
A Two-Phase Scheduling Algorithm for Efficient
Collective Communications of MPICH-G2

Junghee Lee1,2, Dongsoo Han1,∗

1 Information and Communications University
119 Munjiro, Yuseong-Gu, Daejeon, Korea
{lake@icu.ac.kr,dshan@icu.ac.kr}

2 Electronics and Telecommunications Research Institute

161 Gajeong-dong, Yuseong-Gu, Daejeon, Korea
{lake@etri.re.kr}

Abstract. In this paper, we propose a packet-level parallel data transfer and a
Two-Phase Scheduling(TPS) algorithm for collective communication primitives
in MPICH-G2. The algorithms are characterized by two unique features: 1) a
concurrent data transfer of packets from a source node to multiple destination
nodes and 2) a scheduling of enhancing the performance of collective commu-
nications by early identification of bottleneck incurring nodes. The proposed
technique is implemented and the performance improvement is measured. Ac-
cording to the performance evaluation, the proposed method has achieved about
20% performance improvement against conventional block data transfer meth-
ods when a binomial tree is used for the communication in LAN. In TPS algo-
rithm, the distribution of messages to bottleneck incurring nodes is delayed to
minimize the affection of the node to the total performance. Using TPS algo-
rithm on WAN, significant performance improvement has also been achieved
for various data sizes and number of nodes.

1 Introduction

Grids environment provides an enormous number of storage and computing resources
connected to heterogeneous wide-area networks (WANs) or local-area networks
(LANs). In Grids, computing resources constituting the GRID may have various ca-
pabilities and computing powers. In order to develop a communication schedule al-
gorithm that enables effective access to such heterogeneous resources, both network
bandwidth and latency should be considered as primary design factors. When we
consider that the status of network frequently changes in WAN environment, the net-
work status change should be considered also in improving the communication per-
formance in the WAN environment [1].

Numerous researches have been done for the efficient scheduling of communications
among computing resources. Heuristic algorithms such as FEF[1], ECEF[1], TTCC[2],

∗ Corresponding author

and HLOT[3] were proposed for the fast construction of communication trees. How-
ever, these algorithms use only the latency factor for the construction of communication
trees. Moreover, in the current MPICH-G2, a receiver node sends data of multiple
packets to other nodes, only after they receive all packets from a sender node. In
other words, in case of multi-chained data transmission, A→B→C, node B does not
start sending data to node C, until it completes receiving the entire data from node A.

In this paper, we suggest two ideas for the frequently used collective communica-
tion primitive, MPI_Bcast of MPICH -G2, in order to overcome above two problems.
First, we propose a packet-level parallel data transfer mechanism for LAN and WAN
environments and a two-phase scheduling algorithm for WAN environment. In the
packet-level parallel data transfer technique, each node sends individual packet to
destination nodes on receiving a packet from a source node, and it simultaneously
distributes the data to multiple destination nodes. The objective of this method is to
improve the performance of the current data transfer method of the collective com-
munication primitive of MPICH-G2 in Grids environment.

Second, we propose a two-phase scheduling algorithm(TPS) which uses transmis-
sion time for a tree construction metric. The algorithm improves the total perform-
ance by placing nodes, which are prone to bottleneck, to leaf nodes in a communica-
tion tree. The objective of this algorithm is to avoid a bottleneck caused by nodes
with long transmission time and then to achieve performance improvement of the
collective communication primitive.

In this paper, the performances of our methods are measured and the results are
compared with the conventional methods. According to the performance evaluation
for nodes connected to LAN, the packet-level parallel data transfer method has
achieved about 20 % performance improvement against conventional data transfer
methods. A binomial tree is used for the scheduling of the communication. According
to the simulation of communications for nodes connected to WAN, the scheduling
algorithm which uses both packet-level parallel data transfer and TPS algorithm has
achieved overall performance improvement for various data sizes and number of
nodes, against algorithms such as ECEF, HLOT, and flat tree.

This paper is organized as follows. In section 2 we describe the current status of
MPICH-G2 and related work. Our proposed methods, packet-level parallel data trans-
fer are explained in section 3 and our two-phase scheduling algorithm is explained in
section 4, respectively. Then, we show the experimental results in section 5, and fi-
nally, we draw conclusion and describe future work in section 6.

