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a b s t r a c t

In the paper, an output-based disturbance observer of reduced order is presented for a class of discrete-
time linear systems. First, a general form of a disturbance observer is proposed when full states are
available. Then, by combining a state function estimator of minimal order, an output-based disturbance
observer is derived. The existence condition will be formulated in the form of a static output feedback.
Through examples, the effectiveness and advantages of the proposed approach will be demonstrated.
A servo control problem in practice is addressed to show the validity of the approach. Furthermore, it will
be shown that the proposed approach does provide a smaller order of disturbance observer than that of
conventional approaches, while maintaining satisfactory performances.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

One of the major methodologies for motion control problems
subjected to external disturbances is to use disturbance observers.
In literature, several types of disturbance observers can be found
in various applications such as the positioning table in Kempf and
Kobayashi (1999), a linear stage control in Yoon, Jung, and Sul
(2010), the high precision control of a CNC machining center in
Yeh and Hsu (2004), the track-following control of hard-disk drive
system (Kang, Kim, Lee, & Chung, 2011; Ryoo, Jin, Moon, & Chung,
2003; Teoh, Du, Guo, & Xie, 2008), the servo control of optical data
storage system (Kim, 2005; Kim, Lee, & Chung, 2011), hysteresis
compensation of piezo-actuators in Yi, Chang, and Shen (2009), a
robot manipulator in Katsura, Matsumoto, and Ohnishi (2007), etc.
Moreover, disturbance observer approaches have been effectively
adopted for fault-detection (Patton & Chen, 1997; Zhang & Ding,
2007).

Many of the disturbance observer approaches are based on the
inversion of the transfer function and the inclusion of Q-filters
(Kim & Chung, 2003; Ryoo et al., 2003; Yi et al., 2009). This so-
called Q-filter approach has merits in that (i) the concept behind
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the system inversion is very straight-forward and simple, and
(ii) the analysis and synthesis can be carried on with ease in the
transfer function framework which has been standard in practice.
Moreover, to a certain extent, the robustness of the closed loop
stability can be achieved by properly choosing the Q -filters (Shim
& Jo, 2009). On the other hand, theQ -filter approach does not allow
transient performance analysis in the time-domain andmay not be
applicable to the non-minimum phase systems. There are several
approaches to overcome the latter weakness in literature (Back &
Shim, 2008; Yeh & Hsu, 2004).

Different from the Q -filter approaches, other important
methodologies for disturbance estimation are the state–space ap-
proaches in which the states and unknown inputs are jointly es-
timated. The unknown inputs may be reconstructed by making
use of differentiation of the outputs or a full state observer in-
corporating the output error-based correction term (Corless and
Tu (1998) and references therein). The correction term may be
adopted in various forms to generate the disturbance estimate: for
example, statically proportional form (Corless& Tu, 1998;Gillijns&
Moor, 2007), an integral form (Chang, 2006; Orjuela, Marx, Ragot,
& Maquin, 2009; Zhang, Jiang, & Shi, 2010), a filtered form (She,
Fang, & Ohyama, 2008), etc. It is noted that, in Chang (2006), a pro-
portional integral observer is proposed to simultaneously estimate
the unknown states and unknown inputs for a certain class of non-
minimum phase systems. The state–space approaches are advan-
tageous in that the full states are obtained, which can be used for
full state feedback, and the error dynamics may be analyzed in the
time domain. Moreover, they can be effectively extended for han-
dling a class of nonlinear systems (Chen, Su, & Fukuda, 2004; Ha &
Trinh, 2004) or for a fault detection method (Zhang et al., 2010).
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As a matter of fact, the study has started from the practical
considerations for applying a disturbance observer to motion
control systems. In many cases, the disturbance observer-based
compensator is often a so-called add-on controller which enhances
further the disturbance rejection performance at a low frequency
rangewhile not affecting the existing control loop (Kim, 2005; Kim
& Chung, 2003; Ryoo et al., 2003; Shim & Jo, 2009). To this end, we
may need the features:

• An apparent transient behavior of the disturbance observer.
• Low computational load for a low cost digital signal processor.

