
 1

Developing Object Oriented Designs from
Component and Connector Architectures

Hyoung-iel Park1, Sungwon Kang2, Yoonsuk Choi2 and Danhyung Lee2

1Tmax Soft, 18F Glass Tower, 946-1
Daechi-Dong,Kangnam-Gu, Seoul, Korea

hipark@icu.ac.kr
2Information and Communications University

Dogok-Dong, Kangnam-Gu, Seoul, Korea
{kangsw, yschoi, danlee}@icu.ac.kr

Abstract

In this paper, a systematic approach of developing
detail OO designs from Component and Connector
Architectures (CCAs) is proposed. In this approach, an
intermediate model between the architecture model and
the detail design model specified with class diagrams or
sequence diagrams is introduced to narrow the wide gap
between the two abstraction levels. Once a CCA is
designed, candidate classes and their relationships are
identified per each architectural element. In order to
show the efficacy of this approach, we apply it to an
industry software development project and verify that
quality attributes supported by the CCA are equally
maintained by the detail design.

1. Introduction

Some practitioners use Object-Oriented Design

(OOD)1 itself as the architecture description of software
systems instead of using the emerging architectural
concepts and notations. Although some OOD concepts
can be used to address architectural design issues, and
doing so is popular among software developers, there are
significant differences in capabilities and benefits
between them. The level of abstraction that the OOD
description provides does not cover all the aspects
required for architectural design.

In this paper, we propose a systematic method of
developing OOD from an architectural design that is
consistent with the Component and Connector
Architecture (CCA) [1]. In this method, Intermediate
Model (IM) is introduced between the architecture

1 In this paper, we use the terms Object-Oriented Design and Object-
Oriented Detail Design interchangeably.

model and OOD to narrow the gap between the two
widely different abstraction levels. We call this the
Intermediate Model Introduction (IMI) approach. We
applied the IMI approach to an industry project to
demonstrate the method and to show its efficacy.

The rest of this paper is organized as follows. In
Section 2, we introduce an industry project
Metadirectory system development and describe what
kinds of challenges we met during the initial attempt of
architecture design. Section3 discusses related work and
explains what candidate approaches exist for
overcoming those problems but why they are inadequate
as they are. Section 4 describes the IMI approach in
detail. In Section 5, we apply it to the Metadirectory
project and show its efficacy. Lastly, Section 6 is the
conclusion.

2. The Metadirectory Project

The Metadirectory system integrates identity data
from heterogeneous repository systems while keeping
consistency between duplicated data for single resource.
Through the system an application or a user that wants to
access the identity data can see the unified view of the
data distributed over various repositories.

A team of five software engineers developed the
Metadirectory system for one year period. Every
member participated in all phases of development from
requirements specification through designing to
implementing. For the development process, the Unified
Process (UP) was adopted and tailored to the team size
and the project period and also improved to embrace
architectural design.

 2

Figure 1. CCA Description of the Metadirectory
System

For architectural design, ACME2 [2] was selected as
an architecture building tool which helps build a cartoon
view of the architecture and add constraints on the
structure and data flow. ACME allowed us to draw CCA
in which components and connectors are described in
Figure 1.

The team members and the clients considered this
architecture as the most important artifact to be obtained
in the inception and elaboration phase in that it can show
the developers and the stake holders what the product
will be like and how it will function from the whole
system’s viewpoint. Thus the team members hoped that
everything the CCA implies to be maintained to other
subsequent artifacts without distortion as the
development process goes. In every development step,
the developers referred to the CCA lest they got lost. But
most of the members experienced significant problems
when trying to design OO design models from the CCA.

We encountered several problems during the project
as follows:
(P1) CCA is not harmonized with UP. In UP, most
tasks have their input and output. Although we modified

2 ACME is an architecture interchange language, which is intended to
support mapping of architectural specification from one ADL to another.

