CIGMA: aCtive Inventory service in Global e-MArket
based on high performance catalog DB caching

Su Myeon Kim
Korea Advanced
Institute of Sci. and

Korea Advanced

Tech. Tech.
373-1 Kusung-Dong, 373-1 Kusung-Dong,
Yoosung-Ku, Yoosung-Ku,
Taejon, 305-701, Taejon, 305-701,
Korea Korea
smkim@nclab. swkang@nclab.
kaist.ac.kr kaist.ac.kr
ABSTRACT

A fully connected Internet business environment will intro-
duce a high level of dynamics to the business process. It
may result in very frequent changes in business decision,
and thus, information of various items may undergo con-
stant changes. In addition, there could be a flood of similar
shopping sites. In such a highly dynamic environment, ordi-
nary online customers may feel that online shopping is not
comfortable. Existing service models or systems cannot ef-
fectively reflect such a dynamic environment and support
ordinary online customers. This paper describes a new e-
commerce service called the CIGMA. The CIGMA provides
catalog comparison and purchase mediation services over
multiple shopping sites for ordinary online customers. A key
characteristic of the CIGMA is that the service is provided
based on high performance catalog database caching. So,
the CIGMA service can match the desire of the online cus-
tomers for the fast response as well as provide high through-
put to process internet-scale customers. This paper presents
the system architecture and related issues; real-time update
scheme and catalog conversion mechanism. Performance of
the CIGMA is also evaluated based on a working prototype
system

Keywords

e-commerce, catalog comparison, dynamic content, cache,
real-time update

1. INTRODUCTION

Rapid expansion of the Internet introduces a high level
of dynamics to business environment. Such an environment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2003 Melbourne, Florida, USA

Copyright 2003 ACM 1-58113-624-2/03/03 ...$5.00.

Seungwoo Kang
Institute of Sci. and

373-1 Kusung-Dong,

Heung-Kyu Lee
Korea Advanced
Institute of Science
and Technology

Junehwa Song
IBM T. J. Watson
Research Center
P.O. Box 218,
Yorktown Heights

Yoosung-Ku, N.Y., 10598, USA
Taejon, 305-701, i
Korea junesong@us.
ibm.com
hklee@casaturn.
kaist.ac.kr

may open up an opportunity for merchants to increase their
benefits. However, to ordinary customers, it may introduce
a high degree of inconvenience due to the increased com-
plexity in their shopping.

The source of such dynamics and complexity and thus
potential inconvenience in on-line shopping can be observed
in two aspects. First, information on sales items may un-
dergo constant changes. This is so since, in an Internet
connected environment, business processes can be promptly
summarized and reported, and decisions can instantaneously
be reflected. Such a situation may result in very frequent
changes in sales conditions. An example can be seen from
Cisco’s case. By effectively adapting their business processes
to the Internet environment, Cisco has shorten the term of
their business closing to every six hours. Currently, they are
trying to further shorten it to three hours. This means that
they can accurately estimate the cost of their products, and
hence change the sales conditions, every three hours. How-
ever, supposing that the sales conditions for popular goods
are changed several times a day, customers may not be sure
whether the conditions they saw at the merchant site ten
minutes ago are correct. Thus, they can fall in a situation
in which making shopping decision becomes very difficult.
Second, there could be a number of similar shopping sites
on the Internet. For example, there are 7,513 registered sites
in the Yahoo booksellers’ directory’. Thus, it is difficult for
online customers to be sure if the sites they have chosen
are the best ones. Thus, they may wander around to look
for other shopping sites with better sales conditions. To
make matters worse, on-line merchants compete to provide
better sales conditions than others. Such competition may
cause a chain reaction among similar shopping sites within
a short time®. After all, online shopping under highly dy-
namic business environment can be described in a sentence:
"NO ONE KNOWS HOW TO PURCHASE GOODS UN-
DER THE BEST CONDITION”

To overcome such inconvenience in online shopping, cus-
tomers need proper support. However, existing service mod-

'"From Yahoo Web site(www.yahoo.com) on Mar. 14th,
2002

2Price War is the term used in economics to indicate such a
chain reaction in price changes [15]

els or systems cannot effectively reflect such a highly dy-
namic environment and support ordinary online customers.
To address the problem, we propose a new EC service called

”the aCtive Inventory service for Global eMarket” (CIGMA) [23,

24]. The CIGMA provides catalog comparison services over
multiple shopping sites for ordinary online customers. In ad-
dition, the CIGMA provides a one-stop shopping opportu-
nity for online customers by mediating purchase transactions
between the customers and merchants. A key characteristic
of the CIGMA is that the services is based on up-to-date
information by reflecting frequent changes in catalog infor-
mation in real-time. In addition, the service matches the
desire of the online customers for the fast response. This is
possible since the service is based on the data cached in a
high performance catalog caching system.

From a system’s perspective, in the core of the CIGMA
system? is the catalog caching system. It collects and main-
tains the catalog data from different merchants, and re-
trieves appropriate ones upon customers’ requests. Also, the
performance of the CIGMA is largely dependent on that of
the catalog cache. In [23], we described the CIGMA focus-
ing on the merchant-side interface including service setup
and deployment procedures. In this paper, we further de-
scribe the CIGMA along with its high performance caching
system.

