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Abstract. In this paper, we propose a packet-level parallel data transfer and a 
Two-Phase Scheduling(TPS) algorithm for collective communication primitives 
in MPICH-G2. The algorithms are characterized by two unique features: 1) a 
concurrent data transfer of packets from a source node to multiple destination 
nodes and 2) a scheduling of enhancing the performance of collective commu-
nications by early identification of bottleneck incurring nodes. The proposed 
technique is implemented and the performance improvement is measured. Ac-
cording to the performance evaluation, the proposed method has achieved about 
20% performance improvement against conventional block data transfer meth-
ods when a binomial tree is used for the communication in LAN. In TPS algo-
rithm, the distribution of messages to bottleneck incurring nodes is delayed to 
minimize the affection of the node to the total performance. Using TPS algo-
rithm on WAN, significant performance improvement has also been achieved 
for various data sizes and number of nodes. 

1   Introduction 

Grids environment provides an enormous number of storage and computing resources 
connected to heterogeneous wide-area networks (WANs) or local-area networks 
(LANs). In Grids, computing resources constituting the GRID may have various ca-
pabilities and computing powers. In order to develop a communication schedule al-
gorithm that enables effective access to such heterogeneous resources, both network 
bandwidth and latency should be considered as primary design factors. When we 
consider that the status of network frequently changes in WAN environment, the net-
work status change should be considered also in improving the communication per-
formance in the WAN environment [1]. 

Numerous researches have been done for the efficient scheduling of communications 
among computing resources. Heuristic algorithms such as FEF[1], ECEF[1], TTCC[2], 
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and HLOT[3] were proposed for the fast construction of communication trees. How-
ever, these algorithms use only the latency factor for the construction of communication 
trees. Moreover, in the current MPICH-G2, a receiver node sends data of multiple 
packets to other nodes, only after they receive all packets from a sender node. In 
other words, in case of multi-chained data transmission, A→B→C, node B does not 
start sending data to node C, until it completes receiving the entire data from node A.  

In this paper, we suggest two ideas for the frequently used collective communica-
tion primitive, MPI_Bcast of MPICH -G2, in order to overcome above two problems. 
First, we propose a packet-level parallel data transfer mechanism for LAN and WAN 
environments and a two-phase scheduling algorithm for WAN environment. In the 
packet-level parallel data transfer technique, each node sends individual packet to 
destination nodes on receiving a packet from a source node, and it simultaneously 
distributes the data to multiple destination nodes. The objective of this method is to 
improve the performance of the current data transfer method of the collective com-
munication primitive of MPICH-G2 in Grids environment.  

Second, we propose a two-phase scheduling algorithm(TPS) which uses transmis-
sion time for a tree construction metric. The algorithm improves the total perform-
ance by placing nodes, which are prone to bottleneck, to leaf nodes in a communica-
tion tree. The objective of this algorithm is to avoid a bottleneck caused by nodes 
with long transmission time and then to achieve performance improvement of the 
collective communication primitive. 

In this paper, the performances of our methods are measured and the results are 
compared with the conventional methods. According to the performance evaluation 
for nodes connected to LAN, the packet-level parallel data transfer method has 
achieved about 20 % performance improvement against conventional data transfer 
methods. A binomial tree is used for the scheduling of the communication. According 
to the simulation of communications for nodes connected to WAN, the scheduling 
algorithm which uses both packet-level parallel data transfer and TPS algorithm has 
achieved overall performance improvement for various data sizes and number of 
nodes, against algorithms such as ECEF, HLOT, and flat tree.  

This paper is organized as follows. In section 2 we describe the current status of 
MPICH-G2 and related work. Our proposed methods, packet-level parallel data trans-
fer are explained in section 3 and our two-phase scheduling algorithm is explained in 
section 4, respectively. Then, we show the experimental results in section 5, and fi-
nally, we draw conclusion and describe future work in section 6. 