2 Related Work

2.1 A grid-enabled MPI, MPICH-G2

Firstly, the current version of collective primitives of MPICH-G2 uses two-layered
network topology-aware scheduling to reduce communication time, which just divides
communication nodes into two divisions: nodes connected to LAN and nodes con-
nected to WAN[4]. However, since it doesn’t consider detailed network information

upon constructing the communication tree, it may cause a relatively long communica-
tion time in WAN environment, which is characterized as a changeable network situa-
tions and long latency. Therefore, the schedule based on accurate network information
has more opportunity in improving the performance of communication of MPICH-G2.
Second, MPICH-G2 entrusts the control of data transmission to TCP/IP stack of the
operating system, i.e., the current primitives of MPICH-G2 send data to the buffer of
TCP/IP stack and wait completion of operations. MPICH-G2 doesn’t intervene in the
transfer and wait until the sending is finished.

As a solution to fast data transmission of MPICH-G2, GridFTP[4] is provided.
GridFTP in MPICH-G2 provides interfaces of opening multiple sockets between two
endpoints, partitioning a large message into small packets, sending those packets in
parallel using multiple sockets, and, lastly, re-assembling the large message. However,
it is used not for collective operations but for collaborative environments. The facility
provides a means of handling only two endpoints that have large blocks of data to
send/receive, and it demands high-latency and high-bandwidth for efficient communi-
cations since the two endpoints transfer enormous data through multiple sockets.
Moreover, some codes must be instrumented into MPI programs for the facility to be
used in communicating programs. For example, user should set an attribute, assign
two endpoints, and set the parameters such as the number of sockets and TCP buffer
size.

2.2 Heuristic Algorithms

Many heuristic algorithms have been designed for collective operations of
MPI(Message-Passing Interface): FEF(Fastest Edge First)[1], ECEF(Earliest Edge
First)[1], TTCC(Two-Tree Collective Communication)[2], etc. FEF selects a node
with the smallest communication cost from a root, and ECEF chooses the node with
the minimum sum of communication cost and ready time of its sender[1]. TTCC trans-
fers data with two communication trees made by ECEF algorithm[1]. HLOT is for
WAN with comparatively very large latency, and after comparing its weight of edge
with one of flat tree it decides if it uses a selected edge, or not. These algorithms
intend to improve performance by using the schedule that considers network informa-
tion. However, SPOC and FNF aren’t well suited for Grid environments, and FEF and
ECEF don’t consider bandwidth or message size. When a parameter of algorithm is
latency, the algorithms are suited for small messages. For a long message, bandwidth
is also an important factor of data transmission. Moreover, these heuristic algorithms
contain overheads for scheduling such as the creation cost of a tree, memory cost,
managing cost for network information, etc. For example, TTCC can increase network
loads since it creates two communication trees and sends along the two paths. It also
assumes that TCP/IP can select one node out of two nodes, concurrently sending data.
These heuristic algorithms are limited to scheduling only with network information.
They don’t consider the change of basic communication method.

3 Packet-level Parallel Data Transfer

In this section, we propose packet-level data transfer and one-to-many communication
using network information in MPICH-G2. This method, which uses these two ways, is
named packet-level parallel data transfer.

3.1 Packet-level Data Transfer

The current implementation of MPI_Bcast in MPICH-G2 is as follows: Each node
doesn’t start data transfer until receiving the entire data. We call this kind of data
transfer blocking data transfer. To improve the performance of the current MPI_Bcast
primitive, we propose a packet-level data transfer technique and it works as follows:
In this technique, a node starts to send data to the next node immediately after receiv-
ing a packet unit from the source node. As a consequence, a node may send packets
many times to the destination node while it receives the entire data from a source node.
The technique is also used in cut-through routing[5].

Fig. 1 contrasts packet-level data transfer to blocking data transfer technique. Data
is partitioned into 3 packets, and the path is simply represented with a linear tree with
4 nodes. The progress of data transfer is illustrated in Fig. 1. The packet-level data
transfer technique finishes the communication within Time 4, whereas blocking
method completes the communication within Time 6. In the packet-level data transfer,
remarkable performance enhancement will be gained when the height of tree is high
and the size of data is large. In this transfer, the size of packet should be carefully
decided because prevailing of small-sized packets may cause network congestion. To
prevent the network congestion, we set data size to be sent at one time to
MTU(maximum transfer unit) of IP layer. Then, it is possible to reduce the comple-
tion time for the broadcast operation of MPICH-G2 without incurring any significant
overhead.