Price comparison services [1, 2, 3, 4] can partly address the
problems arising from the situation where too many similar
shopping sites co-exist. It gathers price information for an
item from many shopping sites. Then, it provides customers
with the comparison information. However, it cannot guar-
antee the correctness of the comparison information because
it generally updates the gathered price information periodi-
cally. So, the comparison information may not be up-to-date
at the moment of access. In the end, customers need to visit
the original sites to check the validity of the given prices.
There also exists an approach based on instant gathering of
price data [5]. This approach may provide up-to-date price
comparison information. However, it may incur a long delay,
which most online customers cannot endure.

Based on catalog data cached on a high performance cat-
alog cache, the CIGMA effectively supports customers to
shop online even under a highly dynamic e-commerce envi-
ronment. Customers can easily choose the best sales con-
ditions and do not have to undergo exhaustive surfing over
shopping sites. The CIGMA also provides purchase transac-
tion mediation. By using this mechanism, online customers
can buy goods from different shopping sites at the CIGMA
site without visiting original shopping sites. We believe that
customers can save time as well as money. For the mer-
chants, the CIGMA provides them with a chance to increase
their business profit. The CIGMA can be considered as a
kind of a sales agency that sells merchants’ items on behalf
of them. The CIGMA is a system that will have high visibil-
ity to many customers, and thus provides merchants with an
opportunity to be exposed to a large number of customers.

This paper is organized as follows. In Section 2, we briefly
overview the design of the CIGMA. The high performance
catalog caching system is described in detail in Section 3.
In Section 4, the implementation of the CIGMA prototype

3When required, we distinguish the CIGMA system from
the service it provides, i.e., the CIGMA service. Otherwise,
we interchangeably use the term ”the CIGMA” to mean
either the service or the system when there is no confusion.

browse . purchase
customer ‘ request | request
¥ v

‘ Web Server & Application Server ‘

Client
Manager
| e

‘ request handiing

i catalog tal h "
rotieval __Catalog caching system

P ——
Catalog data store and retieval || Catalog
Cache

| catalog cachecontrol & manage (c0) .
h 4 purchase Transaction
transaction Manager

mediating (T™)

system Catalog
monitoring & Cache
Icggmg‘& Manager
1l
control (ccm)

catalog
update &
swapping

Aupdate

update listening &
merchant monitoring

CIGMA

Merchant
Manager
(MM)

invalidate + ¥ purchase request
merchant modified data

] | W
invalidate
Wrapper
format convertin modify
9 event (MW)

Figure 1: The CIGMA system architecture with ser-
vice processing flows

is described. Based on the implementation, system perfor-
mance is also discussed. Section 5 discusses related work.
in two aspects: EC service model and dynamic data caching
techniques. We conclude our work in Section 6. Other tech-
nical aspects of the CIGMA can be found in [23, 24].

2. OVERVIEW OF SYSTEM DESIGN

The CIGMA system has a modular structure. It consists
of five server components and one remote component. The
remote one, called Merchant Wrapper (MW), runs on each
merchant server. The server components are Client Man-
ager (CM), Merchant Manager (MM), Transaction Manager
(TM), Catalog Cache (CC), and Catalog Cache manager
(CCM). Figure 1 shows the CIGMA system along with a
merchant’s and a customer’s. The function of each compo-
nent will be described in Section 2.2.

2.1 Internal Service Flows

There are three kinds of external services in the CIGMA:
catalog browse, item purchase, and catalog update. The
first two are for customers and the last, for merchants with
each request being handled differently. The internal service
flows for these requests are shown in Figure 1.

The catalog browse request is the most frequent one. It
is first received by the Web server, which is a part of the
CM. The CM then parses the request and constructs an
equivalent query string. It sends the query string to the
CC to retrieve the requested information such as a catalog
comparison table, an entire catalog, an item category list,
etc. Lastly, it replies to the request with an HTML page
which is dynamically generated with the query result.

To handle a purchase request, a safety mechanism is re-
quired because it generally includes important information
such as a credit card number, address, phone number, etc.
To secure the purchase transaction processing, the CM com-
municates with customers using the secure HT'TP protocol.
Then, it forwards the received data to the TM. The TM
also forwards the data to a proper merchant server at once.
The result of the transaction is delivered from the merchant

server to the customer in the opposite direction.

In the case of an update request, immediate processing
is important. Each modification of source data at the mer-
chant’s DBMS is detected by the MW module. Then, the
module constructs and sends an update request message to
the MM at once. The MM forwards the message to the
CCM after verifying the integrity of the message. Then, the
CCM actually updates the cached data of the CC by com-
posing a query string based on the message. After the CC
update, the return value of the update operation (i.e., OK
or NOT_OK) is forwarded to the MW in the reverse order.

2.2 Major Components

2.2.1 Client Manager (CM)

The CM takes charge of every communication with cus-
tomers. It includes a Web server and a Web application
server. The Web application server is required to generate
responses with dynamic contents®. Via these servers occurs
each interaction with customers. The CM receives both cat-
alog browse requests and purchase requests from customers.

2.2.2 Merchant Manager (MM)

The MM manages most interactions with merchants. Upon
a catalog modification, the MM receives an invalidation mes-
sage from a merchant server. Then, the MM immediately
notifies the CCM of the event to request the update of the
CC.