2   Related Work 

2.1 A grid-enabled MPI, MPICH-G2 
 
Firstly, the current version of collective primitives of MPICH-G2 uses two-layered 
network topology-aware scheduling to reduce communication time, which just divides 
communication nodes into two divisions: nodes connected to LAN and nodes con-
nected to WAN[4]. However, since it doesn’t consider detailed network information 



upon constructing the communication tree, it may cause a relatively long communica-
tion time in WAN environment, which is characterized as a changeable network situa-
tions and long latency. Therefore, the schedule based on accurate network information 
has more opportunity in improving the performance of communication of MPICH-G2. 
Second, MPICH-G2 entrusts the control of data transmission to TCP/IP stack of the 
operating system, i.e., the current primitives of MPICH-G2 send data to the buffer of 
TCP/IP stack and wait completion of operations. MPICH-G2 doesn’t intervene in the 
transfer and wait until the sending is finished. 

As a solution to fast data transmission of MPICH-G2, GridFTP[4] is provided. 
GridFTP in MPICH-G2 provides interfaces of opening multiple sockets between two 
endpoints, partitioning a large message into small packets, sending those packets in 
parallel using multiple sockets, and, lastly, re-assembling the large message. However, 
it is used not for collective operations but for collaborative environments. The facility 
provides a means of handling only two endpoints that have large blocks of data to 
send/receive, and it demands high-latency and high-bandwidth for efficient communi-
cations since the two endpoints transfer enormous data through multiple sockets. 
Moreover, some codes must be instrumented into MPI programs for the facility to be 
used in communicating programs. For example, user should set an attribute, assign 
two endpoints, and set the parameters such as the number of sockets and TCP buffer 
size. 

2.2 Heuristic Algorithms 

Many heuristic algorithms have been designed for collective operations of 
MPI(Message-Passing Interface): FEF(Fastest Edge First)[1], ECEF(Earliest Edge 
First)[1], TTCC(Two-Tree Collective Communication)[2], etc. FEF selects a node 
with the smallest communication cost from a root, and ECEF chooses the node with 
the minimum sum of communication cost and ready time of its sender[1]. TTCC trans-
fers data with two communication trees made by ECEF algorithm[1]. HLOT is for 
WAN with comparatively very large latency, and after comparing its weight of edge 
with one of flat tree it decides if it uses a selected edge, or not.  These algorithms 
intend to improve performance by using the schedule that considers network informa-
tion. However, SPOC and FNF aren’t well suited for Grid environments, and FEF and 
ECEF don’t consider bandwidth or message size. When a parameter of algorithm is 
latency, the algorithms are suited for small messages. For a long message, bandwidth 
is also an important factor of data transmission. Moreover, these heuristic algorithms 
contain overheads for scheduling such as the creation cost of a tree, memory cost, 
managing cost for network information, etc. For example, TTCC can increase network 
loads since it creates two communication trees and sends along the two paths. It also 
assumes that TCP/IP can select one node out of two nodes, concurrently sending data. 
These heuristic algorithms are limited to scheduling only with network information. 
They don’t consider the change of basic communication method. 



3   Packet-level Parallel Data Transfer 

In this section, we propose packet-level data transfer and one-to-many communication 
using network information in MPICH-G2. This method, which uses these two ways, is 
named packet-level parallel data transfer. 

 
3.1 Packet-level Data Transfer 
 
The current implementation of MPI_Bcast in MPICH-G2 is as follows: Each node 
doesn’t start data transfer until receiving the entire data. We call this kind of data 
transfer blocking data transfer. To improve the performance of the current MPI_Bcast 
primitive, we propose a packet-level data transfer technique and it works as follows: 
In this technique, a node starts to send data to the next node immediately after receiv-
ing a packet unit from the source node. As a consequence, a node may send packets 
many times to the destination node while it receives the entire data from a source node. 
The technique is also used in cut-through routing[5]. 

