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Abstract

The paper presents a new variant of parameter estimation methods for discrete hidden Markov models(HMM) in speech recognition. This
method makes use of a codeword dependent distribution normalization(CDDN) and a distance weighting by fuzzy contribution in dealing
with the problems of robust state modeling in a FVQ based modeling. The proposed method is compared with the existing techniques
using speaker-independent phonetically balanced isolated words recognition. The results have shown that the recognition rate of the
proposed method is improved 4.5% over the conventional FVQ based method and the distance weighting to the smoothing of output
probability is more efficient than the distance based codeword weighting.

1. INTRODUCTION

With the advent of new technologies, auditory models and the
establishment of psychological  cognitive models, the interesting
of speech recognition is greatly increasing. Speech recognition
requiring multi-level knowledge such as acoustics, phonetics, and
linguistics is a process that extracts linguistic information from
speech and converts it to understandable representations. Due to
the variability, redundancies, massive computation, and a lack of
any comprehensive theories in speech processing, speech
recognition still remains a difficult problem[1]. For speech
recognition, several approaches are being used and one of them,
the discrete hidden Markov model, has been successfully applied
to speech recognition. The discrete HMM[2] is attractive in its
low cost of computation and high  versatility, and therefore has
been investigated in a number of studies. Nevertheless, one of the
main disadvantages is the implicit discretization of the
observations which produces information loss that in turn cause
the model’s performance to deteriorate. To alleviate these
problems, the detailed state modeling with continuous density
functions[3], smoothing of output probabilities[4] to remedy the
sparseness of training data , and discriminative training[5][6] for
recognition models.

The paper, we  focuses on the reduction of quantization error
and improving the state output probabilities in a state for a
discrete hidden Markov model. To reduce the quantization error

in DHMM, we have used a FVQ based state modeling. The FVQ
based state modeling has shown improved recognition results
[7][8]. But, there are some limitations in a state modeling with a
FVQ. In a conventional FVQ based recognition, the distance
measure is based on a relative Euclidean distance , and the
unestimated output probabilities decrease the recognition rates.
To alleviate all these problems, we have proposed a codeword
based distance normalization to reflect the detailed characteristics
of codeword and have used a smoothing method to prevent the
degradation of the performance from unestimated output
probabilities.

The paper is organized as follows. In section 2, we describe the
definition of DHMM(discrete hidden Markov model) and the
FVQ(fuzzy vector quantization), which are the base-form of the
proposed method. In section 3, the codeword dependent
distribution normalization and codeword weighting and
smoothing by distance based fuzzy contribution are described. In
section 4, we present the experimental environment used for
testing the proposed recognition system. Finally in section 5, we
summarize the conclusions and future works.

2.  REVIEW OF FVQ BAED DHMM

2.1  Definition of DHMM

The hidden Markov model S is usually defined as a 5-
tuples,(Q,V,π,A,B). Q is a set of N states q1,q2, ...,qN. V is a set of



M symbols v1,v2, ...,vM representing a prototypical spectra. π is a
vector which specifies the initial distribution (π1, π2, ..., πN ),
where πi = Prob(qi(1)). A is a matrix of state transition
probabilities, A =[aij], 1 ≤ i,j ≤ N, where aij = Prob( qj(t+1) | qi(t) ).
B is a matrix of observation probabilities, B = [bij ],1 ≤ i ≤ N, 1 <
j < M , where bij = Prob(vj(t) | qi(t)). The sequence of observations
is denoted as O = (o1,o2, ...,oT), where  ot for 1 ≤ t ≤ T is some vi

∈ V. We are then interested in calculating Prob(O). This is
usually done using the forward-backward or Viterbi algorithm.
The computation of Prob(O) then follows as
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for any t such that 1 ≤ t ≤ T-1.

2.2 FVQ(Fuzzy Vector Quantization) Based
State Modeling

Fuzzy VQ can be viewed as a simplified case of the mixture
Gaussian VQ. Let d(xi,cj) represent the Euclidean distance
between input vector xi and codeword cj. The FVQ maps an input
vector xi into an output vector oi = (mi1,mi2, ... ,miM) according to
the rule :
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where, F > 1 is a constant called the degree of fuzziness. Vector
oi is chosen in this way because it minimizes the fuzzy objective
function
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The components of oi are positive and sum to 1.