The merchant server monitoring should be noted. There
could be a certain situation such as network partitioning,
merchant server failure and network congestion, in which
the MM cannot receive invalidation messages. This may
result in consistency problem in cached catalogs. To avoid
this problem, the MM monitors heart beat messages from
merchants to check the status of servers. If a merchant sends
no messages during a predefined period, the MM notifies
the CCM of the situation. Then, the CCM will initiate
a suitable action. For example, the CCM may invalidate
all the catalogs from the unreachable merchant server until
the server responds again. A merchant is forced to send an
empty message at the end of the predefined interval if there
is no update.

2.2.3 Transaction manager (TM)

The TM mediates purchase transactions. It does not pro-
cess the transaction on behalf of merchants, but simply re-
lays all the purchase-related information, i.e., order form,
purchase order data, and transaction result, etc., between
a customer and a merchant site. This approach is taken to
avoid the complication and overhead which may be incurred
by related business issues.

The TM mediates purchase transactions in the order of
time. An assurance for ordered processing is important
when many requests arrive within a short period for a few
popular goods with insufficient supply. A fair ordering is
guaranteed by tagging messages with its original arrival time
at the CM. A purchase request is processed according to the
tag until the processing is completed.

2.2.4 Catalog Caching System (CCS)

4Popular web application servers are JAVA servlet, common
gateway interface (CGI), active server page (ASP), etc.

Catalog Caching System is the most important and com-
plex component in the CIGMA system. It is composed of
Catalog Cache (CC) and Catalog Cache Manager (CCM).
The CC stores and retrieves cached catalog data. Generally,
the performance of storage module is critical to the overall
caching performance. The CIGMA is expected to process a
much higher number of update requests as well as customer
requests than general shopping sites. Therefore, the perfor-
mance of the CC, which store and manage cached catalogs,
is even more critical to our catalog caching system. The
CCM has three main functionalities: updating cache data,
monitoring and controlling the system, and swapping cata-
log. The Catalog Caching System is described in detail in
Section3.

2.25 Merchant Wrapper (MW)

The MW covers all the required works for a merchant to
interact with the CIGMA. As shown in Figure 1, the MW is
deployed on a merchant server for the merchant to join the
CIGMA service. Two main functions of the MW are the up-
date propagation and the heart beat message transmission.

The update propagation is performed according to the
real-time update scheme, which is described in section 3.1.
The MW also periodically sends out heart beat messages to
the CIGMA, if there is no update event during a predefined
interval. Although the heart beat message carries no infor-
mation, the message itself is important because it notifies
the CIGMA of the fact that the merchant server is alive. If
there are neither update messages nor heart beat messages,
the CIGMA regards the merchant as having some critical
problems. Thus, the CIGMA can invalidate all catalog data
from the merchant to avoid providing catalog data that may
be stale.

3. CATALOG CACHING SYSTEM

As the CCS is a source data cache, it stores the source
data in unit of database fields such as price, model, stock
status, etc., as are saved in merchants’ databases. From
these source data, a catalog page is generated by Web ap-
plications upon each customer’s request. Other approaches
exist which cache catalog data in the form of a HTML /XML
pages or fragments [16, 18, 19, 22] or a query result [27, 29,
30]. However, the source data caching is much more effi-
cient especially in maintaining cached data up-to-date. For
instance, the CC can invalidate only the modified fields when
a catalog is changed at a merchant site. If other approaches
were taken, it would have to invalidate all the related objects
including the modified fields. As a matter of fact, source
level caching is rather indispensable for the CIGMA and
its performance. This is because field level operations over
cached catalogs, like sorting according to a specific database
field, are essential in providing the CIGMA service.

To manage a large volume of catalog data efficiently for
the CIGMA service, a catalog cache requires some basic
functionality of DBMS. However, conventional disk based
databases are too heavy and complex to provide a high
throughput required for an Internet cache. Thus, we de-
signed the CC to be highly light-weighted. We use main
memory as the primary storage. The use of main memory
significantly improves the performance because, in general,
a disk I/O is a fairly heavy operation. Thus, the CC can be
considered to be a kind of a main memory DB. In addition,
the following characteristics have been added to further im-

prove the performance.

First, to be further light-weighted, the CC provides only
some core functions such as storing, retrieval, indexing, etc,
which are required for catalog caching, and does not support
many complex functions common to full-fledged DB’s. This
is possible because the CC is designed to be used as a cache
rather than a permanent storage. For example, it does not
have the persistency-related functions such as support for
the durability property, failure recovery, logging and roll-
back operation, etc. This is not a problem in the CIGMA
because the data are replications that have a persistent copy
in the original merchant servers. Therefore, when an error
occurs in a cached catalog, the catalog may be recovered by
retrieving it again from merchant servers.

Second, the CC is further optimized for the situation
where there are a lot of update requests. Merchants may
frequently evaluate their business situations and continu-
ously change their prices and other sales conditions. This
is highly possible in the globally connected Internet busi-
ness environments as shown in the motivating example and
the CISCO’s case. Thus, the CIGMA will encounter very
frequent update requests from a lot of merchants. The CC
assigns higher priorities to update requests so that the re-
quest dispatcher gives higher preferences to them than the
others in the request queue. In addition, once started, an
update transaction is processed exclusively to its comple-
tion and is not blocked by any other operations. Therefore,
very fast processing is assured for update requests. Also, the
CC is designed to utilize its resources efficiently by avoiding
unnecessary operations such as context switches.