Fig. 1 contrasts packet-level data transfer to blocking data transfer technique. Data 
is partitioned into 3 packets, and the path is simply represented with a linear tree with 
4 nodes. The progress of data transfer is illustrated in Fig. 1. The packet-level data 
transfer technique finishes the communication within Time 4, whereas blocking 
method completes the communication within Time 6. In the packet-level data transfer, 
remarkable performance enhancement will be gained when the height of tree is high 
and the size of data is large. In this transfer, the size of packet should be carefully 
decided because prevailing of small-sized packets may cause network congestion. To 
prevent the network congestion, we set data size to be sent at one time to 
MTU(maximum transfer unit) of IP layer. Then, it is possible to reduce the comple-
tion time for the broadcast operation of MPICH-G2 without incurring any significant 
overhead. 
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Fig. 1.  Comparison packet-level data transfer with blocking data transfer 

 
3.2 Parallel Data Transfer 
 
If the capacity of the sender to transmit data could be sufficient enough, we can im-
prove the performance of transmission with one-to-many data transfer. One-to-many 



data transfer means that one sender can simultaneously transfer data to multiple re-
ceivers. With this method, the increase of receivers can reduce available bandwidth of 
sender. Therefore, the optimal number of receivers should be determined considering 
both bandwidth and latency.  

For instance, we suppose that data consist of 4 packets(w, x, y and z), each node 
has sufficient available bandwidth and a binomial tree with 8 nodes is used as a com-
munication tree. The process of blocking data transfer is described in Fig. 2, and one 
of packet-level parallel data transfer illustrated in Fig. 3. Each node in Fig. 2 begins to 
transfer data only after the entire data, w, x, y and z are received from a source node. 
However, each one in Fig. 2 starts sending to destination nodes immediately after 
receiving packets, and transfers a packet simultaneously. At the Time 0, node 0 in Fig. 
2 sends data only to node 4, and can forward data after Time 4, whereas, node 0 of Fig. 
3 can send concurrently to node 4, 2, and 1, and node 4 can forward a packet immedi-
ately after receiving a packet from node 0. The data is completed in Time 6 as shown 
in Fig. 3. However, a broadcast operation in time depends on the depth and the width 
of the communication tree. When only the packet-level data transfer is applied, the 
tree with the large width will show worse performance than that with smaller width. 
However, when the available bandwidth is enough large, the better performance can 
be achieved using large width than small one of communication tree. 
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Fig.  2.  Example of blocking data transfer: (a) communication tree (b) time table 
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Fig.  3.  Example of packet-level data transfer: (a) communication tree (b) time table 



4   Proposed Algorithm 

Algorithms of collective communications of MPI typically construct trees for the 
generation of a scheduling. However, finding an optimal tree for such an algorithm is 
known to be NP-hard problem. Many heuristic algorithms are proposed for collective 
communications of MPI. For example, flat tree is well suited for wide area networks, 
and binomial tree is almost optimal in local area networks [6]. Thus current imple-
mentation of MPI_Bcast in MPICH-G2 uses these two trees. Since LAN generally 
guarantees high speed and binomial tree works well in LAN, we focus on WAN envi-
ronment in which it has relatively high latency and the status of network frequently 
changes. In this section, we develop a TPS tree algorithm for such WAN environment. 

As noted earlier, our algorithm considers both latency and bandwidth between two 
nodes. We use completion time between two nodes as a target metric to be optimized. 
Completion time between two nodes is calculated with the following well-known 
equation, 

ji
jiji bandwidth

emessagesiz
latencytimecompletion

,
,, += , and completion time of MPI_Bcast 

becomes the maximum time in the sums of completion time from root to every leaf 
node along a path. Nodes with long transmission are prone to incur bottlenecks of 
entire communication. If these nodes are placed in the middle of a tree, descendant 
nodes of these nodes will suffer from long communication delay. TPS tree algorithm 
identifies nodes with long transmission time, and tries to place such nodes to the 
leaves of a communication tree. 