Toward these, attention is paid to the reducedorder disturbance
observer approach, in which unknown inputs and a state function
are estimated instead of the whole state estimation. In Xiong and
Saif (2003), two types of disturbance observer of reduced order are
proposed based on the state function estimation. By relaxing the
constraint that the observer states should follow the system states,
error dynamics canbenotably simplified.Motivated by this generic
advantage, this paper aims at proposing a novel reduced order
disturbance observer which may result in the minimal dynamic
order.

The basic idea of the paper starts from a friction observer
by Friedland and Park (1992), in which the Coulomb friction (of
constant magnitude) is estimated. The modified algorithm from
it was proposed by Kim (2002) and successfully applied to the
compensation of the eccentric disturbance in the tracking servo
system of an optical data storage system. The disturbance observer
perfectly estimates the constant disturbance with the exponential
convergence. Also, it turned out that the disturbance observer
of Kim (2002) can be viewed as a part of feedback controller
which increases the control gain at low frequency range (Kim,
2005). Since it does not distort the phase of the loop transfer
function nominally designed, the two-stage control scheme does
improve the robustness of the closed loop performance against
unknown disturbances in the low frequency band. More recently,
in the continuous-time system, a general form of the ‘‘constant’’
disturbance observer in Kim (2002, 2005) was proposed by Kim,
Rew, and Kim (2010) under full state measurements. It was shown
that the constant disturbance observer can be extended to cope
with a disturbance of higher order in time series expansion.

In this paper, we extend the results of Kim et al. (2010)
to a class of discrete-time linear systems and newly propose
a disturbance observer of reduced order relying on partial
measurements. To achieve these, in Section 2, a full state discrete-
time disturbance observer is newly introduced, which reveals
an exponential convergence to an unknown disturbance. Then,
to relax the full state availability, a state functional observer is
devised. Interestingly, it will be shown that designing the proposed
disturbance observer of reduced order is equivalently expressed by
a static output feedback problem. In Section 3, through a practical
example of an optical data storage system in Kim (2005) and the
examples of nonminimum phase introduced in Chang (2006) and
Xiong and Saif (2003), the effectiveness of the proposed method is
demonstrated. The conclusion follows in Section 4.

The notations in the paper are fairly standard. For instance,
(·)+ denotes the Moore–Penrose pseudo-inverse of the argument
matrix.

2. Main results

Consider a discrete-time linear system
xk+1 = Φxk + Γ uk + Gdk, x0 = x(0),
yk = Cxk,

(1)

where x ∈ Rn, u ∈ Rm, d ∈ Rq and y ∈ Rl are the state variable,
the control input, the disturbance, and the measurement output,
respectively. The sampling period is T and G is of full column-rank,
i.e., rank(G) = q. The disturbance is assumed to be unknown but
slowly time-varying in the following.

Assumption 1. dk , [d1k, . . . , d
q
k]

T is slowly time-varying such
that, for some constants µi’s,∆dik

 ≤ T · µi, ∀k ≥ 1, (i = 1, . . . , q),

where ∆dik = dik − dik−1.

Now, let us propose a discrete-time disturbance observer as
follows.

Theorem 1 (DOB0). Suppose that C = In, which allows the avail-
ability of the full state vector. Given a matrix K ∈ Rq×n, consider a
disturbance observer
d̂k = Kxk − zk
zk+1 = zk + K


(Φ − In)xk + Γ uk + Gd̂k

 (2)

where d̂k ∈ Rq is the disturbance estimate, zk ∈ Rq is the state vari-
able. Then, the state estimation error, ek , dk − d̂k, has the dynamics

ek+1 = (Iq − KG)ek + ∆dk+1 (3)

where ∆dk+1 = dk+1 − dk.