The CCM takes charge of updating cache data. Upon
update requests from MM, the CCM composes a proper
query string based on the incoming request. Then, it up-
dates cache data by sending the query to CC. After the
update, the return value of the update operation (i.e., OK
or NOT_OK) is forwarded to the MW through the MM.

The CCM monitors the status of the system and con-
trols system components. For example, the CCM monitors
the frequency of the requests from customers and merchants
and collects its statistics. Based on the collected data, it
controls major facilities of the components to improve the
performance.

3.1 Real-time update mechanism

It is important to keep the data in the CC up-to-date
in the CIGMA service. Thus, any modifications in catalog
data in merchant databases should be promptly reflected to
those in the CC. In addition, the update mechanism should
be efficient since a high number of update requests are ex-
pected.

The update scheme is based on server invalidation. The
merchant server instantly identifies any modification in the
database, and initiates an update in the cache by sending
out an invalidation message. Thus, an update is propagated
to the CIGMA with very small delay.

The instant identification of update is done based on trig-
ger mechanisms in merchant databases. Using a trigger
mechanism, the update process can be done very efficiently.
It is so since, via the mechanism, changes can be detected
in the unit of a field and thus, fine-grained invalidation is
possible. Trigger mechanisms are provided in most popular
database systems such as Oracle [6], DB2 [7], Sybase [8],
MySql [9], PostgresSQL [10], etc.

Currently, time-to-live (T'TL) based schemes are most pop-
ularly used as cache consistency mechanisms in the Internet
[25]. However, TTL-based schemes are not proper for the
CIGMA service since they cannot quickly propagate updates
to a cache. Prompt propagation of updates may be achieved
if a cache frequently polls changes in servers in a very small
interval. However, this will incur excessive overhead to the
cache. On the contrary, server-push style approaches can
more quickly reflect changes in original data. However, it
has been reported that the update schemes of server-push
style experience heavy server-side load [17]. This load comes
from the fact that a server should keep track of all the caches
which hold copies of its data per data item basis. That is, the
server has to handle a very high number of caches. However,
the CIGMA can avoid this burden. As the CIGMA service
requires an explicit permission from a merchant, the mer-
chant server can control the number of contracted caches.

Figure 2 shows the detailed structure of the MW and the
whole process from DB modification to sending an invalida-
tion message. When an update event occurs at the merchant
DB (1), the Update Trigger ® is automatically called by the
merchant’s DBMS and the Update Trigger sends the mod-
ified data to the Event Reporter (2). The Event Reporter
sends the modification information to the MW that is run-
ning on the merchant server (3). The modification informa-
tion includes the table ID, the primary key, the field name,
and the modified field value. The Event Listener within the
MW receives the information. Catalog Converter converts
the category as well as the format of the modification infor-
mation, if needed (4) referring Catalog Mapping Table (5).
The Catalog Converter composes an invalidation message
(6). Lastly, the Communication Module sends the message
to the CIGMA (7). The MM forwards the received message,
comprising the invalidation message and modified data, to
the CCM (8). Lastly, The CCM take charge of constructing
an proper query message based on the received message and
committing the update transaction on the CC (9).

cion cusomer reauess |

Cient Request Handler) web Applcation Server) websener) cm ‘

Catalog Cache
(Main Memory)

(| mvaidation s Logaing message
+ modified data to SDBM

Merchant MM
Manager

Merchant Interface

Disk Storage

wpdate Merchants
@ Catalog
Database

update event
-+ modified data

Java Virtual Machine

Figure 2: Update process and the structure of the
catalog caching system of the CIGMA including the
Merchant Wrapper.

When sending an invalidation message, we piggyback the
message with the modified field and value. Thus, an update

5The Update Trigger is a kind of DB trigger that is con-
structed by using SQL statement. It is installed in the mer-
chant DB in advance

can be completed with one message containing both invali-
dation and modification information. Most of modifications
will occur in the fields of small sizes, such as item prices
and inventory information. Therefore, the piggybacking ef-
fectively reduces the update delay and improves processing
efficiency.

The update mechanism can further enable merchants to
control the the level of visibility for their catalogs to cus-
tomers. This visibility control is essential for merchants,
since complete transparency about their business activities
may not be preferred by merchants. The CIGMA also al-
lows merchants to specify the update interval of their cat-
alogs. For example, merchants can have update events to
be propagated to the CIGMA immediately, or in every hour
or day. Merchants can also set update conditions for their
catalogs, so that a modification of a catalog is propagated
to the CIGMA only when the update condition is satisfied.
The catalog conversion capability described in Section 3.2
may be used to control the visibility level too.

3.2 Catalog Conversion

The CC should integrate catalogs from different merchant
sites. Merchants generally use different catalog formats and
item categories from each other. The CIGMA also has its
own catalog format and category. Therefore, merchants’ cat-
alogs have to be re-categorized and their formats, converted
to match those of the CIGMA.

For this conversion, the CIGMA uses the Catalog Map-
ping Table (CMT). The CMT is a table which contains
all description for catalog conversion and re-categorization.
That is, the exact specification of the conversion is done
on the CMT before starting a service and once a service is
started, the conversion is automatically processed. The us-
age of the CMT is not only for a merchant server to convert
its catalogs to those of the CIGMA. In converse, the CIGMA
also uses the table when it needs to retrieve a field from the
merchant DB.