UP by putting the architectural design activity ahead of
the OOD activities in order to make the ACME-based
architecture artifacts merged into the process, it was not
effective because of the different properties between the
architecture based artifacts and OOD based artifacts..
The different properties were apparent because artifacts
except that of CCA linked to each other in OO process
defined in UP.
(P2) Consistent implementation of CCA was difficult.
Since how to realize the elements of CCA was not
explicitly defined, implementations by different
members did not conform to each other. For instance, a
port listening for message incoming was implemented
with an independent thread but another port that is
supposed to be implemented in the same way was coded
using the Observer pattern3.
(P3) There is no concrete process for implementing
architectural styles. Another thing to consider was the
difference between of the concept of the design pattern
and the concept of architectural style that are to be used
in OOD like class diagram and the CCA, respectively.
As the techniques of software architecture construction
matures, they would need to more and more utilize
architecture patterns such as “pipe and filter,”
“blackboard,” “publish and subscribe,” and so on [3].
Since CCA is the basis for later detail design process,
these kinds of styles also needed to be embodied into the
subsequent OOD. But the concrete way of transition
from the architectural style to the OOD was not clear.
Some members of the development team used one
design pattern to realize an architectural style while
others used another design pattern to do the same style.
(P4) Requirements realization is not ensured through
the overall design process. CCA reflects functional
requirements as well as non-functional requirements. It
has components, connectors, constraints and styles based
on the requirements. Although the CCA was frozen by
agreeing with the client, it was not explicitly determined
how components or connectors could be implemented.
Thus how to maintain the functional and non-functional
requirements in the OO design was not clear.

3. Related Work

There are researches attempting to connect the
architectural design world and the OO design world.
Most of such researches tend to be lopsided to one world
trying to represent architectural concepts with the OOD
tools or vice versa but are not sufficient for overcoming
the problems that we described in Section 2. In the
following, such works are examined and criticized.

3 It is an OO design pattern.

 3

Mapping ADL to UML
Various Architecture Description Languages (ADL)
have been proposed such as Wright[4], ACME and so
on. Regardless of the kinds of ADL, the types of
information on which ADL focuses are common
characteristics of an application domain, a style of
system composition, or a specific set of properties. To
implement these common characteristics, attempts to
map ADL to UML detail design have been made [5].
Even though UML 2.0 provides some useful notations
for architectural elements such as connector and port [6],
it does not give any directions on how to transform
architectural notations into the more detail ones such as
class diagram.

Component based infrastructure
Component-based infrastructures such as COM,

CORBA[8], Enterprise Java Beans (EJB), and Web
Services provide sophisticated services such as naming,
transaction, and distribution for component-based
applications [9]. These infrastructures have provided
uniform, standard, high-level interfaces to the
application developers and integrators, so that
applications can be easily composed, reused, ported, and
made to interoperate They also supply a set of common
services to perform various general purpose functions, in
order to avoid duplicating efforts and to facilitate
collaboration between applications Many software
engineers have tried describe overall architectural
structure with these interfaces in order to hide complex
protocols.

However, component infrastructures such as
CORBA or COM don’t include mechanism for explicitly
describing software architecture. They are usually
directly dependent upon the characteristics of the
involved middleware and provide little, if any, guidance
as to how a similar outcome can be achieved with a
different set of middleware platforms [10]. Even though
Web Services provides architecture level abstraction by
allowing an architect to design overall structural design,
at the detail design level it is very dependent on so called
Web Services platform with several standards such as
SOAP, WSDL or BPEL.

Archjava
In order to integrate software architecture

specification smoothly into Java implementation code,
Archjava, which is a sort of java extension, was invented
[11]. Archjava adds new language constructs to support
components, connectors, and ports so that programmers
can descry software architecture. The code of Archjava
consists of abstract classes for each architectural
element. These abstract components and ports allow an

architect to specify and type-check the Archjava
architecture before beginning program implementation.

However, from the practical point of view, if we
design a compiler component, for example, an important
consideration is how to design the component which is
composed of classes and their relationships. In Archjava,
there are no such constraints for the programmer to refer
to the class level design. If a programmer wants to
design a native class and make inheritance relationships
between the classes, he/she must consider class level
design options regardless of abstract entities for
architectural elements. Even though Archjava transfers
the architectural concepts to the java language with its
extension, it fails to bring them into the OO world.

4. The Intermediate Model Introduction
(IMI) Approach

Before getting into the IMI approach, we need to
note that there is no direct connection between OO
design pattern and architectural style [12]. It is because
there are no primitive types or conventions in OO
language specifically devised for architectural elements
like components or connectors [13].