When the observation is fuzzy, the observation sequence is a
sequence of probability mass vectors. Denote this fuzzy
observation sequence again by O = (o1,o2, ...,oT), where each oi is
now a probability mass vector of the form oi = (mi1,mi2, ...,miM). In
this point, the estimation procedures must be modified to include
this fuzzy observation. Let us define ωt(i) for 1 ≤ t ≤ T and 1 ≤ i
≤ N to be Prob(ot|qi(t)). Then, ωt(i) is calculated using the
equation
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From this definition, we can compute the modified Viterbi

algorithm. The forward probability at time t a � �α
W

L  as follows.
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2.3  Problems in a FVQ Based Output
Probability Modeling

As we have mentioned in the Introduction, the conventional FVQ
based state output estimation method has some limitations. First,
the characteristics of codeword dependent distributions are
ignored. The distance in a state is a relative distance between an
input vector and a codeword vector based on Euclidean distance.
If we consider the distribution of input patterns in a codeword,
the smallest distance is not always true. It can be the longest
distance when we consider the characteristics of a distribution.
Therefore, the detailed modeling of a distance in a state is
required. Here, we have used the codeword dependent
distribution and the distribution is defined as a normal
distribution with a mean and a variance on distances for all of
training data included in a state.

The second problem is that the distance between an input vector
and a codeword is equally weighted. The importance of each
codeword is different in a state. These differences are reflected in
the output probability computation. Based on this assumption, we
have derived the weighting factor of a codeword in a state with a
distance based fuzzy contribution. this approach has a limitation.
This proposed method does not resolve the unseen data problem.
To alleviate this problem, the smoothing of a output distribution
is required. The proposed method has a form which is a linear
combination of multiplying a best codeword dependent fuzzy
contribution distribution with a state dependent codeword
probability. The detailed algorithms and their operations will be
described in section 3.

3. CODEWORD DEPENDENT

DISTRIBUTION NORMALIZATION AND

DISTANCE WEIGHTING

In this section, we are going to describe the proposed
approaches to alleviate some problems presented in the 2.3. The
first subsection describes the codeword dependent distribution
normalization for distance ,and the second subsection describes
the codeword weighting and smoothing by a fuzzy objective
function in modeling of state output probabilities.

3.1  Codeword Dependent Distribution



Normalization(CDDN)

To reflect the codeword dependent characteristics, we have
computed the mean and the variance of distances between a
codeword vector and input vectors in a training set(eqn. 6).
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Where, ci is a i-th codeword index, Pi is the number of training
patterns corresponding to the i-th codeword vector. According to
equation 6, the normalized probability for a distance d(xt,c(i)) can
be calculated as equation 7.
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With the result of equation 7, we have transformed the codeword
dependent probability for an input vector into the distance which
reflects the characteristic of a corresponding codeword. Here, we
assume the Gaussian model for a transformation.
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The final distance for a codeword in a state is equation 8.

3.2  Codeword Weighting and Smoothing by
Fuzzy Contribution

To alleviate the problem of equal weighting, we have used fuzzy
contribition based weighting factors. In a state, the best codeword
distance for an input vector is accumulated and normalized. We

denoted it as' (j), where j is the j-th codeword index. After that,
we applied the fuzzy objective function to the normalized
distance for each codeword. The derived fuzzy contribution for a
i-th codeword is as following in equation 9.
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The distance of a codeword for an input vector ,which is
calculated by equation 8, is finally weighted by a codeword
dependent weighting value Wi(s). The final distance value that
will be used as input to equation 2 is taken by equation 10.
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For the smoothing of output probabilities for unseen data, we

define the matrix with N by N, where N is a size of a codebook.
Given an input vector, the distance of each codeword is
calculated and the best codeword is chosen from all of codewords.
If the best codeword is chosen, we store the distance of others in
a matrix given the best codeword. After all of training data in a
state are received, we normalized the matrix by codeword and

represented it as ' . To compute the fuzzy contribution for each
codeword given a best codeword, we applied the fuzzy objective

function to the matrix ' . Using the derived fuzzy contribution
mij(s) and the distribution of codewords in a state, we have
calculated the smoothed output probability mi(s). This smoothed
output probability replaces the original output probability in a
state. The derived equation is in (11).
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4.  EXPERIMENTAL RESULTS

4.1  Experimental Environment

Comparative experiments have been carried out for evaluations.
The speech data used in the experiments are the phonetically
balanced 115 isolated words provided by ETRI(Electronic
Telecommunication Research Institute), consisting of 3910
utterances of words. These utterances were spoken by 17 male
speakers, each of whom provided 2 repetitions per words.