Merchant's Table ID (wirelessphone)
Merchant's Primary key (1001)

CIGMA's Table ID
(PCS phone)

CIGMA's Primary Key

Merchant's Table ID
(wirelessphone)

CIGMA's Table ID_(PCS_phone) (20002)
CIGMA's Primary key (20002) CIGMA's field name

Merchant Primary Key
(1001)

CIGMAs field name (Prices) (Prices)

Merchant's field name

CIGMA's field value

rice Merchants field names (price.

,,,,, (price) ek (price) (179.99)
Merchant's field value D CIGMA's field name
(179.99) . (weight)
Merchant's field name ______CIGMA'sfield name (weight) CIGMA's field value

(features) Merchant's field name + Text processing script (4.707)
,,,,,,,,,,,,,, (features "BEGIN { FS="\n"}{print$0}) CIGMA's field name
Merchant's field value CIGMA's field name (color) | | ____(((,:?I?r,) 77777
black) Merchant's field name + Text processing script CIGMA's field value
(features 'BEGIN { FS="\n"} { print $1 }') (black)

Merchants field name CIGMA's field name (stock_status) CIGMAYs field name

O L N N i et S E L R
Merchant's field name + Text processing script
(stock {x=8$1; if (x == 0) print "N/A";
else print "AVAILABLE'})

(stock_status)

" CIGMATs field value
(AVAILABLE)

Merchant's field value

update message
from merchant DB

update message

an example row of catalog mapping table
P 9 mapping to the cache DB

An example of catalog conversion and re-categorization - table at the center is a CMT's row :
(bold type characters means that the value of that field) - note that merchant's features field is splited
into two fields and stock field is transformed into a different type at the message to CIGMA . It also should
be noted that re-categorization is occurred implicitly by giving a new table id and a primary key

Figure 3: An example of Catalog Mapping Table

The CMT includes a merchant DB’s table name and pri-
mary key as well as those of the CC. Then, it specifies, using
an AWK-like® script language, how field names and values

5 AWK is a popular utility in UNIX environment. It enables
us to specify what kind of data you are interested in and the
operations to be performed when that data is found.

in a merchant catalog database is changed to those of CC.
Figure 3 shows a row of a CMT example with an incoming
update message from a merchant DB and an out-going up-
date message to the cache, respectively. It shows that the
item ”wirelessphone” is recategorized into the item, "PCS
phone”. In the figure, the field features in the merchant
DB is split into two fields: wetght and color. It also should
be noted that the type of field stock in the incoming mes-
sage can be transformed into a semantically different type in
an out-going message. This semantic transformation is es-
pecially important since it enable merchants to control the
external appearance of their catalogs.

4. IMPLEMENTATION & PERFORMANCE
EVALUATION

4.1 Implementation

We have implemented a prototype of the CIGMA system
and two sample shopping sites.” Figure 4 shows an snap-
shot of the CIGMA Web site. Details about an example
service including sample shopping sites can be seen in [23].
The CIGMA and merchant systems have been developed
and are operating on Linux. GNU C++ compiler have been
used to implement most of the components of the CIGMA,
and JAVA servlet and JAVA Server Page (JSP) have been
used for Web interface programming. Most of the core com-
ponents have been implemented except for a few elements
such as error handling and security and authentication.

2 CIGMA - Microsoft Internet Explorer alnixf
DEE BIE YW EANW SHD SERH B
Z4(0) [8) nvp/nci kaist ac.ba/cigma/indenx. bl zlgos

CIEMA

spparel
i Makeup 7
a ek Ciekis Merchant Product |yongor |price stock
Atomatie ite e vendor |price
et TOTAL loool Water [Davidoff (59.500000[YES
Bargains sHop [CoolWater D3
Renuty Bin TOTAL e Ralph 575 VES
Books Bath Products sHop ffomance agen [STSMO00VES
Computers & Sotware < =
Hair Care TOTAL Ralph =
i L >0l Spo olvES
S ok Gop Polosport AR 148.000000|VE:
43 T
Electronics & Camera Gift Certificates Fragrance P2 Davidoft |y 0o -
Aovwws Gift Baskets Onine [Intemational | 34000000 YES
Git Contar
Gourmet & Kichen
Healh 8 Persanal Care Fragrar Raloh 30.000000 [YES
Home, Garden, § Pes iy Lauren
Home Ofica
Jowelry & Watches Fragrance rop—
Music Oniine
Sports & Outdoors Fragrance 28500000 VES
Toys & Games Onine 38500000 YES
Travel =
St R b 3.4 (Calin Kiein (28500000 |YES
Video Games Onine
Wiedkings
& ® SEE

Figure 4: Snapshot of the CIMGA Web site.

The current implementation of the CM uses Apache Web
server and Tomcat as the Web and application servers. It
also includes several handlers for each request type, such
as category list, catalog browse, catalog comparison, item
purchase, etc.

In many cases, an HTML page includes embedded data
such as images, sounds, and video. Web pages with such
embedded data require careful handling because it has a
significant impact on performance. Such media data gener-
ally requires a lot of memory space in the cache. Also, under

"You can view the CIGMA and the two sample sites. The
URL of the CIGMA is http://nc9.kaist.ac.kr/cigma/.
The two sample merchant sites can be ac-
cessed via http://nc2.kaist.ac.kr/merchant/ and
http://nc2.kaist.ac.kr/merchant2/.

the current HTTP protocol, each embedded URL requires
separate processing (e.g., a separate access to a storage, and
even a separate TCP connection in the case of HTTP 1.0)
and cannot be transferred along with the including HTML
file.