Proof. To prove the stability of the disturbance observer, one may
show that, for ek = dk − d̂k,

ek+1 = dk+1 − d̂k+1

= dk+1 − (Kxk+1 − zk+1)

= dk+1 − K(Φxk + Γ uk + Gdk)

+ zk + K

(Φ − In)xk + Γ uk + Gd̂k


= dk+1 − (Kxk − zk) − KG(dk − d̂k)

= dk+1−dk + dk − (Kxk − zk)  
d̂k

−KG(dk − d̂k)

= ∆dk+1 + (Iq − KG)ek

which completes the proof. �

In fact, the stability of DOB0 can be achieved if the pair (Iq,G)
is observable. It is evident that the pair (Iq,G) is observable since
rank(G) = q. Hence, it is always possible to estimate the (slow)
disturbance within a bound when the full state is available. One of
the easiest choices for K is provided in the following lemma.

Lemma 1. Given any matrix M satisfying MG left-invertible (i.e.,
(MG)+MG = Iq), suppose that K = (Iq − Λ)(MG)+M for a matrix
Λ = diag{λ1, . . . , λq} with |λi| < 1 (i = 1, . . . , q). This results in
each error dynamics as follows:

eik+1 = λieik + ∆dik+1 (4)

where ∆dik+1 = dik+1 − dik. Then, the estimation error converges to
(or is confined within) a bound such that

|ei
∞

| ≤
Tµi

1 − |λi|
(5)

for i = 1, . . . , q.

The proof is omitted for saving the space. It is noted that
the error dynamics (4) are exponentially stable with an accuracy
bound in the order of O(T ).

Overall, the advantages of DOB0 are as follows:
• The exponential stability of the estimation error dynamics can

be easily assigned (i.e., by the scalar design parameters, λi).
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• The order of the disturbance observer dynamics isminimal (i.e.,
its order is merely the number of disturbances, q).

Remark 1. DOB0 may be viewed as a discrete-time counterpart
to a continuous-time disturbance observer presented in Kim et al.
(2010) ifM = In. However, the introduction ofM provides a further
design freedom. For example, when thematrix CG is left-invertible,
one may choose as M = C (i.e., K = (Iq − Λ)(CG)+C) so that, in
(2), the output equation of DOB0 can be computed only with the
measurements, that is, d̂k = (Iq − Λ)(CG)+yk − zk.

Remark 2. To prohibit the undesirable transient output of the
disturbance observer, one may consider two cases for setting the
initial value of the state variable, z0, in practice. When the level
of disturbance is roughly known as d̃, it is desirable to set it as
z0 = Kx0 − d̃, with which DOB0 starts estimation from d̃. If
the disturbance is fully unknown, it is recommended to set it as
z0 = Kx0, which will result in d̂0 = 0. In practice, the latter is
advantageous in terms of smooth transition of control input (from
zero to a certain value) when the DOB0-based compensation is
initiated in the feedback loop.

Now, to relax the requirement for the full state availability in
DOB0, let us rewrite (2) as follows:

d̂k = KC+yk − zk + KNCxk
zk+1 = zk + K


(Φ − In)C+yk + Γ uk + Gd̂k


+K(Φ − In)NCxk

(6)

where NC = In − C+C . This clearly shows that the underlined
vectors above are needed for constructing DOB0 for estimating a
disturbance. To identify the statesminimally required, consider the
minimal rank decomposition such that

He ,


KNC

K(Φ − In)NC


=


H1
H2


V T , (7)

where H1 ∈ Rq×h, H2 ∈ Rq×h, V T
∈ Rh×n for h = rank(He). Then,

with a state function vector

ηk , V T xk ∈ Rh, (8)

one may have an alternative expression of DOB0 as follows:
from (6),
d̂k = KC+yk − zk + H1ηk

zk+1 = zk + K

(Φ − In)C+yk + Γ uk + Gd̂k


+ H2ηk.

(9)

It should be stressed that the state ηk ∈ Rh is the unmeasurable
state function ofminimal order for constructing DOB0. Thus, when
an estimator for ηk is combined with DOB0 in (9), the order of the
disturbance observer would be q + h.

Remark 3. Note that the order of the state estimator is determined
by the rank of He (i.e., h). In the case of CG left-invertible, one
may select the matrix as K = (Iq − Λ)(CG)+C (i.e., with M =

C). Therefore, it can be seen that H1 = 0 and rank(He) =

rank

(CG)+C(Φ − In)NC


, which would reduce the rank number.

