
Recognition of Logic Diagrams by Identifying Loops andRectilinear PolylinesS. H. Kim , J. W. Suh and J. H. KimDept of Computer Science and Center for AI ResearchKorea Advanced Institute of Science & TechnologyDaejon 305-701, KoreaAbstractProposed is a system that recognizes logic symbolsand their inter{connections on logic diagrams. Inputdiagram, digitized by scanner, is converted into a setof line segments through a sequence of picture pro-cessing operations. Then symbols and connections areextracted by identifying loops and rectilinear polylinesutilizing model{base in which symbols are graphicallydescribed.Experiment with a number of logic diagrams showsthat the system correctly recognizes more than 96 % oflogic symbols and connections on A4-size diagram withan average complexity within 15 seconds on a worksta-tion.1 IntroductionA system for the recognition of schematic diagramscan be evaluated by the three criteria of recognitionaccuracy, exibility, and e�ciency. Most systems re-ported in the literature [1, 3, 6] imposed severe re-strictions on the input diagrams to improve the recog-nition accuracy, and are very sensitive to the changeof domain knowledge while taking little care to thee�ciency. Such restrictions degrade the applicabilityof those systems. Futhermore modifying of domainknowledge may require rewriting the recognition pro-gram. Even worse, they are quite ine�cient for prati-cal diagrams with low quality images of large size.In this paper we propose an automatic systemwhich recognizes logic diagrams by identifying logicsymbols and their interconnections. A degree of recog-nition accuracy has been reached through the identi-�cation of loops and rectilinear polylines. The frame-based description of symbol models makes our systemhighly exible. A signi�cant improvement of compu-tational e�ciency has been obtained by the use ofcontour-based picture processing operations. Exper-

iment with a number of logic diagrams shows the su-periority of our system.2 PreprocessingThe preprocessing module consists of a sequence ofpicture processing operations: separation of text andgraphics, extraction of line structures, and line seg-mentation. Digitized logic diagram is converted intoa set of line segments for representing the structuralinformation of lines and regions. Before all the oper-ations, a chain is generated for every closed contour,the outermost layer of the object in the image. Thesechains are referred by individual operations to reducethe amount of time for locating object pixels and com-puting shape features of each object.The preprocessing module runs fast due to elimina-tion of the time consuming search on the entire image,except for the initial contour tracing, and having con-stituent operations use two bits per pixel for storage.2.1 Separation of text and graphicsWe have devised a simple algorithm for the sepa-ration of text from graphics in digitized line drawingimages based on the shape features of individual ob-jects and some thresholds. The shape features, |such as width, height, elongatedness, and complexity| are computed from the object boundaries and thevariances of the projections along the two principalaxes of the object (see Figure 1).Large-sized or elongated objects are regarded asgraphics. We can ever separate text strings whosecharacter components are attached to each other byconsidering the elongation of the objects. Objectswhich correspond to text have relatively large valuesof complexity while objects corresponding to a part ofgraphics have smaller values.Most texts of various languages, fonts, and orienta-tions are successively separated by the classi�er if they

Figure 1: Bounding box and projection of an objectdo not overlap with the graphics. The separated tex-tual data is supposed to be processed by a characterrecognition system.2.2 Extraction of line structuresTo convert the separated graphical objects into aform that is suitable for further processing, those ob-jects are reduced into single-pixel wide line structures.Thin lines should be represented by their medial linesor skeletons while thick regions are represented bytheir boundaries or contours.We have utilized the contour generation method inKwok's thinning algorithm [5]. Given an object con-tour, the new contour which will be exposed to thebackground when the current contour is removed isconstructed. A set of case{by{case rules are used forthe generation.
(a) (b) (c)Figure 2: (a) initial contour (b) contracted contour (c)line skeletons and region boundariesThe contour generation in itself contracts an ob-ject into the inside of the object along its boundaries.Since it distinguishes the object interior from the back-ground with the chain direction of the boundaries, wecan adapt the method to expand the object toward thebackground by reversing the direction of the chain.The proposed algorithm utilizes the fact that a few

iterations of contour generation are su�cient to ob-tain the skeletons of thin lines. Thick regions whichhave been contracted by the iterations can be restoredby the expansion. Figure 2 illustrates the algorithmin operation. When no region is found in the inputimage, the algorithm just acts as Kwok's thinning al-gorithm.2.3 Line segmentationBecause of pool quality of input drawings, theremay exist some errors in the line structures: noisyspurs, small gaps, and deformations around junctions.Noisy spurs are simply removed and small gaps are�lled by examining the neighborhood area of each end-point. Deformed junctions are corrected by deletingand modifying relevant edges.After correcting errors, each edge is approximatedwith lines by the use of the iterative end-point �t al-gorithm [2]. The resulting lines are represented by agraph, where vertex corresponds to an end of line andedge represents a line segment.3 Symbol recognitionThe symbol recognition module extracts logic sym-bols and connections from the preprocessed logic dia-grams. Among various logic symbols and connections,we con�ne our attention to loop-symbols and rectilin-ear connections. Four orientations (left, right, up, anddown) are permitted for a symbol, but the size and po-sition are free. A set of input/output terminals is as-sociated with each symbol. The connection is neitherself-crossed nor a closed polygon. Two connections, ifthey meet, cross each other orthogonally.3.1 Symbol modelsThe entire recognition process is guided by model{base which consists of a set of symbol models, each ofwhich is described graphically with a frame-like tem-plate. With a such scheme for symbol description, itis easy to create, delete and modify symbols. Figure3 shows an example.Here we de�ne some terms. A characteristic loop ofa symbol model is the largest primitive loop in thesymbol. A symbol class is a set of symbol modelshaving the same characteristic loop. A characteris-tic window is the bounding rectangle of the image ofthe union of all the symbols in that class, where all thecharacteristic loops coincide. In our implementation,17 loop-symbols are grouped into 6 classes.