Two-Phase Scheduling Algorithm

Input:
V : set of nodes joining communication
B : set of nodes with long completion time
A : set of senders
root : root node

Output:
E := set of result edge

A := {root}
B := {}

Tree construction steps:
for i in V

sort communication time from j to i where j in V and i <> j
B := k nodes with worst minimum time except root
//The first phase
while A <> V-B

find j to which minimum edge from x where x in A, j in V-B-A, and x<>j
add edge(x,j) to E
add x to A
x := j

//The second phase
for i in B

find j minimizing weight of edge(j,i) + sum of weight from root to j in V-B
add edge(j,i) to E

Fig. 4.  Two-Phase Scheduling Algorithm 
 



Fig. 4 shows TPS tree algorithm. Numbers on the edge of the tree denotes comple-
tion time. The algorithm sorts the values of edge(j,i) for individual node i in V, where 
node i has not receive a message yet and node j has the message. Once all the values 
of edge(j,i) are computed and sorted, node i can figure out which node can send the 
message to i in shortest completion time. Then, the algorithm selects number of k  
nodes with longest completion time. These nodes might incur bottlenecks. There are 
several ways to decide the number k , but we do not delve into details in this paper. 
Our method chooses nodes whose completion time is above the average of minimum 
completion time. At first, sender set A contains only a root node. Tree construction 
starts from the root. The algorithm finds fastest message arriving node j from node x 
in A. Where node j is neither in A nor in B, and B contains number of k nodes. The 
chosen node j is added to sender set A and will receive data from its sender node. 
After finishing the first tree construction phase except k nodes, the insertion of k nodes 
is conducted at the second phase. TPS attaches the rest nodes in B to the tree so that 
the constructed tree achieves minimum completion time from root to the nodes in B. 
Through above two phases approach, we can prevent nodes with long completion time 
being placed in the middle of the tree. That is because our algorithm is named TPS 
algorithm. Time complexity of TPS is O(N2logN), where N is the number of nodes. 
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Fig. 5  Example of TPS 

 
Fig. 5 shows an example of applying TPS algorithm to a tree. The completion time 

is used for the metric of tree construction. The completion time of every pair of nodes 
in the tree is computed and registered in a matrix. The values in red circle denote a 
pair with shortest completion time in each column. Then TPS finds the largest element 
among the values in red circle. In this example, node E has largest minimum comple-
tion time, 500. Note that, node D needs not to be considered in this case because it is 
already contained in the tree. In other words, node A and node D is already connected 
with each other when we consider node E. If we set k to 1, TPS constructs a tree with 
N- k nodes, i.e., 7 nodes using ECEF method. Then H, G, F, B, C, and D are picked in 



sequence, and lastly, TPS decides a node where it has to attach node E. Obviously, 
completion time of A-H-E is a minimum among other choices, so TPS attach node E 
to node H. As a result, the completion time of this broadcast becomes 700 ms. We 
contrast our tree algorithm to other algorithms in terms of environment, metric, and 
time complexity in Table 1.  
 
Table 1. Comparison of tree algorithms 
Tree Environment Metric Time  

complexity 
SPOC LAN Message initiation cost O(NlogN) 
FNF LAN Message initiation cost O(N2) 
FEF LAN/WAN Communication time O(N2logN) 
ECEF LAN/WAN Ready timei + Communication timei,j  O(N2logN) 
Look-ahead LAN/WAN Ready timei + Communication timei,j + Look-

ahead valuei 
O(N3)  

TTCC LAN/WAN Ready timei + Communication timei,j  O(N2logN) 
HLOT LAN/WAN Latencyi,j O(N2logN) 
TPS WAN Completion timeij O(N2logN) 