With this fact, it is possible for the designer to
separate the structure of architecture that describes how
components are connected with connectors and OO
design that define what the classes and their
relationships such as associations, aggregations,
compositions and inheritances are like.

Table 1. Input and output artifacts of CCA and OOD

 Input Output
CCA Functional

requirements,
Non-functional
requirements

Components,
Connectors, Ports,
Constraints,
Architectural Patterns,
Refined Quality
attributes

OOD
(Class
diagram)

Objects,
Relations,
Functional
requirements,
Non-functional
requirements

Objects (classes),
Static Relations
(association,
aggregation,
composition,
inheritance)

This separation can be inferred from the artifacts as

in Table 1. The artifacts of an architectural design and
sequence or class design are inherently different with
each other because the former considers the overall
structure and system properties and the latter focuses on
detail design which can is implemented by OO
Language.

 4

In building an OO design such as developing class
diagrams from use-cases, it is often required to
generalize the use-cases, extracting objects or defining
the rough relationship between the objects to keep
consistency from abstract model to more concrete one.
Similar to this, through introducing an IM between
architecture and detail design, developers can
accomplish the transition smoothly because it can
ameliorate the gap between the two artifacts. But strictly
speaking, it is a little different from the modeling from
use-cases in that the objects residing in a CCA are
tightly categorized by the CCA elements and refined
under the architectural constraints. Thus a more
restrictive way is required.

The IMI approach is composed of the three major
steps as shown in Figure 2.

Figure 2. The IMI Process

In Step 1, the major architectural elements are
component, connector, ports and constraints 4 in CCA
and they are assumed to be composed of objects and
their relationships. Mapping the CCA to implementation
elements is a key activity in this step. In this activity,
how to realize these elements is considered based on the
architectural elements identified.

4 Constraints of the software architecture are about type constraints or
object binding rules, which don’t affect the overall structure or design.
Thus, in this approach, they are not considered to be a modeling target.

In Step 2, once the implementation elements for each
architectural element are decided, the functional and
non-function requirements are distributed among
architectural elements. To distribute non-functional
requirements to architectural elements is not as simple as
functional requirements because quality attributes that
represent non-functional requirements can be supported
both implicitly and explicitly by the architectural
elements. When an architectural element is used in order
to support a specific quality attribute, the attribute can be
assigned to the elements. .

In Step 3, there are three sub-steps. For each
functional requirement, objects that are needed to satisfy
the requirement has to be identified in 3A.

And the second sub-step 3B, OO design patterns can
be considered. This step is required because it can be
very hard to make OO design without applying design
patterns. Considering design pattern already proven to
be useful to the specific problem before you jump into
making a solution to the problem helps developers make
better design than later considering. Considering the
quality attributes and requirements, the patterns which
can be applied to the component can be listed up (Table
2) in the exemplified project. A design pattern gives us a
generic solution that solves a family of recurring
problems in a certain context [14].

 Lastly, in Step 3C, the objects identified and the
relationships between them can be rearranged based on
the selected design patterns.

Table 2. Design patterns and their purposes
Design
pattern

Purpose

Command By wrapping a method in an object, it
can be passed to other methods or
objects as a parameter.

Template It is defined in the base class and
cannot be changed.

Façade It is used to expose simple interface
which handles confusing collection of
classes and interactions.

Observer It is often used for the specific case of
changes based on other object’s
change of state, but is also the basis of
event management.

Adapter It takes a type and produces an
interface to some other types.

5. Applying the IMI approach to the
Metadirectory Project

In this section, the IMI approach explained in the
previous section is applied to the Metadirectory system

St
ep

 1

St
ep

 2

St
ep

 3

Map the implementation elements to
the instances of architectural
elements

Distribute
functional
requirements
to the
architectural
elements

Distribute non-
functional
requirements to
the
architectural
elements

3A) Find objects and their
relationships per each
architectural element

3B) Select OO
design patterns

3C) Refine objects and their relationships
patterns

 5

introduced in Section 2. In Section 5.1, the three steps of
the IMI approach is applied one by one to one of the
architecture element. In Section 5.2, the final detail
design is exhibited. Finally in Section 5.3, it is verified
that the architectural structure and the quality attributes
supported by it are preserved in the final OO design.