For an efficient retrieval of embedded media data, a sep-
arate multimedia data handler has been implemented. The
multimedia data handler prefetches the embedded media
files when the container HTML data is retrieved from the
CC. That is, the CIGMA retrieves all data required to con-
struct the requested catalog via a single access to the CC
upon the initial request. Then, the pre-fetched media data
is temporarily stored in the main memory and transferred to
a customer at the succeeding requests to the media files. In
this way, the number of CC accessing operations is reduced.
Also, the response time to a customer’s request is shortened.

A simpler way to handle embedded media data is to avoid
caching them and to have embedded data retrieved from the
original merchant servers. This will incur little overhead to
the CIGMA and greatly save its main memory space. How-
ever, clients may experience fluctuation in response times
since merchant servers may have throughput different from
each other. Thus, a decision on whether or not caching
media data needs to be made by considering the resource
situation of the CIGMA and a merchant.

Most of the CCM’s functions, including system monitor-
ing and logging, catalog swapping and update buffering,
have been implemented. However, monitoring and logging
and catalog swapping have been partially implemented. Al-
though a full implementation of the functions is not difficult,
we currently monitor only the number of client requests and
update requests to determine the popularity of each cata-
log. Based on this information, the current prototype uses
a Least Frequently Used (LFU) based cache replacement al-
gorithm for catalog swapping. We believe that further study
is required to optimize the algorithm. The current version
of the CC has been implemented by customizing a third-
party main memory database,“FastDB” [11]. This helps us
quickly implement the prototype. However, it leaves room
for much improvement in performance. We plan to further
improve the CC in the next version of the system. We used
JAVA technology to implement the MW module to address
the heterogeneity of the running platforms of merchants. To
help merchants set up DB triggers, we plan to provide tem-
plates and samples of the triggers for different DB’s. For
the time being, those for the Oracle DBMS are provided.

4.2 Performance Evaluation

We are currently making various performance measure-
ments for the CIGMA system. We plan to describe the
details of the system performance in a follow-up report. In
this paper, we give a brief report on the throughput of the
CIGMA system just to assist in a high level understanding
of the system performance. We report the throughput of the
system under catalog update requests and that under cat-
alog browse requests. We think that another measurement
that is important in understanding the performance of the
CIGMA is the update delay. Measurement of the update
delay will be included in the follow-up performance report.

The reported measurement was done on a single-node de-
ployment. That is, all components of the CIGMA reside in
a single machine. This is mainly to give an understanding
of the basic performance through a brief presentation here.

Under multi-node deployment, we can expect much higher
performance numbers than those reported here. The node
has a Pentium III 1Ghz CPU and 2GB of main memory.
The Red Hat Linux 7.2 was used as the operating system.
Apache Web server 1.3.20 and Tomcat 3.2.3 were used as
the Web and application servers. Sun JAVA SDK 3.1 was
used as the Java virtual machine. As the CIGMA’s catalog
cache, FastDB version 2.37 was used. The CIGMA server
and other systems used to emulate merchants or customers
were connected via a 100MB local Ethernet. To test the
performance under customer’s browse requests, we used the
Httperf [21]. However, to measure the update performance,
we built, on our own, a simple utility called an update request
generator.

Catalog Update

The throughput under catalog update requests is measured
as a function of update message size. The throughput is
also measured while the number of concurrent threads is
changed. Figure 5 shows the throughput when the number
of concurrent threads is 1, 5, 10, 50, and 100. It shows
that the CIGMA can process nearly 600 update requests
per second when the size of update message is less than 1
Kbytes. The performance degrades to 500/s as the message
size increases to 10 Kbytes. However, we think that the
throughput of 600/s is quite realistic since updates usually
occur in small sizes, e.g., changes to stock status or prices.

It is shown in Figure 5 that the number of concurrent
merchants has little effect on update performance when the
number is five or more. However, when a single thread is
used, the throughput is smaller than in the other cases. This
is because a thread sends a new update request only af-
ter receiving a response for the previous one. Also shown
in the Figure is that the system throughput decreases very
slowly as update message size increases linearly. (Note that
the horizontal axis is in log scale.) We conjecture that the
throughput is affected more seriously by the TCP connection
overheads. If this is the actual case, the update throughput
can be distinctively increased if persistent connections are
used for updates. (This was partially conformed by other
experiments that we don’t report here.)

1thread ——
5 threds —=—
650 1 10threads ——
50 threads ---*---
600 g comoomEe oo 100 threads ---8---

Thrhoughput (request/sec)

.
100 1000 10000
Update Message Size (bytes)

Figure 5: Update performance as the function of
update message size

Catalog Browsing and Catalog Comparison

Figure 6 (a) shows the throughput of catalog browsing re-
quests as a function of catalog size. The CIGMA can process
173 requests per second when the catalog size is 2 Kbytes.
It degrades to 154 and 139 when the catalog size increases to
4 and 6 Kbytes, respectively. The throughput under catalog

comparison requests is measured as a function of requested
table size. Figure 6 (b) shows that the throughput is from
125 to 77 when the number of items in the comparison table
varies from 10 to 40.