Theorem 2 (DOB1). Given a system in (1), consider a disturbance
observer as follows:

d̂k = KC+yk − zk + H1η̂k

zk+1 = zk + K

(Φ − In)C+yk + Γ uk + Gd̂k


+ H2η̂k

η̂k = ξk + Qyk
ξk+1 = Rξk + Syk + Wuuk + Wdd̂k

(10)
where zk ∈ Rq and ξk ∈ Rh,

Wu , (V T
− QC)Γ , Wd , (V T

− QC)G

for the matrices S,Q , and R satisfying

(V T
− QC)Φ − R(V T

− QC) − SC = 0. (11)

Then, it follows that
ek+1
ϵk+1


= Ae


ek
ϵk


+


∆dk+1
0h×1


(12)

where ek , dk − d̂k, ϵk , ηk − η̂k and

Ae ,


Iq − KG + H1(V T

− QC)G H1R − H1 − H2

(V T
− QC)G R


.

Proof. First, using that ηk = V T xk and, thus, η̂k = ηk − ϵk =

V T xk − ϵk, one may have

d̂k = KC+yk − zk + H1η̂k

= Kxk − zk − H1ϵk. (13)

And,

zk+1 = zk + K

(Φ − In)C+yk + Γ uk + Gd̂k


+ H2η̂k

= zk + K

(Φ − In)xk + Γ uk + Gd̂k


− H2ϵk.

Hence, it follows that

ek+1 = dk+1 − d̂k+1

= dk+1 − (Kxk+1 − zk+1) + H1ϵk+1

= dk+1 − K(Φxk + Γ uk + Gdk) + zk

+ K

(Φ − In)xk + Γ uk + Gd̂k


− H2ϵk + H1ϵk+1

= dk+1 −Kxk + zk  
−d̂k−H1ϵk

−KGek − H2ϵk + H1ϵk+1

= ∆dk+1 + (Iq − KG)ek − (H1 + H2)ϵk + H1ϵk+1. (14)

Second, by routine manipulations, it is straightforward to show
that

ϵk+1 = ηk+1 − η̂k+1

= V T xk+1 − (ξk+1 + Qyk+1)

= (V T
− QC)xk+1 − ξk+1

= (V T
− QC)(Φxk + Γ uk + Gdk)

− (Rξk + SCxk + Wuuk + Wdd̂k). (15)

Noting that ξk = η̂k − QCxk = (V T
− QC)xk − ϵk and d̂k = dk − ek,

(15) leads to

ϵk+1 = Wdek + Rϵk +

(V T

− QC)Γ − Wu

uk

+

(V T

− QC)Φ − R(V T
− QC) − SC


xk

+

(V T

− QC)G − Wd

dk

= (V T
− QC)Gek + Rϵk (16)

by the definitions of matrices Wu,Wd,Q , R and S. Also, by
combining (16) with (14), it holds that

ek+1 =

Iq − KG + H1(V T

− QC)G

ek

+ (H1R − H1 − H2)ϵk + ∆dk+1. (17)

These leads to (12), which completes the proof. �

Remark 4. The initial condition of DOB1 may be chosen such that
ξ0 = −Qy0 and z0 = KC+y0 in order to start the disturbance
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estimation from zero. In fact, this does improve the transient
response just after initiating the estimation in practice.

If the design parameters Q , R, S are chosen to satisfy (11) and
the stability of Ae, it is apparent that η̂k → ηk and d̂k → dk,
as k → ∞, within the accuracy of O(T ) since ∥∆dk+1∥2 ≤ T ·
√
qmax{µ1, . . . , µq} from Assumption 1.
Now,we are concernedwith the solvability of the condition (11)

in the following.

Lemma 2. There exist some Q , R and S satisfying (11) if and only if

rank


Z1
V TΦ


= rank(Z1), (18)

where Z1 ,

 C
CΦ

V T


∈ R(2l+h)×n.