��� ����� � ��	�
���
 ��
 � ������� ���� ����� ��
 ��� ��� ����
���
 �

 � ������� ���

�����

���

�

 �!�"�#
$

�����

���

�

 %!�"�#
&

�����

 �!�"�#
'

�����(�)*�,+

�(�)*�.-

���(�)*�,/

�(�)*��0

���(�)*�,1

 %!�"�#
'

�����

 %!�"�#
&

�����

 %!�"�#
$

(�)*�,2

(�)*�,3

��� ����� � ��	�
���
 ��
 � ������� ���� ����� ��
 ��� ��� ����
���
 �

 � ������� ���

�����

���

�

 �!�"�#
$

�����

���

�

 %!�"�#
&

�����

 �!�"�#
'

�����(�)*�,+

�(�)*�.-

���(�)*�,/

�(�)*��0

���(�)*�,1

 %!�"�#
'

�����

 %!�"�#
&

�����

 %!�"�#
$

(�)*�,2

(�)*�,3

Fig. 1. Comparison packet-level data transfer with blocking data transfer

3.2 Parallel Data Transfer

If the capacity of the sender to transmit data could be sufficient enough, we can im-
prove the performance of transmission with one-to-many data transfer. One-to-many

data transfer means that one sender can simultaneously transfer data to multiple re-
ceivers. With this method, the increase of receivers can reduce available bandwidth of
sender. Therefore, the optimal number of receivers should be determined considering
both bandwidth and latency.

For instance, we suppose that data consist of 4 packets(w, x, y and z), each node
has sufficient available bandwidth and a binomial tree with 8 nodes is used as a com-
munication tree. The process of blocking data transfer is described in Fig. 2, and one
of packet-level parallel data transfer illustrated in Fig. 3. Each node in Fig. 2 begins to
transfer data only after the entire data, w, x, y and z are received from a source node.
However, each one in Fig. 2 starts sending to destination nodes immediately after
receiving packets, and transfers a packet simultaneously. At the Time 0, node 0 in Fig.
2 sends data only to node 4, and can forward data after Time 4, whereas, node 0 of Fig.
3 can send concurrently to node 4, 2, and 1, and node 4 can forward a packet immedi-
ately after receiving a packet from node 0. The data is completed in Time 6 as shown
in Fig. 3. However, a broadcast operation in time depends on the depth and the width
of the communication tree. When only the packet-level data transfer is applied, the
tree with the large width will show worse performance than that with smaller width.
However, when the available bandwidth is enough large, the better performance can
be achieved using large width than small one of communication tree.

4

567

89

:

;