200
160 - \
140

1 2 3 4 5 6 7
Response message size (Kbytes)

(a) (b)

Figure 6: (a) Performance of item browse requests
in the function of catalog size (b) Performance of
catalog comparison table as the function of result
table size

B 5
8 8

5
8

=
8

Throughput (requests/sec)

Throughput (requestisec)

3

10 15 20 25 30 3 40 45
of Row in Comparison Table

o

The throughput under catalog comparison requests is smaller
than that under catalog browse requests. We conjecture that
the performance difference comes mainly from the difference
in the overhead to access databases. Generally, to construct
a comparison table, a separate database access is required
for each row. From our informal observation, the overhead
incurred by the Web server and the application server was
similar in the two cases. Also, the response HTML file size
was smaller in the case of catalog comparison requests than
that of catalog browse requests.

5. RELATED WORK

5.1 EC service models

In the view of the EC service model, price comparison ser-
vices [1, 2, 3] are similar to our work. They provide catalogs
for an item by gathering them from many merchant sites.
However, they are not supported by an automated real-time
update scheme. Many services update their data manually
or use schemes based on periodic or aperiodic polling [2, 3,
1]. Compared to the CIGMA’s case, we may say that those
services help online customers in a best-effort style.

AddAll [5] provides price comparison service based on in-
stant catalog searching and gathering upon customer’s re-
quests. Thus, it can provide fresh information about an
item. However, it also has a serious problem: the response
time may be very long because it has to visit many shop-
ping sites in an on-demand fashion. In addition, it issues
multiple Web requests per each customer request and thus
may cause a heavy traffic on the Internet.

These price comparison services are not a real shopping
service. Neither of them have purchase transaction media-
tion functionality. Thus, customers have to visit the original
shopping site to buy a selected item.

The B2B marketplaces [12, 13] intermediates between cus-
tomers and merchants, and provides a set of services to sup-
port on-line purchasing. But, contrary to the CIGMA, most
B2B marketplace model is designed and available only for
business customers and/or transactions of a large volume.
In addition, since B2B marketplaces do not deal with ordi-
nary customers directly, performance concern is less serious
in their design.

5.2 Techniques to cache dynamic data

Recently, a number of researches have proposed techniques
for dynamic data caching [16, 29, 18, 19, 26, 30, 14]. These
techniques have been proposed mainly as the scalability so-
lution for ordinary Web services, noting that the generation
of dynamic data becomes a major bottleneck. The CCS is
different from those because it focuses on the provision of
new service, i.e., cross-organizational data services, based on
the cached information. The CCS is also different from oth-
ers in that other caches can be considered as reverse proxies
that are used within the contexts of specific servers, whereas
the CCS is closer to a proxy that operates along with a num-
ber of multiple merchant sites. Below, we classify related
techniques in terms of caching units.

HTML page caching stores HTML pages generated upon
client’s requests [22, 16]. In the view of cache hit gain, i.e.
cost saving upon a cache hit, this approach is most advan-
tageous; it saves the cost of query processing as well as that
of HTML page generation. However, this approach lacks
flexibility; for instance, it is not useful in caching person-
alized Web pages. Hit ratios for personalized pages will be
very low because only specific clients will access those pages.
In addition, modification to a common part may result in
update of numerous pages.

XML/HTML fragment caching stores XML or HTML frag-
ments which are parts of generated HTML pages. The sys-
tem proposed in [19] provides an algorithm for efficient up-
date propagation to HTML fragments stored in cache. How-
ever, this system requires an administrator to map the re-
lationships between the updates and the fragments affected
by their updates. Fragment caching can provide more flexi-
bility than HTML page caching.

Query result caching stores query results in caches. The
advantage lies in that it removes the query processing step.
Form-based Proxy Caching [28] and DBAccel[20] come un-
der this category.

The caching schemes summarized above can be called de-
rived data caching. On the contrary, the CCS is a source
data cache. As mentioned, the source level caching is effec-
tive in providing advanced services, as shown in the CIGMA
service, since fine-grained operation over the cached data
is possible. More importantly, source data caching signifi-
cantly reduces the cost of keeping data up-to-date. In the
case of derived data caching, the semantic information of
derived data may become different from that of the original
data. Thus, it is difficult to automatically find derived data
affected by data updates in the original servers. However,
source level caching does not reduce the cost of the query
processing, rather it moves the cost of the query processing
from back-end servers to caches.

6. CONCLUSIONS

Despite many advantages of the EC, online shopping is
an overloaded activity for most ordinary customers due to
a highly dynamic e-commerce environment. For instance,
they are not sure if a chosen sales condition is really a good
one even after exhaustive Web surfing. The CIGMA ad-
dresses the problems in on-line shopping under such a dy-
namic environment. It suggests the best sales conditions
over multiple shopping sites and provides a convenient shop-
ping environment for customers. Thus, customers can save
time and money by using the service. The CIGMA also

helps merchants increase their business profit because the
CIGMA can act as a sales agency.

An architecture of a new catalog cache system, CCS, is
proposed which comprises the core of the CIGMA system.
Technical components of the CCS are discussed and its per-
formance is evaluated based on a prototype system. We
believe that the proposed architecture can serve as exam-
ple of an Internet cache for advanced Internet services. For
an advanced service such as the CIGMA, the ordinary ar-
chitecture such as proxy or reverse proxy is not appropri-
ate. To match the high performance required in the CIGMA
and other advanced services, it is designed as a light-weight
main memory cache. To further improve the performance
and flexibility, it caches catalog data in source level. It also
provides a real-time update mechanism.