 
Now, we analyze our algorithm via LogGP model[7]. LogGP model is suited for 

both short and long messages, whereas LogP model[8] is suited for a short message. 
LogGP model uses five parameters: latency, overhead, gap, gap per byte for long 
messages, and the number of processors. Since gap per byte for long messages, G, is 
defined as the time per byte for a long message, it can be expressed by using band-
width, G = 1/bandwidth. Then completion time of sending message with length k from 

process i to process j can be calculated as 
rijs oL

bandwidth
k

o ++−+ 1 , where os is over-

head of receiver, and Lij is latency from i to j. 
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Fig. 6.  Time diagram of Fig. 5 

 

The completion time of broadcast is computed by equation, completion_timeB = 
Max{completion_timel}, where l is the l-th leaf node of tree, and 

�
−

=

=
1

0

__
idepth

i
stl timecompletiontimecompletion , where depthi denotes the depth of i-th 

leaf node, and edge(s,t) is a part of the path from root to i-th leaf node of tree. Com-

pletion_timest is computed by equation, 
rst

st
sst oL

bw
k

otimecompletion ++−+= 1
_ , 

where bwst is bandwidth from node s to t.  
Fig. 6 depicts a timing diagram of Fig. 5 using LogGP model. The values of os and 

or are set with arbitrary numbers. Though the results may be changed when these val-
ues are changed, the pattern or appearances of the diagram will remain the same. 

5   Evaluation 

In this section, we present achieved performance enhancement on LAN through 
measurement, and expected performance enhancement on WAN through simulation. 
As explained earlier, communication performance on WAN is a dominant factor in 
deciding the performance of collective communications on WAN and LAN. In LAN, 
we use a binomial tree, which is known to be good for LAN. In WAN, TPS algorithm 
is used for a tree construction and we have tested the performance improvement 



through simulation. In this section, experiment environment, method of time meas-
urement, and analysis result of the test are also explained. 

5.1 Performance Measurement for WAN 

Simulation Scenario. We apply our proposed tree algorithm on WAN. To evaluate 
the performance of the proposed algorithm, we use ns-2 simulator[9], which is a 
widely used network simulation tool. For the comparative study, we implemented TPS, 
ECEF[1], HLOT[3], and flat[6] algorithms. 220 nodes of transit-stub topology were 
generated using GT-ITM[10]. The delay and bandwidth of the network were randomly 
assigned. The scale of delay spans from 10 ms to 1000 ms, and the bandwidth spans 
from 10 Kbps to 10 Mbps, respectively. Two types of background traffic were used: 
CBR and FTP. Both of the traffics have randomly selected individual starting and 
ending time of exchanging messages for traffic generation. Consequently, the commu-
nication among grid nodes suffers from network congestion and burst of traffics while 
the background traffic is active. The detailed simulation steps are as follows: 

1. Specified number of Grid nodes are randomly selected  
2. Delays and bandwidths of the selected grid nodes are obtained. The obtained 

metrics are used for the construction of a tree. 
3. Construct broadcast trees for collective communication, and perform a 

broadcast under the same topology and traffic condition as step 1. 
The simulation process was repeated 15 times and average transmission time was 
computed. 

Simulation Results. 
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Fig.  7. Simulation results: (a) according to the number of nodes (b) according to data size 
 
Fig. 7(a) shows the result of simulation. The completion time depending on the change 
of the number of selected nodes is illustrated in the graphs. The number of randomly 
selected nodes was varied from 10 to 60, hopping by 10 nodes. In every case, flat tree 
produced the worst results, and TPS was revealed to bring the best results. Fig. 7(b) 
shows the result of simulation depending on the change of data size. The size of data, 
1 KB, 4 KB, 16 KB, and 256 KB, were used. For all data sizes, TPS outperformed 



other algorithms. As the size of data is getting bigger, the performance gap is much 
more conspicuous. 