< =�> < ?�>

5
6

8

6 8 8

8

@�A B C@�A B CD E F�G�H

@@@@D E F�G�I

@�A@�A@�A@�AD E FJG�K L

@�A B@�A B@�A�B@�A BD E FJG�K K

@�A@�AD E F�G�M

@�A B@�A BD E F�G�N

@�A B C@�A B C@�A�B C@�A B CD E FJG�K O

@�A B C
@�A B

@�A

@

P Q R�S P�Q RUT

@�A B CD E F�G�L

D E F�G%K
D E F�G�O

D E F�G�V

@@D E F�G�W

P SJQ R�XYX�Q R�Z

D E F�G�[

\�Q R�]P Q R�\SJQ R�^
_ ` a G

D E F�G

@�A B C@�A B CD E F�G�H

@@@@D E F�G�I

@�A@�A@�A@�AD E FJG�K L

@�A B@�A B@�A�B@�A BD E FJG�K K

@�A@�AD E F�G�M

@�A B@�A BD E F�G�N

@�A B C@�A B C@�A�B C@�A B CD E FJG�K O

@�A B C
@�A B

@�A

@

P Q R�S P�Q RUT

@�A B CD E F�G�L

D E F�G%K
D E F�G�O

D E F�G�V

@@D E F�G�W

P SJQ R�XYX�Q R�Z

D E F�G�[

\�Q R�]P Q R�\SJQ R�^
_ ` a G

D E F�G

bcd

Fig. 2. Example of blocking data transfer: (a) communication tree (b) time table

e

fgh

ij

k

l

m n�o m p�o

q�r s t

q�r s

q�r
q

u

q�r s t

q�r s

q�r
q

v

q�r s tw x yJz�{

qw x yJz%|

qq�rqqw x yJz�}

q�r sq�r s tq�r sq�rq�r sw x yJz�~

q�r s tq�r s tq�r sq�r s tw x yJz��

�

q�r

�

q�r s t

q

�

w x yJz��

q�rq�r sq�rw x yJz��

���
� � � z

w x y�z

q�r s t

q�r s

q�r

q

u

q�r s t

q�r s

q�r

q

v

q�r s tw x yJz�{

qw x yJz%|

qq�rqqw x yJz�}

q�r sq�r s tq�r sq�rq�r sw x yJz�~

q�r s tq�r s tq�r sq�r s tw x yJz��

�

q�r

�

q�r s t

q

�

w x yJz��

q�rq�r sq�rw x yJz��

���
� � � z

w x y�z
f

f
f

f � f � f �

f � �

Fig. 3. Example of packet-level data transfer: (a) communication tree (b) time table

4 Proposed Algorithm

Algorithms of collective communications of MPI typically construct trees for the
generation of a scheduling. However, finding an optimal tree for such an algorithm is
known to be NP-hard problem. Many heuristic algorithms are proposed for collective
communications of MPI. For example, flat tree is well suited for wide area networks,
and binomial tree is almost optimal in local area networks [6]. Thus current imple-
mentation of MPI_Bcast in MPICH-G2 uses these two trees. Since LAN generally
guarantees high speed and binomial tree works well in LAN, we focus on WAN envi-
ronment in which it has relatively high latency and the status of network frequently
changes. In this section, we develop a TPS tree algorithm for such WAN environment.

As noted earlier, our algorithm considers both latency and bandwidth between two
nodes. We use completion time between two nodes as a target metric to be optimized.
Completion time between two nodes is calculated with the following well-known
equation,

ji
jiji bandwidth

emessagesiz
latencytimecompletion

,
,, += , and completion time of MPI_Bcast

becomes the maximum time in the sums of completion time from root to every leaf
node along a path. Nodes with long transmission are prone to incur bottlenecks of
entire communication. If these nodes are placed in the middle of a tree, descendant
nodes of these nodes will suffer from long communication delay. TPS tree algorithm
identifies nodes with long transmission time, and tries to place such nodes to the
leaves of a communication tree.

Two-Phase Scheduling Algorithm

Input:
V : set of nodes joining communication
B : set of nodes with long completion time
A : set of senders
root : root node

Output:
E := set of result edge

A := {root}
B := {}

Tree construction steps:
for i in V

sort communication time from j to i where j in V and i <> j
B := k nodes with worst minimum time except root
//The first phase
while A <> V-B

find j to which minimum edge from x where x in A, j in V-B-A, and x<>j
add edge(x,j) to E
add x to A
x := j

//The second phase
for i in B

find j minimizing weight of edge(j,i) + sum of weight from root to j in V-B
add edge(j,i) to E

Fig. 4. Two-Phase Scheduling Algorithm

Fig. 4 shows TPS tree algorithm. Numbers on the edge of the tree denotes comple-
tion time. The algorithm sorts the values of edge(j,i) for individual node i in V, where
node i has not receive a message yet and node j has the message. Once all the values
of edge(j,i) are computed and sorted, node i can figure out which node can send the
message to i in shortest completion time. Then, the algorithm selects number of k
nodes with longest completion time. These nodes might incur bottlenecks. There are
several ways to decide the number k , but we do not delve into details in this paper.
Our method chooses nodes whose completion time is above the average of minimum
completion time. At first, sender set A contains only a root node. Tree construction
starts from the root. The algorithm finds fastest message arriving node j from node x
in A. Where node j is neither in A nor in B, and B contains number of k nodes. The
chosen node j is added to sender set A and will receive data from its sender node.
After finishing the first tree construction phase except k nodes, the insertion of k nodes
is conducted at the second phase. TPS attaches the rest nodes in B to the tree so that
the constructed tree achieves minimum completion time from root to the nodes in B.
Through above two phases approach, we can prevent nodes with long completion time
being placed in the middle of the tree. That is because our algorithm is named TPS
algorithm. Time complexity of TPS is O(N2logN), where N is the number of nodes.