5.1 Applying the IMI approach

Among many subsystems of the Metadirectory
system, the Adapter Manager (AM) component and its
connectors and ports (Figure 3) are selected to
demonstrate IMI approach because it utilizes two
protocols for ports and has complex functionality which
may easily cause inconsistency in realization.

Figure 3. Adapter Manager Component and its
connectors and ports

Step 1) Three major architectural elements are
considered (Table 3), which affect the detail design in
terms of identifying key objects. Two kinds of
middleware were used for connectors. Java Message
Services (JMS) was adopted for the event bus and RMI
(Remote Method Invocation) embedded in Java
Development Kit (JDK) was used for the basic client-
server connector.
Step 2) AM is responsible for handling Direct
Adapters5(DAs) and relaying user commands to a DA.
According to the Software Requirement Specification of
the project, DAs have to be added to the system and
removed simply by issuing handling command without
doing additional actions like starting adapter process
manually or stop the whole system. By satisfying this

5 Direct Adapter is a component that allows an external system to join
the Metadirectory system.

requirement, one of important quality attribute,
extensibility, will be supported.

Table 3. Architectural elements and their
implementation elements

Architectura
l Elements

Instances of
Architectural

Elements

Implementation
Elements

Component AM Component Java Process

Event Bus
Connector

JMS
Connector

RMI Connector RMI

Event Bus Receiver
Port

JMS Listener

Event Bus Sender
Port

JMS Sender

RMI Receiver Port RMI Stub

Port

RMI Sender Port RMI Proxy

The user can control DAs through AM. Once “stop”
or “start” commands are issued by the user, they are first
sent to the AM with a destination tag and resend the
command to the proper DA after verifying the command.
Besides relaying commands, the component has to
monitor DAs to assure availability of the system by
resizing the queue size of the event bus. The detailed
requirements for this component can be summarized as
in Table 4.

Table 4. Functional and non-functional
requirements for AM

Functional
requirements

Non-functional requirements

1. To remove DAs
2. To add DAs
3. To verify

commands from
the façade
component

4. To relay commands
to the target DAs

5. To check loads of
all DAs

6. To control the
queue size of event
bus according to
the load

1. Extensibility:
A. The system can allow

a user to remove or add
DA easily (without
restarting the system or
changing
configurations)

B. A new functionality
can be added to this
component easily

2. Usability:
A command issued can be
canceled by undo
command by one level

Step 3A) After mapping the implementation elements to
the architectural elements and distributing functional and
non-functional requirement to each element, major
objects are identified and then several candidate design

 6

patterns are considered and the most proper one is
chosen by considering both brief objects list and non-
functional specifications. Lastly, based on the selected
design pattern and its implied structure, supplementary
objects can be added and all objects are arranged and are
to have relationship each other.

Table 5 shows required objects of each functional
requirement. Extracting objects from requirement is the
first step OOD, where the identified objects are very
rough and later can be split into smaller objects or need
additional objects for structural completeness.

Table 5. Objects needed for functional
requirements

Requirements Objects needed
To remove DAs
To add DAs

DA_handler

To verify commands from the
façade component

Command_verifier

To relay commands to the target
DAs

Command_sender

To check loads of all DAs Load_checker
To control the queue size of
event bus according to the load

Queuesize_
controller

Each object extracted has interactions with other

objects invoking methods of other object or sharing
variables with others. Because these interactions are
embodied as class relationships in detail design, it is
important to characterize relationships between these
objects (Figure 4).

DA_handler

Command_verifier Command_sender

Load_checker

Queue_controller

Figure 4. Overall relationships between major
objects

Step 3B) Once the overall structure with objects and
their relationships is determined, the design patterns can
be selected to fulfill the non-functional requirements and
to refine the overall structure of the system. By using the
factory pattern, the adapter proxy can be easily created
and destroyed in AM. Although the major part
supporting the “Extensibility” is to use publish-and-
subscribe architectural style, using this pattern strongly
support the attributes also. Template pattern lets
subclasses redefine certain steps of an algorithm without

changing the algorithm’s structure. And finally through
command pattern, user commands can be realized as an
object with which the command can be canceled or
reissued. The list of selected patterns is in Table 6.

