold, D. Keim, H. Kriegel. The X-tree: An Index
Figure 10. Response time ratio for synthetic Structure for High-Dimensional DataProceedings of Intl
and real video data sets Conference on Very Large Data Basesges 28-39, Bombay,

India, September 1996.

[4] N. Beckmann, H. Kriegel, R. Schneider, B. Seeger. The R
tree: An Efficient and Robust Access Method for Points and
RectanglesProceedings of ACM SIGMOD Int’| Conference on

'!" .thls paper, we have focused on retrieving similar Management of Datgpages 322-331, Atlantic City, New Jersey,
multidimensional sequences, such as video streams, from{gay 1990

large database. To solve the problem, we have first define
the distance between two multidimensional sequences, ang®?] - Faloutsos, M. Ranganathan, Y. Manolopoulos. Fast
introduced two lower bounding distance metrids,, and Subsequence Matching in Time-Series Datab&seseedings of
D, Based on the metrics, we proposed the algorithm toACM SIGMOD Intl Conference on Management of Datages
prune a database of irrelevant sequences and to find thé19-429, Minneapolis, Minnesota, May 1994.
solution interval of the selected sequences. One of potential®] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B.
applications which is emphasized in this paper is the Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P.
similarity query on large video data sets, but we believe Yanker. Query by Image and Video Content: The QBIC System.
other application areas can also benefit. The desirabldEEE ComputerVol. 28, No. 9, pages 23-32, September 1995.
characteristics of our method are summarized as follows: [7] A.Guttman. R-trees: a dynamic index structure for spatial
searching Proceedings of ACM SIGMOD Int'l Conference on
1. The search algorithm is based upon MBRs, not eachManagement of Datgpages 47-57, Boston, Massachusetts, June,
point in sequences. Thus, it is fast and needs small1984.
storage overhead compared with a sequential scan. [8] H.V. Jagadish. Linear Clustering of Objects with Multiple
2. Our method is designed to handle the sophisticatedattributes. Proceedings of ACM SIGMOD Int'| Conference on
similarity search, such as finding subsequences of avanagement of Datepages 332-342, Atlantic City, New Jersey,
selected sequence, as well as selecting just candidatfyay 1990.
sequences from a database. [9] N.Katayama, S. Satoh. The SR-tree: An Index Structure for
3. Our method does not restrict the length of SeqUeNCeSyjigh_pimensional Nearest Neighbor Queridoceedings of
Query Ssequences and d,ata sequences are of arbltrarXCM SIGMOD Int'l Conference on Management of Datages
length. In particular, a given query sequence may be369-380,Tucson,Arizona, May 1997.

longer tha.n.a data.‘ sequence. + [10] D. Rafiei, On Similarity Queries for Time Series Data.
4. Any multidimensional access method (such as the R*- . , . .
Proceedings of Int'l Conference on Data Engineerimages

tree or the X-tree) can be used.
) 410-417, Sydney, Australia, March 1999.

Our major contribution is that the traditional similarity 111 N- Roussopoulos, S. Kelley, F. Vincent. Nearest Neighbor
search method on one-dimensional time-series data isQuerles.Proceedlngs of ACM SIGMOD Int'l Conference on
extended to support multidimensional data sequences, &1anagement of Dajapages 71-79, San Jose, California, May
more generalized format of sequences. We have performed99°.
an experiment with synthetic and real video data sets, and12] D. Rafiei, A. Mendelzon. Similarity-Based Queries for Time
examined the pruning efﬁciency and performance of our Series DataProceedings of ACM SIGMOD Int'l Conference on
proposed method over the sequential scan. Our method ha¥anagement of Dafgpages 13-25, Tucson, Arizona, May 1997.
shown a remarkable efficiency to prune irrelevant [13] B. Yi, H.Jagadish, C. Faloutsos. Efficient Retrieval of
sequences and to find the solution interval of selectedSimilar Time Sequences Under Time Warpifgoceedings of
sequences, consequently the response time is 16-28 timelst'l Conference on Data Engineeringages 201-208, Orlando,
faster than that of the sequential scan. Florida, February 1998.

5. Conclusions