A

H B D

CG

F

E

150
400

420

200
200550

300

Max 700

H

G

F

E

D

C

B

A

HGFEDCBA

0200320550800600520300

4802800500800850550580

78013009505000500450400

3707005407004502000480

700

670

250

400

1260

500

500

420

300

500

850

500

2000720700920

5207000800500

6007008700700

1508005008000

H

G

F

E

D

C

B

A

HGFEDCBA

0200320550800600520300

4802800500800850550580

78013009505000500450400

3707005407004502000480

700

670

250

400

1260

500

500

420

300

500

850

500

2000720700920

5207000800500

6007008700700

1508005008000

Fig. 5 Example of TPS

Fig. 5 shows an example of applying TPS algorithm to a tree. The completion time

is used for the metric of tree construction. The completion time of every pair of nodes
in the tree is computed and registered in a matrix. The values in red circle denote a
pair with shortest completion time in each column. Then TPS finds the largest element
among the values in red circle. In this example, node E has largest minimum comple-
tion time, 500. Note that, node D needs not to be considered in this case because it is
already contained in the tree. In other words, node A and node D is already connected
with each other when we consider node E. If we set k to 1, TPS constructs a tree with
N- k nodes, i.e., 7 nodes using ECEF method. Then H, G, F, B, C, and D are picked in

sequence, and lastly, TPS decides a node where it has to attach node E. Obviously,
completion time of A-H-E is a minimum among other choices, so TPS attach node E
to node H. As a result, the completion time of this broadcast becomes 700 ms. We
contrast our tree algorithm to other algorithms in terms of environment, metric, and
time complexity in Table 1.

Table 1. Comparison of tree algorithms
Tree Environment Metric Time

complexity
SPOC LAN Message initiation cost O(NlogN)
FNF LAN Message initiation cost O(N2)
FEF LAN/WAN Communication time O(N2logN)
ECEF LAN/WAN Ready timei + Communication timei,j O(N2logN)
Look-ahead LAN/WAN Ready timei + Communication timei,j + Look-

ahead valuei
O(N3)

TTCC LAN/WAN Ready timei + Communication timei,j O(N2logN)
HLOT LAN/WAN Latencyi,j O(N2logN)
TPS WAN Completion timeij O(N2logN)

Now, we analyze our algorithm via LogGP model[7]. LogGP model is suited for

both short and long messages, whereas LogP model[8] is suited for a short message.
LogGP model uses five parameters: latency, overhead, gap, gap per byte for long
messages, and the number of processors. Since gap per byte for long messages, G, is
defined as the time per byte for a long message, it can be expressed by using band-
width, G = 1/bandwidth. Then completion time of sending message with length k from

process i to process j can be calculated as
rijs oL

bandwidth
k

o ++−+ 1 , where os is over-

head of receiver, and Lij is latency from i to j.

0

1

2

3

4

5

6

7

os

or
� � �

os

� � �
or

or

� � �
or

os

os

� � �
or

os

� � �
or

� � �
or

os

� � �

os

Fig. 6. Time diagram of Fig. 5

The completion time of broadcast is computed by equation, completion_timeB =
Max{completion_timel}, where l is the l-th leaf node of tree, and

�
−

=

=
1

0

__
idepth

i
stl timecompletiontimecompletion , where depthi denotes the depth of i-th

leaf node, and edge(s,t) is a part of the path from root to i-th leaf node of tree. Com-

pletion_timest is computed by equation,
rst

st
sst oL

bw
k

otimecompletion ++−+= 1
_ ,

where bwst is bandwidth from node s to t.
Fig. 6 depicts a timing diagram of Fig. 5 using LogGP model. The values of os and

or are set with arbitrary numbers. Though the results may be changed when these val-
ues are changed, the pattern or appearances of the diagram will remain the same.

5 Evaluation

In this section, we present achieved performance enhancement on LAN through
measurement, and expected performance enhancement on WAN through simulation.
As explained earlier, communication performance on WAN is a dominant factor in
deciding the performance of collective communications on WAN and LAN. In LAN,
we use a binomial tree, which is known to be good for LAN. In WAN, TPS algorithm
is used for a tree construction and we have tested the performance improvement

through simulation. In this section, experiment environment, method of time meas-
urement, and analysis result of the test are also explained.