Table 6. Design patterns based on the non-
functional requirements (* and ** indicate the kinds

of ‘extensibility’ attributes of Table 4)
Requirements Design pattern

Extensibility A* Factory

Extensibility B** Factory, Adapter, Template,
Singleton

Usability Command

Step 3C) After applying design patterns to the model,
several new objects (dark boxes) required for the
patterns are added as in Figure 5. Factory and adapter
objects are such ones. Relationships are refined
according to the patterns. At this stage, however, the
apparent feature of the pattern does not appear because
IMI approach is confined to the relationships not using
inheritances or compositions. But it is very meaningful
to find out key object required for patterns or functional
and non-functional requirements in terms of making the
later designs consistent under the selected design pattern.
Figure 5 and the patterns of Table 6 are the output
artifacts of the IMI approach.

DA_handler

Adapter_factory
Adapter_for_DA_proxy

Command_sender Command_verifier

Config_manager
Load_checker

Queue_controller

DA_proxy

Figure 5. IM for the AM Component

5.2 The Final OO design

In the previous section, only the IM for the AM
component was demonstrated. IMs for other
architectural elements like connector and port can be
also built in a similar way. Based on theses IMs the class
diagram of the AM component containing ports is
described in Figure 6.
 To show how the component is embracing the port for
connector, the part for commands processing and load

 7

controlling is omitted and only adapter proxy creation
which is connected to the port is emphasized. In this
diagram, unlike CCA, it is hard to distinguish which part
is for the component and which part is for the ports
unless the two kinds of classes are differentiated with
oblique line filled box.

Then what is the difference between the class
diagram directly from the CCA and the one from the
IM? The most important difference is that the classes
obtained by the IMI approach are managed in a uniform
way. At the same time, the structure and quality
attributed can be maintained throughout the development
process.

5.3 Verification

It is, of course, possible to develop a system without
an IM. But from the aspects of consistency, reverse
engineering, and maintenance, development may be very
difficult because there is no concrete process for
converting CCA to OOD. In this section, the
effectiveness of the intermediate model introduction will
be demonstrated from two viewpoints. One is by
answering the question “Is the architectural structure
maintained from CCA to OOD?” and the other by
answering the question “Are the quality attributes
preserved in the process of applying IMI approach?”

Architectural structures

The IMI approach is performed per each architecture
element. The first step is to map implementation
elements to the CCA elements. The remaining part of the
process is done for each implementation element without
considering the other elements. It can be said that the
overall structure defined by the architecture is
maintained to the OOD. Furthermore, with the class
diagram the designer can easily distinguish which part is
a port and which part is a component from the IM.

Quality attributes

Many researchers say that architecture is important
because it can contain quality attributes required for a
system. But often quality attributes are realized by
making subsystems or objects support the quality
attributes. Table 7 describes how the quality attributes
are preserved through the modeling. The second step of
the modeling process assigns non-functional
requirements to each implementation element, during
which each quality attribute is explicitly assigned to a
certain implementation element. All “mapped implement
elements” of Table 3 has its responsibility for each
quality attribute that is expected to be maintained from
the SRS to the code.

 DA_handler

Adapter_factory
<<interface>>

Adapter_fac_impl

<<interface>>
Manageable_Proxy

Proxy_adapter DA_proxy

<<delegates>> <<creates>>

JMS_conxext_helper Config_Manager

JMSMessage_listener Message_unpacker

<<interface>>
Message_listener

<<interface>>
Observer Observer_registry

Figure 6. A simplified final Class diagram for the
AM component with ports

Besides the preservation of the attributes, the
modeling makes it possible to develop design artifacts in
a managed way focusing on quality attributes. For
instance, the extensibility is strongly supported by
adopting the adapter pattern and the command pattern
which allow the developer to add additional code
without changing the existing code.

Table 7. Quality attributes supported in IM

Architectural
Elements

Implementation
Elements

Supported
Quality

Attributes

Component Adapter Manager Extensibility,
Usability

JMS sender
Port JMS receiver

Integrity

JMS Connector RMI
Usability

In this way, the architectural structure and quality

attributes are maintained from the CCA to OOD in the
IMI approach. Now let’s see if the problems described in

 8

Section 2 that we encountered during the Metadirectory
project can be solved.