Proof. Using a change of variable such that S1 , S − RQ , (11) can
be rewritten as

V TΦ − [S1 Q R]Z1 = 0 (19)

which is a linear equation for the augmented matrix [S1 Q R]. The
solvability of it is immediately given by (18). �

Thanks to Lemma 2 (and Eq. (19) in the proof), it is
straightforward to express the general solution to the equality in
(11) as follows: for any π ∈ Rh×(2l+h−nZ1),

[S1 Q R] = V TΦZ+

1 + πUT
2 (20)

where nZ1 = rank(Z1) and UT
2 ∈ R(2l+h−nZ1)×(2l+h) is the matrix

spanning the left-null space of Z1. Therefore, with appropriate
dimensions, one may parameterize all the feasible solutions as
follows:S1 = XS + πUT

2S ∈ Rh×l

Q = XQ + πUT
2Q ∈ Rh×l

R = XR + πUT
2R ∈ Rh×h

(21)

where [XS, XQ , XR] , V TΦZ+

1 and [UT
2S,U

T
2Q ,UT

2R] , UT
2 . In fact, the

above results eliminate the equality constraint (11) and, instead,
a search problem can be formulated for a matrix variable π that
satisfies the stability of Ae. That is, with Q and R in (21), observe
that

Ae = Ae − L1πL2 (22)
where

Ae =


Iq − KG + H1(V T

− XQC)G H1XR − H1 − H2
(V T

− XQC)G XR


,

L1 =

H1
Ih


, L2 = [UT

2QCG, −UT
2R].

Note that, given a matrix K , the design of DOB1 is to solve a static
output feedback problem for a system pair (Ae, L1, L2). Even though
the general solvability of the static output feedback is not known
yet, there have been many researches numerically applicable (e.g.,
see Henrion & Lasserre, 2006 and the references therein).

As a summary, the numerical solution procedures can be
summarized as follows:

(1) Choose a matrix Λ, which is the stability matrix of DOB0,
considering the full state disturbance observer dynamics,
DOB0.

(2) Choose amatrixM for K = (Iq−Λ)(MG)+M . Since the order of
a state function (8), h = rank(He), may varywithM , thematrix
M is chosen to give a minimal order.

(3) Check if the rank condition in (18) is satisfied. Otherwise, go to
the step (1) (or, DOB1 may not exist).
(4) Given the matrix K , solve the static output feedback problem
in (22) to find π = π∗ with which the matrix Ae is stable (i.e.,
all the eigenvalues are in a unit circle).

(5) For π = π∗, compute S1,Q and R in (21), and S = S1 + RQ as
well.

(6) Compute the matrices such thatWu = (V T
− QC)Γ andWd =

(V T
− QC)G.

3. Numerical examples

3.1. Eccentricity compensation of optical data storage device

The proposed disturbance observer, DOB0, can be effectively
applied to a servo control system subjected to a sinusoidal
disturbance. A typical example is the tracking control of optical
data storage systems. The eccentricity of a disk causes the
disturbance synchronized with the rotational speed of the spindle
motor. To validate the effectiveness of the constant DOB (i.e., DOB0
in Theorem 1), let us consider a track-following system, from Kim
(2005), given by

ëtr + 2ζωnėtr + ω2
netr = −Koβu(t) + Kod

where etr is the tracking error, which represents the deviation of a
beam spot from a track center, and, ζ = 0.05, ωn = 315 (rad/s),
the optical gain Ko = 1100 (V/mm), the motor driver gain β =

0.45 (mm/V). And, the disturbance may be modeled by, at the
steady state,

d = ẍr + 2ζωnẋr + ω2
nxr

where xr = ϵ cos(2π fopt) for an eccentricity ϵ and the rotational
speed of a disk fop. It is assumed that ϵ = 0.140 (mm) and fop =

100 (Hz). Also, only the tracking error is available for feedback and
measuredwith the uniformly distributed random noise of 0.07 (V).