5.1 Performance Measurement for WAN

Simulation Scenario. We apply our proposed tree algorithm on WAN. To evaluate
the performance of the proposed algorithm, we use ns-2 simulator[9], which is a
widely used network simulation tool. For the comparative study, we implemented TPS,
ECEF[1], HLOT[3], and flat[6] algorithms. 220 nodes of transit-stub topology were
generated using GT-ITM[10]. The delay and bandwidth of the network were randomly
assigned. The scale of delay spans from 10 ms to 1000 ms, and the bandwidth spans
from 10 Kbps to 10 Mbps, respectively. Two types of background traffic were used:
CBR and FTP. Both of the traffics have randomly selected individual starting and
ending time of exchanging messages for traffic generation. Consequently, the commu-
nication among grid nodes suffers from network congestion and burst of traffics while
the background traffic is active. The detailed simulation steps are as follows:

1. Specified number of Grid nodes are randomly selected
2. Delays and bandwidths of the selected grid nodes are obtained. The obtained

metrics are used for the construction of a tree.
3. Construct broadcast trees for collective communication, and perform a

broadcast under the same topology and traffic condition as step 1.
The simulation process was repeated 15 times and average transmission time was
computed.

Simulation Results.

0

100

200

300

400

500

600

700

10 20 30 40 50 60

the number of nodes

c
o
m
p
l
e
t
i
o
n

t
i
m
e
(
s
e
c
) ECEF

FLAT

HLOT

Two-Phase

0

200

400

600

800

1000

1200

1400

1600

1800

1KB 4KB 16KB 64KB 256KB

data size(KB)

c
o
m
p
l
et
i
o
n

t
im
e ECEF

FLAT

HLOT

Two-Phase

(a) (b)

Fig. 7. Simulation results: (a) according to the number of nodes (b) according to data size

Fig. 7(a) shows the result of simulation. The completion time depending on the change
of the number of selected nodes is illustrated in the graphs. The number of randomly
selected nodes was varied from 10 to 60, hopping by 10 nodes. In every case, flat tree
produced the worst results, and TPS was revealed to bring the best results. Fig. 7(b)
shows the result of simulation depending on the change of data size. The size of data,
1 KB, 4 KB, 16 KB, and 256 KB, were used. For all data sizes, TPS outperformed

other algorithms. As the size of data is getting bigger, the performance gap is much
more conspicuous.

5.2 Performance Measurement for LAN

Ethernet

host1 host2

switch hub

host3

0

1

3

2

host0

host2 host1

host3

(a) (b)

host0

Fig. 8. (a) Test environment (b) binomial tree in LAN

Since a binomial tree is known to be well suited for LAN, and network circum-
stances of LAN is more stable in terms of speed and variances than WAN environ-
ment, we used a binomial tree like current MPICH-G2. Here, we examine the effect of
packet-level data transfer. First of all, we evaluated the effectiveness of using packet-
level data transfer with a simple socket programming. The performance comparison
between conventional block transfer method and the proposed method is conducted
using multiplexing I/O. Fig. 8 depicts the testing environment. Node 0, 1, 2, and 3
connected to LAN are the components of the binomial tree.

To compare the performance between conventional block data transfer and our
packet-level parallel data transfer, we measured the total elapsed time for broadcast.
The completion time was measured as follows. Each node sends a completion mes-
sage to the root when it receives the entire data, and the end time is determined by the
message arrived last at the root node. Each packet contains both a header field and a
data field. The header field contains information such as header size, total data size,
current data size, etc. The time attribute holds the information of end time of process-
ing. Note that, the time required in sending an end message is negligible if the total
data size is large enough. The size of a packet that can be transmitted to the network at
a time is limited to MTU. Finally, to guarantee that only one packet is delivered at a
time, the next packet is transmitted only after the transmission of the previous packet
is completely ended. MTU was set to 1024 bytes and data size was varied from
100KB to 1000KB with 100KB intervals. The scale of time unit was ms. Fig. 9 shows
the results of experiment using a binomial tree. In Fig. 9(a), packet-level parallel data
transfer is revealed to show better performance than blocking data transfer for all
levels of data size. With the involvement of 4 nodes, about 18.9% performance im-
provement is gained. In the Fig. 9, when the data size became large, i.e., when the

necessary packet number was increased, the performance gain was evident. Since
there is additional overhead of packet-level parallel data transfer, we can conclude that
the benefits of using packet-level data transfer method pay the cost of it. The extents
of performance improvement is higher on LAN environment than on WAN, because
the available bandwidth on LAN is more stable than on WAN. As revealed in the
result of the measurement, if the data size grows, more significant performance en-
hancement was achieved. Furthermore, when the available bandwidth grows, the com-
pletion time is expected to be shortened.