The first problem P1 is solved because IM takes
CCA as an input and produces objects and their
relationships which can be used as an input to the class
diagram as needed for the UP. For P2, since objects list
and design patterns define how many objects are
required and what their relationships are to be like in
order to realize the architecture, the implementation level
has been defined. Without this implementation baseline,
the detail designs can diverge. For example, where one
programmer introduces one class, another programmer
can introduce a set of classes per a component. The third
problem P3 is solved by the fact that the overall
architectural structure is maintained to the detail design
through intermediate design because the architectural
structure contains architectural style. For P4, it is also
solved by ensuring backward traceability of non-
functional attributes with the IM.

6. Conclusion

Mapping implementation entities such as a
middleware or a process to the architectural elements is
the baseline of the IMI approach. This step ensures that
the architectural structure is maintained when the
architecture is realized with the OO way. The IMI
approach adds two major activities to this base step. The
first one is to extract the major objects required and
determine the relationships between them, both of which
are the key inputs for the OOD. And the second one is
about design patterns. Based on the extracted objects and
the non-functional requirements, design patterns are
selected and applied to the model. This process ensures
that the quality attributes are still preserved in the OOD.
Besides, by making a list of objects and determining
their relationships, the OOD can be developed in a
consistent way because the level of detail or the way of
realization is confined.

Selecting design patterns and their invariants is not a
simple task. This paper used a heuristic approach for
selecting design patterns that can help developers adopt
and refine. Using a design pattern may cause its
invariants to be adopted in certain situations and
adopting several similar invariants can require another
higher level design pattern to be used. Formalizing the
process of selecting design patterns remains a future
work.

7. References

[1] D. Garlan and M. Shaw, Software Architecture:

Perspectives on an Emerging Discipline, Prentice Hall,
1996.

[2] B. Schmerl and D. Garlan, “AcmeStudio: Supporting Style-
Centered Architecture Development," In Proc. of the 26th
International Conference on Software Engineering,
Edinburgh, Scotland, May, 2004, pp. 23-28.

[3] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting Style
in Architectural Design Environments,” In Proc. of
SIGSOFT '94: Foundations of Software Eng., Dec. 1994,
pp. 175-188.

[4] N. L. Kerth and W. Cunningham, “Using patterns to
improve our architectural vision,” Software, IEEE, vol.
14, issue 1, Jan.-Feb. 1997, pp. 53-59.

[5] N. Medvidovic and R. N. Taylor, “A classification and
comparison framework for software architecture
description languages,” IEEE Transactions on Software
Engineering, vol. 26, issue 1, Jan. 2000, pp. 70-93.

[6] M. Bjorkander and Cris Kobryn, “Architecting Systems
with UML 2.0,” IEEE Software, 2003.

[7] S. Cheng and D. Garlan, “Mapping Architectural Concepts
to UML-RT,” Int’l Conf on Parallel and Distributed
Processing Techniques and Applications (PDPTA'2001),
Monte Carlo Resort, Las Vegas, Nevada, USA, Jun. 2001.

[8] Object Management Group, CORBA 3.0 New Components
Chapters, ptc/99-10-04, Oct. 1999.

[9] Microsoft, The global XML Web services architecture
GXA; available at http://msdn.microsoft.com/webservices/
understanding/gxa/default.aspx

[10] N. Medvidovic, “On the Role of Middleware in
Architecture-Based Software Development”, ACM 1-
58113-556-4/02/0700, 2002.

[11] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava:
Connecting Software Architecture to Implementation,” In
Proc. of ICSE 2002, May 2002.

[12] A. H., Eden and R. Kazman, “Architecture, design,
implementation,” In Proc. of the 25th Int’l Conference on
Software Engineering, May 2003, pp. 149-159.

[13] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin,
“Language Support for Connector Abstractions,” In Proc.
of the European Conference on Object-Oriented
Programming (ECOOP '03), Jul. 2003.

[14] E. Gamma, R. Helm, R.E. Johnson, and J. Vlissides,
Design Patterns, Addison-Wesley, 1994.