The sampled data system with Ts = 1 × 10−4 (s) is given by,
with xk = [etr,k, ėtr,k]T ,

Φ =


0.9995 9.983 × 10−5

−9.905 0.9964


, Γ =


−0.2328
−4653


,

G =


−5.494 × 10−6

−0.1098


, C = [1 0].

Indeed, the aims of the feedback controller are to achieve a good
convergence of the track error from an initial track deviation and
maintain the track error within a small bound at the steady state
under eccentric disturbance. To this end, a lead-lag compensator
(Cnom(z)) is designed and implemented to have the nominal
performance. It is noted that the initial position error rapidly
converges to zero within 1 (ms) when there is no disturbance as
shown in Fig. 1. Under an eccentric disturbance, a steady state
fluctuation can be observed in Fig. 2.

To suppress the track deviation further, it may be needed to
increase the controller gain around 100 (Hz). However, it turns
out that increasing the low frequency gain would result in a
phase loss around the cross-over frequency (e.g., 1.5 (kHz) in this
example) so that the phasemarginwould decrease. Also, the phase
lag deteriorates the initial convergence behavior. To resolve the
difficulty,we compose a control inputwith an add-on compensator
such that, by using the disturbance estimate of DOB0,

uk = unom,k  
by Cnom(z)

− Γ +Gd̂k  
by DOB0

, (23)

where unom,k is the control input by the nominal controller, Cnom(z).
This leads to the closed loop dynamics

xk+1 = Φxk + Γ unom,k + (I2 − Γ Γ +)Gdk + Γ Γ +Gek
= Φxk + Γ unom,k + Gek
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Fig. 1. Control performance with Cnom when d(t) = 0.

Fig. 2. Control performance with Cnom when d(t) exists with ϵ = 0.140 mm.

Fig. 3. Disturbance estimation performance with DOB0.

since (I2 − Γ Γ +)G = 0 and Γ Γ +G = G for the example. It is
evident that the closed loop system would become robust against
to the disturbance as the estimation error gets small.

As in Lemma 1, it was chosen that K = [1.139 × 10−4, 2.277]
for Λ = 0.75 and M = I2. Also, the derivative of the track
error, which is required for computing the DOB0, is approximately
calculated such that ėtr,k ≈ LPF


yk−yk−1

T


, where LPF(·) is a

first order low pass filter with a cutoff frequency of 5 (kHz). As
shown in Fig. 3, the DOB0 gives a satisfactory disturbance estimate
while having a certain delay. The exponential convergence at the
beginning phase can be observed, which is a notable advantage of
the proposed approach in practice. The timedelay in the estimation
Fig. 4. Control performance with Cnom and DOB0-based compensation.

can be further decreased by selecting Λ smaller, which would
increase the gain K . This results in more noise contamination in
the estimated disturbance. Hence, designing the gain K should be a
trade-off between the estimation performance and the noise effect
in practice. Now, incorporating theDOB0-based compensation into
the control, it can be seen that, in Fig. 4, the control performance is
significantly enhanced, compared with that in Fig. 2. Interestingly,
as can be seen in Fig. 4, the DOB0-based compensation takes the
role to suppress the low frequency disturbance while the nominal
lead-lag controller produces only the limited control input against
the disturbance.

3.2. Case study: a nonminimum phase system

For comparison, an example of a nonminimum phase system
is chosen from Chang (2006), in which a proportional integral
observer (PIO) of full order was proposed. The system is of third
order and two measurements are available. The disturbance is
given by

dk =


0.3 sin(0.1k) + 0.5 cos(0.03k)

0.2 cos(0.05k) + 2


.

For the system, we chose as M = I3 and Λ = diag{0.7, 0.85} that
give

K =


0.9417 −0.5975 1.385

−0.05384 1.185 −0.003718


.

With K , we obtained that

He =

 1.164 0 1.164
−0.02878 0 −0.02878
−0.1533 0 −0.1533
0.07743 0 0.07743

 ,

which gives h = rank(He) = 1 and the minimal rank decomposi-
tion such that

H1 =


1.646

−0.04070


, H2 =


−0.2167
0.1095


,

V =

0.7071
0

0.7071


.