For speech recognition, the analog speech signals were converted
to discrete-time data through an anti-aliasing low-pass analog
filter and by using a 12 bit A/D converter with a 16 kHz sampling
rate. The digitized speech signal was pre-emphasized with a first
order filter whose transformation function was 1-0.97Z-1. The
wave was then segmented into frames of 20msec(320 points)
duration with 10 msec(160 points) overlap between consecutive
frames. The Hamming window was used to remove the adverse
effects of frame segmentation procedure. Each frame has been
characterized by 14 order mel-cepstral coefficients(MCC),14-
order delta mel-cepstral coefficients(DMCC), log energy and
delta log energy. The LBG(Linda-Buzo-Gray) algorithm[9] was
employed to generate three separate codebooks. The size of the
codebook for MCC and DMCC vectors are 256. The feature
parameter for energy and delta energy are merged and are taken
as a single vector. The size of this codebook is 128. As a unit for
recognition, we have used 50 context independent PLU(phone
like unit). The PLU’s are concatenated to a word model and each
of PLU are trained with the segmental K-means algorithm[10].
Given a sequence of codewords, the recongizer selects a word



model with a maximum output probability from all of the word
models.

To evaluate the performance of the proposed method, we have
done the comparison experiments. The experiment results are
shownin Figure 1. The CDDN method shows 95.7% and the
conventional FVQ based state modeling shows a recognition rate
of 94.3%. These experiments demonstrate the reflection of a
characteristic of a codeword dependent distribution to the
calculation of a output probability is more efficient than
otherwise. The distance based codeword weighting methods also
improved the recognition rate. Finally, we have applied the
proposed smoothing method to the recognizer and received
98.8% recogntion rate. With these results, the smoothing of a
distribution of output probability is more important than the
codeword based weighting. In the experiments, we determined
that the proposed methods are more efficient than the
conventional approach in several of comparative results.
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Figure 1: Experimental Results

5. CONCLUSION

A new parameter estimation method for discrete hidden Markov
models has been presented. The proposed method has been
evaluated on a task of speaker-independent isolated words
recognition and was compared with the conventional approaches.
From the experimental results, we have concluded as the
following.

1. The information for codeword dependent
distribution is effective in computing the output
probability.

2. The codeword dependent weighing in a state has
slightly improved performance.

3. Smoothing of output probability is more effective
than the codeword dependent weighting in a state.

We have a plan to test the proposed approach with more training

data and also will compare the proposed method with other kinds
HMM models such as semi-continuous or continuous models for
continuous speech recogntion.

REFERENCE

1. L. R. Rabiner, B. H. Juang, Fundamentals of Speech
Recognition, Prentice-Hall International Editions, 1993.

2. Lee, K. F. , Automatic Speech Recognition : The
Development of the SPHNIX System, Kluwer Publishers,
Boston, 1989.

3. D. Huang, M. A. Jack,"Semi-Continuous Hidden Markov
Models for Speech Signals", Computer Speech and
Language, Vol. 3, No.2, pp. 239 - 251, 1989.

4. Schwartz, et al.,"Robust smoothing methods for discrete
hidden Markov models", Proc. of ICASSP, Glasgow,
Scotland, pp. 548 - 551, May 1989.

5. H. Applebaum, B. A. Hanson, "Enhancing the
discrimination of speaker independent HMMs with
corrective training", Proc. of ICASSP, pp. S6.13 - 14, 1989.

6. R. Bahl, et al.,"A new algorithm for the estimation of
hidden Markov model parameters", Proc. of ICASSP, pp.
S11.2 - 4, 1988.

7. M. Koo, C. K. Un, "Fuzzy smoothing of HMM parameters
in speech recognition", Electronic Letters, Vol. 26, pp.
7443 - 744, 1990.

8. H. P. Tseng, M. J. Sabin, et al.,”Fuzzy Vector Quantization
applied to hidden Markov modeling”, Proc. of ICASSP, pp.
15.5.1 ~ 15.5.4, April 1987.

9. Gray, "Vector Quantization", IEEE ASSP Magazine , Vol. 1,
pp. 4 - 28, April 1984.

10. L. R. Rabiner, J. G. Wilpon, B. H. Juang,"A Segmental K-
means training procedure for hidden Markov models with
continuous mixture densities", AT & T Tech. Journal, Vol.
65, pp. 21 - 31, 1986.