7. ACKNOWLEDGMENTS

This work was supported by the Korea Science and Engi-
neering Foundation (KOSEF) through the Advanced Infor-
mation Technology Research Center(AITrc).

8. REFERENCES

[1] http://www.nextag.com/,NexTag - The Search Engine
for Shoppers.

[2] http://www.mysimon.com/,mySimon - Compare
products and prices from around the Web.

[3] http://www.dealtime.com/,DealTime - compare
products, prices & stores.

[4] http://www.pricescan.com/,PriceSCAN - Comparison
Shop for the Lowest Prices.

[5] http://www.addall.com/,AddALL - Book Search and
Price Comparison.

[6] http://otn.oracle.com/doc/oracle8i_816/appdev.816/
a76939/adgl3trg.htm#376, Oracle8i Application
Developer’s Guide - Fundamentals Release 2 (8.1.6).

[7] http://www-
4.ibm.com/software/data/db2/udb/ad/v7/adg/db2a0/
frame3.htm#trigger, DB2 Application Development
Guide: Using Triggers in an Actie DBMS.

[8] http://my.sybase.com/detail?id=1355,Sybase Manual:
Triggers.

[9] http://www.mysql.com/doc/A/N/ANSI_diff_
Triggers.html,MySQL manual: 1.7.4.4. Stored
Procedures and Triggers.

[10] http://www.postgresql.org/idocs/index.php?plpgsql-
trigger.html,PostgreSQL 7.1 Documentation: Chapter
24. PL/pqSQL-SQL Procedural Language.

[11] http://www.ispras.ru/ knizhnik/fastdb.html,FastDB -
Main Memory Relational Database Management
System.

[12] http://service.ariba.com/, Ariba Supplier and Buyer
Network.

[13] http://www.biz2biz.com/Marketplace/, Biz2Biz B2B
Marketplace.

[14] A. Brown, G. Kar, and A. Keller. An active approach
to characterizing dynamic dependencies for problem
determination in a distributed environment. In Proc.
of IFIP/IEEE International Symposium on Integrated
Network Management, pages 377 — 390, May 2001.

[15] L. M. B. Cabral. Introduction to Industrial
Organization . MIT Press, 2001.

[16] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and
D. Agrawal. Enabling dynamic content caching for
database-driven web sites. In Proceedings of
SIGMOD’2001, pages 532 — 543, May 2001.

[17] P. Cao and C. Liu. Maintaining strong cache
consistency in the World Wide Web. Computers,
IEEE Trans on, 47(4):445-457, April 1998.

[18] J. Challenger, A. Iyengar, and P. Dantzig. A scalable
system for consistently caching dynamic web data. In
Proceedings of INFOCOM 99, pages 294-303, 1999.

[19] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and
P. Reed. A publishing system for efficiently creating
dynamic web content. In Proceedings of INFOCOM
00, pages 844-853, 2000.

[20] S. Choi, J. Lee, H. Cho, J. S. Junghoon Kim, and
Y. Lee. DBAccel: A Light-weight Internet Cache for
Accelerating Database-backed Web Sites. unpublished
working paper.

[21] David Mosberger and Tai Jin. httperf: A Tool for
Measuring Web Server Performance. Performance
Evaluation Review, 26(3):31-37, December 1998.

[22] V. Holmedahl, B. Smith, and T. Yang. Cooperative
caching of dynamic content on a distributed web
server. In Proc. of the 7th IEEE International
Symposium on High Performance Distributed
Computing, pages 243-250, 1998.

[23] S. M. Kim, S. Kang, H.-K. Lee, and J. Song. CIGMA:
aCtive Inventory service in Global e-Market for
enabling one-stop shopping over Internet shopping
sites. In to appear in Proceedings of the 3rd
International Symposium on Electronic Commerce
(ISEC-02).

[24] S. M. Kim, S. Kang, H.-K. Lee, and J. Song. CIGMA:
aCtive Inventory service in Global e-MArket for
enabling one-stop shopping over internet shopping
sites. Technical Report CS-TR-2002-178, Korea
Advanced Institute of Science and Technology
(KAIST).

[25] B. Krishnamurthy and J. Rexford. Web Protocols and
Practice - HT'TP/1.1, Networking Protocols, Caching
and Traffic Measurement. Addison-Wesley, 2001.

[26] A. Labrinidis and N. Roussopoulos. Webview
materialization. In Proceedings of SIGMOD’2000,
pages 32 — 35, May 2000.

[27] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh,
H. Woo, B. G. Lindsay, and J. F. Naughton.
Middle-tier database caching for e-business. In Proc.
of SIGMOD 2002, June 2002.

[28] Q. Luo and J. F. Naughton. Form-based proxy
caching for database-backed web sites. In Proc. of the
Int. Conf. on Very Large Data Bases (VLDB),
September 2001.

[29] Qiong Luo and Jeffrey F. Naughton and Rajasekar
Krishnamurthy and Pei Cao and Yunrui Li. Active
query caching for database web servers. In Proceedings
of WebDB’2000, pages 32 — 35, 2000.

[30] K. Yagoub, D. Florescu, C. C. Andrei, and V. Issarny.
Building and customizing data-intensive web site
using weave. In Proc. of the Int. Conf. on Very Large
Data Bases (VLDB), September 2000.