The above implies that only an estimation of the single state func-
tion is needed for the disturbance estimation.

Now, as in (18), it was confirmed that the rank condition is met
with rank(Z1) = 3.
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(a) d1k and its estimates. (b) d2k and its estimates. (c) ηk and its estimate.

Fig. 5. Simulation results. Signals of the plant in black, estimates by DOB1 in blue, and those by the PIO of Chang (2006) in red. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
To set up a static output feedback in (22), we calculated the
matrices as follows:

V TΦZ+

1 = [−4.640, 22.66  
XS

, 40.38, 18.09  
XQ

, 910.6  
XR

] × 10−3

U2 =

 U2S
U2Q
U2R


=


0.3256 −0.6224

−0.5796 −0.2735
−0.2902 0.6471
0.6878 0.3398
0.03021 −0.06036

 .

Note that U2 is obtained by the singular value decomposition

of Z1 (i.e., Z1 = [U1,U2] ·


σ 0
0 0


·


V T
1

V T
2


computed by a MATLAB

function—svd(·)). Thus, one may have the following results.

Ae =

 0.9933 0.06893 0.06959
−0.007255 0.8483 −0.1059

0.1783 0.04189 0.9106


,

L1 =

 1.646
−0.04070

1


,

L2 =


0.05370 0.1067 −0.03021

−0.01409 0.03747 0.06036


.

With the matrices Ae, L1 and L2, in (22), we found a matrix

π∗
= [−1.582, 9.575],

which assigns the eigenvalues of Ae = Ae − L1π∗L2 at z =

{0.8773, 0.8092± 0.2848j}. Therefore, it is immediate to have the
design matrices as follows: from (21), for π = π∗,

S1 = [−6.521, −1.679], Q = [6.695, 2.184],
R = 0.2849,
S = S1 + RQ = [−4.614, −1.057].

Also,Wu = 0 andWd = [3.982, −0.1481].
Note that the proposed DOB1 is of 3rd order (i.e., 1st order for

estimation of ηk ∈ R and 2nd order for estimation of dk ∈ R2).
For comparison, the PIO of 5th order (3rd order for estimation of
xk ∈ R3 and 2nd order for disturbance estimation) in Chang (2006)
was also simulated as shown in Fig. 5. With the reduced order
dynamics, the proposed DOB1 shows the satisfactory disturbance
estimation performance in the steady state more or less samewith
that of the PIO in Fig. 5(a)–(b). In particular, the performance of
DOB1 is significantly enhanced in the transient response. Also,
observe that, in Fig. 5(c), the single order state function, ηk, is well
estimated.
In this typical example, the full state vector can be recon-
structed as a byproduct. That is, considering that yk = Cxk and
ηk = V T xk, one may see that

x̂k =


C
V T

−1 
yk
η̂k


since the matrix


C
V T


is invertible.

3.3. Case study: a double-effect pilot plant evaporator

In order to show the effectiveness of the proposed DOB1
(in view of the order of dynamics), an example is chosen from
Xiong and Saif (2003), in which an unknown input observer
(UIO) of reduced order was presented in the continuous time.
The plant is a double-effect pilot plant evaporator of 5th order in
the continuous time domain and measured by two outputs. The
external disturbance is given by d(t) = [5 sin(5t), 2 sin(0.5t)]T .

To design the DOB1, the plant is discretized with Ts = 0.02 (s)
as follows:

Φ =


1 0 −3.381 × 10−5 0 0
0 0.9996 1.292 × 10−5 0 0
0 0 0.9886 0 0
0 0 −3.579 × 10−5 1 0
0 9.396 × 10−4 5.667 × 10−5 0 0.9995

 ,

Γ =


−0.01 0 0

0 0 0
0 0 9.426 × 10−3

9.160 × 10−3
−0.01 0

−5.979 × 10−3 0 0

 ,

G =


0 0.01

6.199 × 10−4
−1.320 × 10−3

0 −0.07148
0 0
0 0

 ,

C =


1 0 0 0 0
0 1 0 0 0


.