performance improvement

0

5

10

15

20

25

30

35

40

45

50

100 200 300 400 500 600 700 800 900 1000

� � � ��� � � � � � � �� � � ��� � � � � � � �� � � ��� � � � � � � �� � � ��� � � � � � � �
c
om
p
l
et
i
o
n
t
im
e

i
mp
r
o
ve
m
e
nt
(
%)

(b)
binomial tree

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 200 300 400 500 600 700 800 900 1000

data size(KB)

co
m
pl
e
t
i
o
n

t
i
m
e

(
ms
)

packet-level

blocking

(a)

Fig. 9. Binomial tree with 4 nodes: (a) Completion time (b) ratio of completion of (a)

6. Conclusion and Future work

In this paper, we proposed a method to improve the performance of collective
communication primitives in MPICH-G2, which is an interface of MPI. We devised
TPS algorithm as a tree algorithm and propose a packet-level parallel data transfer for
collective communication of MPICH-G2.

In TPS, we use completion time as a metric of tree, and completion time is calcu-
lated with

bandwidth
emessagesiz

latency + . That is, we consider message size and bandwidth as

well as latency. TPS is object to reduce completion time and to avoid bottleneck. It
first selects k nodes with the largest weight. These k nodes with great possibility of
bottleneck are put in leaf nodes. There are several ways to decide k. We use an aver-
age minimum completion time of each node as a way to select k nodes. We thought
that nodes with minimum completion time accessing average time have high possibil-
ity to bottleneck. Running time of proposed algorithm takes O(N2logN). The effect of
the proposed method was theoretically analyzed and experimentally showed by im-
plementing and testing the technique. According to the test, the proposed method
showed a better performance than the current conventional version of collective op-
erations in MPICH-G2.

In a packet-level parallel data transfer method, each node sends the packet to other
multiple destination nodes in receiving packets from source node. In the experiment in
the real network of LAN, the packet-level parallel data transfer demonstrated superior
performance to the conventional entire data transfer. And, according to the simulation
results of TPS, we can confirm a performance enhancement of TPS compared to

ECEF, HLOT, and flat tree. The performance enhancement of TPS is larger as the
number of nodes is increased and the size of data is enlarged.

In future, we are planning to implement the technique into MPICH-G2 collective
communication primitives and test the performance. Finally, the number of k nodes in
TPS should be clarified with accompanied by theoretical analysis.

References

1. P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna, “Efficient collective communication in
distributed heterogeneous systems,” 19th IEEE International Confer-ence on Distributed
Computing Systems, 1999.

2. Kwangho Cha, Dongsoo Han, and Chansu Yu, “Two-tree collective communication”,
Proceedings of the IASTED International Conference on Networks, Parallel and Distrib-
uted Processing and Applications, pp.30-35, Oct. 2003, Japan

3. Kyunglang Park, Hwangjik Lee, Younjoo Lee, Ohyoung Kwon, et la., “An Efficient Col-
lective Communication Method for Gridi Scale Networks,” ICCS 2003, LNCS 2660, pp.
819-828, January 2003.

4. http://www.hpclab.niu.edu/mpi
5. Peter S. Pacheco, Parallel Programming with MPI, Morgan Kautmann Publishers, Inc.

1997.
6. Thilo Kielman, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and Raoul A. F. Bhoed-

jang, “MAGPIE: MPI’s Collective Communications Operations for Clustered Wide Area
Systems”, Seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 131-140, 1999

7. N. Karonis, M. Papka, J. Binns, J. Bresnahan, J. Insley, D. Jones, and J.Link, “High-
Resolution Remote Rendering of Large Datasets in a Collaborative Environment,” Future
Generation of Computer Systems (FGCS), Vol. 19, No. 6, pp. 909-917, August 2003

8. Albert Alexandrove, Mihai F. Lonescu, Klaus E. Schauser, Chris Scheiman, “LogGP:
Incorporating Long Messages into the LogP Model- One step close towards a realistic
model for parallel computation”, 7th Annual ACM Symposium on Parallel Algorithms
and Architectures, CA, pp. 95-105, July 1995.

9. David Culler, Richard Karp, David Patterson, Abhijit Sahay, et la., “LogP: Towards a
Realistic Model of Parallel Computation”, Proceedings Symposium on Principles and
Practice of Parallel Programming, CA, pp. 1-12, May 1993.

10. http://www.isi.edu/nsnam/ns/
11. Ellen W. Zegura, “GT-ITM: Georgia Tech Internetwork Topology Models”,

http://www.cc.gatech.edu/projects/gtitm.