0
X

Y

begin {symbol}

end {symbol}

name (Nand−Gate)
width (132)
height (90)
begin {graphical object}
 line (0,0) (67,0)
 line (0,0) (0,90)
 line (0,90) (67,90)
 e−arc (67,45) (45) (45) (−90) (180)
 circle (122,45) (10) (empty)
end {graphical object}
begin {input terminal}
 on (line (0,0) (0,90)) (left)
end {input terminal}
begin {output terminal}
 at (132,0) (right)
end {output terminal}Figure 3: Graphical description of a prede�ned logicsymbol3.2 Recognition algorithmsGiven a preprocessed logic diagram, we �rst �nd theprimitive loops whose shapes coinside a characteristicloop of a symbol model. We conclude two loops coin-cide if they di�er only by a combination of translation,scaling, and change in size. Starting from a matchedprimitive loop, loop-symbol is isolated by excludingthe connections around the loop. The isolated sym-bol is then tested whether its shape coincide to oneof the symbol models belonging to the symbol classassociated with the matched characteristic loop.To test shape identity, we adopt the features whichare invariant under the a�ne transformations: Fourierdescriptors [7] for loops and the moment invariants [4]for symbols, respectively.Figure 4: A matched loop and related windowLoop matching: Given a graph of line segmentswhich represents the preprocessed logic diagram, aprimitive loop is detected , and its Fourier descriptor ,a ten-tuple vector is computed. The loop is identi�edas one of the characteristic loops that has the mini-mumManhattan distance from the Fourier descriptorvector, which is less than a preset threshold.When a primitive loop matches with a character-istic loop �, a window W for is obtained by trans-forming the characteristic window W� of � accordingto the pose of . Figure 4 shows an exampleW placedon the graph. There are 15 line segments which aretotally enclosed by W and three lines crossing the

window.Extraction of connections: The window W hasbeen determined to completely enclose any symbolcontaining the loop . We can regard each line cross-ing the window as a part of connection due to theassumption of rectilinearity of connections. Startingfrom such a line segment li, we extract a rectilin-ear polyline from the graph by merging adjacent lineswhich meet collinearly or orthogonally with li. Merg-ing is repeated iteratively until both the two ends ofthe current polyline can not be extended any more.As an illustration, Figure 5 presents the rectilinearpolylines extracted from the graph of Figure 4. Byexcluding those lines belonging to the extracted con-nections, a symbol is isolated within the rectangularwindow.Figure 5: Extracted rectilinear polylinesSymbol matching: Once a loop-symbol is isolated,a six-tuple moment vector is computed from the con-stituent line segments. The symbol would be one ofthe models in the symbol class (associated with thematched characteristic loop) if the Euclidean distancebetween the corresponding moment vectors is less thana preset threshold.4 Experimental resultsThe system has been implemented in C program-ming language on a SPARC{2 workstation. The inputlogic diagrams are digitized at a resolution of 150 pix-els per inch.Figure 6 shows a graph of line segments generatedby the preprocessing module for a 800�1248 image ofa logic diagram. All the matched loops along withtheir rectangular windows are also presented. In Fig-ure 7, the recognized symbols are replaced with thecorresponding models and the connecting polylines arealigned to beautify their appearances. The misrecog-nized (or rejected) objects remain in their line seg-ments.Processing time for the test drawing is 6.1 seconds:4.9 seconds for preprocessing and 1.2 seconds for sym-

bol recognition. We have observed that an A4-size(210�297 mm) logic diagram with an average com-plexity can be processed within 15 seconds.Comparing the results with respect to the inputlogic diagram, 1 of 31 symbols and 1 of 53 connec-tions are rejected. Another experiment with a set oflogic diagrams shows that more than 99 % of sym-bols and more than 96 % of connections are correctlyrecognized.5 ConclusionWe have proposed an automatic system which con-verts paper-based logic diagrams into a computer rep-resentation in terms of symbols and connections. Theproposed system achieves a degree of recognition accu-racy, e�ciency, and exibility. It can recognize about99 % of loop-symbols and more than 96 % of recti-linear connections from a logic diagram. The prepro-cessing part of the system runs very fast with twobits per pixel for storage. In addition, prior knowl-edge about the input diagrams can be easily modi�edwithout rewriting the recognition program.References[1] H. Bunke, \Experience with Several Methods forthe Analysis of Schematic Diagrams," Proc. 6thICPR, pp. 710-712, 1982.[2] R.O. Duda and P.E. Hart, Pattern Classi�cationand Scene Analysis, John Wiley, 1973.[3] Y. Fukada, \A Primary Algorithm for the Un-derstanding of Logic Circuit Diagrams," PatternRecognition, Vol. 17, pp. 125-134, 1984.[4] M.K. Hu, \Visual Pattern Recognition by Mo-ment Invariants," IRE Trans. Information The-ory, Vol. 8, pp. 179-187, 1962.[5] P.C.K. Kwok, \A Thinning Algorithm by Con-tour Generation," Communications of the ACM,Vol. 31, pp. 1314-1324, 1988.[6] A. Okazaki, et al., \An Automatic Circuit Dia-gram Reader with Loop-structure-based SymbolRecognition," IEEE Trans. PAMI, Vol. 10, pp.331-341, 1988.[7] C.T. Zhan and R.Z. Roskies, \Fourier Descriptorsfor Plane Closed Curves," IEEE Trans. Comput-ers, Vol. 21, pp. 269-281, 1972.

Figure 6: Preprocessed logic diagram

Figure 7: Recognition results