Considering that d1 is faster than d2, we chose as Λ =

{0.5, 0.75}. With M = C , we have

K =


106.5 806.5 0 0 0
25 0 0 0 0


.
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Fig. 6. Simulation results. d1 and its estimates for 10 s (top), and for 2 s (bottom).
d1(t) in black, its estimate by DOB1 in blue and, by the UIO of Xiong and Saif (2003)
in red. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Then, one may see that

He =


0 0 0 0 0
0 0 0 0 0
0 0 4.871 × 10−3 0 0
0 0 −7.5 × 10−4 0 0

 ,

which gives H1 = [0, 0]T , H2 = [4.871×10−3, −7.5×10−4
]
T and

V = [0, 0, 1, 0, 0]T for

h = rank(He) = 1.

That is, only the single order state function (i.e., ηk ∈ R) is
required for the disturbance estimation instead of estimating 3
other state variables. It is noted that h = rank(He) = 2 if the
matrix is chosen as M = I5 in this example. This clearly shows
that the order of DOB1 can be reduced by choosing the matrix M
appropriately.

The rank condition in (18) is also satisfied, which implies that
the search variables can be parameterized with the matrices

V TΦZ+

1 = [0, 0
XS

, 0, 0
XQ

, 0.9886  
XR

],

and

U2 =

 U2S
U2Q
U2R


=


−0.4999 −0.5001
−0.5000 0.4998
0.4999 0.5001
0.5002 −0.5000

9.995 × 10−6 2 × 10−5

 .
Fig. 7. Simulation results. d2 and its estimates by DOB1 and the UIO of Xiong and
Saif (2003) for 20 s (top), and for 5 s (bottom). All are nearly overlapped.

Hence, similar to the procedures in Section 3.3, it is immediate
to have a static output feedback problem for the system pair
(Ae, L1, L2) such that

Ae =

0.5 0 −4.871×
−3

0 0.75 7.5 × 10−4

0 −0.07148 0.98859

 ,

L1 =

0
0
1


, L2 =


310.1 4339 −9.995

−310.0 5661 −20.00


× 10−6.

By routine computations, with π∗
= [−5.601, −8.381], it was

obtained that the eigenvalues of Ae = Ae − L1π∗L2 are located at
z = {0.45, 0.75, 0.9884}. Thus, we have the design parameters for
DOB1 as follows:

S1 = [6.991, −1.388],
Q = [−6.991, 1.389],
R = 0.9884,
S = S1 + RQ = [0.08126, −0.01557],
Wu = [−69.91, 0, 9.430] × 10−3,

Wd = [−8.610, 2.651] × 10−4.

For comparison, we simulated the UIO (or the state func-
tion/input estimator) of 4th order presented in Xiong and Saif
(2003). Note that the dynamic order of the proposed DOB1 is three,
which is lower than that of the UIO. Given the disturbances, the
simulation results are shown in Figs. 6–8. The disturbance estima-
tion performances of both approaches are almost same. Also, it can
be seen that the single order state function ηk is well estimated by
the proposed DOB1.

Overall, through two examples, it was shown that the
proposed approach presents lower order disturbance observers
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Fig. 8. Simulation results. η(t) and η̂k by DOB1.

than the existing approaches in literature do. Also, the transient
performance is shown to be remarkably improved in the proposed
method.

As a remark, it should be noted that the examples in two case
studies have unstable zeros. This implies that the proposedmethod
is also applicable to a certain class of nonminimum phase systems.

4. Concluding remarks

In this paper, an output-based disturbance observer of reduced
order (named DOB1) was newly proposed in the discrete-time
domain. Under the availability of the full state, first, an unknown
input observer (so-called DOB0) was derived, which has the
dynamic order as the number of disturbances. Then, DOB0 was
combined with a state function estimator in order to rely on only
the partial measurements. By defining a minimal set of states
required for DOB1, the proposed DOB1 presents the lowest order
dynamics, compared with the conventional approaches. It was
shown that the solution procedures of DOB1 leads to a static output
feedback problem. Through simulations, the effectiveness of the
proposed approach was demonstrated.
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