5.2 Performance Measurement for LAN 
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Fig. 8.  (a) Test environment (b) binomial tree in LAN 

 

Since a binomial tree is known to be well suited for LAN, and network circum-
stances of LAN is more stable in terms of speed and variances than WAN environ-
ment, we used a binomial tree like current MPICH-G2. Here, we examine the effect of 
packet-level data transfer. First of all, we evaluated the effectiveness of using packet-
level data transfer with a simple socket programming. The performance comparison 
between conventional block transfer method and the proposed method is conducted 
using multiplexing I/O. Fig. 8 depicts the testing environment. Node 0, 1, 2, and 3 
connected to LAN are the components of the binomial tree.  

To compare the performance between conventional block data transfer and our 
packet-level parallel data transfer, we measured the total elapsed time for broadcast. 
The completion time was measured as follows. Each node sends a completion mes-
sage to the root when it receives the entire data, and the end time is determined by the 
message arrived last at the root node. Each packet contains both a header field and a 
data field. The header field contains information such as header size, total data size, 
current data size, etc. The time attribute holds the information of end time of process-
ing. Note that, the time required in sending an end message is negligible if the total 
data size is large enough. The size of a packet that can be transmitted to the network at 
a time is limited to MTU. Finally, to guarantee that only one packet is delivered at a 
time, the next packet is transmitted only after the transmission of the previous packet 
is completely ended. MTU was set to 1024 bytes and data size was varied from 
100KB to 1000KB with 100KB intervals. The scale of time unit was ms. Fig. 9 shows 
the results of experiment using a binomial tree. In Fig. 9(a), packet-level parallel data 
transfer is revealed to show better performance than blocking data transfer for all 
levels of data size. With the involvement of 4 nodes, about 18.9% performance im-
provement is gained.  In the Fig. 9, when the data size became large, i.e., when the 



necessary packet number was increased, the performance gain was evident. Since 
there is additional overhead of packet-level parallel data transfer, we can conclude that 
the benefits of using packet-level data transfer method pay the cost of it. The extents 
of performance improvement is higher on LAN environment than on WAN, because 
the available bandwidth on LAN is more stable than on WAN. As revealed in the 
result of the measurement, if the data size grows, more significant performance en-
hancement was achieved. Furthermore, when the available bandwidth grows, the com-
pletion time is expected to be shortened.  

performance improvement
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Fig. 9.  Binomial tree with 4 nodes: (a) Completion time (b) ratio of completion of (a) 

6. Conclusion and Future work 

In this paper, we proposed a method to improve the performance of collective 
communication primitives in MPICH-G2, which is an interface of MPI. We devised 
TPS algorithm as a tree algorithm and propose a packet-level parallel data transfer for 
collective communication of MPICH-G2.  

In TPS, we use completion time as a metric of tree, and completion time is calcu-
lated with 

bandwidth
emessagesiz

latency + . That is, we consider message size and bandwidth as 

well as latency. TPS is object to reduce completion time and to avoid bottleneck. It 
first selects k nodes with the largest weight. These k nodes with great possibility of 
bottleneck are put in leaf nodes. There are several ways to decide k. We use an aver-
age minimum completion time of each node as a way to select k nodes. We thought 
that nodes with minimum completion time accessing average time have high possibil-
ity to bottleneck. Running time of proposed algorithm takes O(N2logN). The effect of 
the proposed method was theoretically analyzed and experimentally showed by im-
plementing and testing the technique. According to the test, the proposed method 
showed a better performance than the current conventional version of collective op-
erations in MPICH-G2.  

In a packet-level parallel data transfer method, each node sends the packet to other 
multiple destination nodes in receiving packets from source node. In the experiment in 
the real network of LAN, the packet-level parallel data transfer demonstrated superior 
performance to the conventional entire data transfer. And, according to the simulation 
results of TPS, we can confirm a performance enhancement of TPS compared to 



ECEF, HLOT, and flat tree. The performance enhancement of TPS is larger as the 
number of nodes is increased and the size of data is enlarged. 

In future, we are planning to implement the technique into MPICH-G2 collective 
communication primitives and test the performance. Finally, the number of k nodes in 
TPS should be clarified with accompanied by theoretical analysis. 
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