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Abstract

Background: Cell cycle process of budding yeast (Saccharomyces cerevisiae) consists of four phases: G1, S, G2 and M.
Initiated by stimulation of the G1 phase, cell cycle returns to the G1 stationary phase through a sequence of the S, G2
and M phases. During the cell cycle, a cell verifies whether necessary conditions are satisfied at the end of each phase
(i.e., checkpoint) since damages of any phase can cause severe cell cycle defect. The cell cycle can proceed to the next
phase properly only if checkpoint conditions are met. Over the last decade, there have been several studies to
construct Boolean models that capture checkpoint conditions. However, they mostly focused on robustness to
network perturbations, and the timing robustness has not been much addressed. Only recently, some studies
suggested extension of such models towards timing-robust models, but they have not considered checkpoint
conditions.

Results: To construct a timing-robust Boolean model that preserves checkpoint conditions of the budding yeast cell
cycle, we used a model verification technique, ‘model checking’. By utilizing automatic and exhaustive verification of
model checking, we found that previous models cannot properly capture essential checkpoint conditions in the
presence of timing variations. In particular, such models violate the M phase checkpoint condition so that it allows a
division of a budding yeast cell into two before the completion of its full DNA replication and synthesis. In this paper,
we present a timing-robust model that preserves all the essential checkpoint conditions properly against timing
variations. Our simulation results show that the proposed timing-robust model is more robust even against network
perturbations and can better represent the nature of cell cycle than previous models.

Conclusions: To our knowledge this is the first work that rigorously examined the timing robustness of the cell cycle
process of budding yeast with respect to checkpoint conditions using Boolean models. The proposed timing-robust
model is the complete state-of-the-art model that guarantees no violation in terms of checkpoints known to date.
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Background
A cell must undergo the process of duplicating all its com-
ponents and separating them, more or less evenly, to two
daughter cells such that each daughter has the informa-
tion and dynamics necessary to repeat the process. Such
cell cycle dynamics are known in more detail for the bud-
ding yeast, Saccharomyces cerevisiae, compared to other
eukaryotic organism [1,2]. The cell cycle process of bud-
ding yeast consists of four phases: G1, S, G2, and M.
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Initiated by stimulation of the G1 stationary phase, the
cell cycle sequence proceeds (i.e., G1→S→G2→M) and
finally returns to the G1 stationary phase. It is important
to reach the final phase after completing each phase prop-
erly since any mistakes can cause significant defect to the
cell cycle process. Hence, a cell verifies whether essen-
tial conditions are satisfied at checkpoints in G1, S, G2
and M phases, respectively. Before entering S phase, the
cell must be large enough and have undamaged DNA (G1
phase checkpoint). Before entering M phase, DNA syn-
thesis should be completed (S and G2 phase checkpoint).
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Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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In M phase, the chromosomes need to be properly aligned
and the spindles need to be oriented towards the daugh-
ter cell (M-metaphase checkpoint), and the cell should
be correctly divided into two, before the end of mito-
sis (M-telophase checkpoint). The cell cycle can proceed
to the next phase properly only if the above checkpoint
conditions are satisfied.

Among several approaches [3-9] to capture the cell cycle
process of budding yeast, one promising approach is to use
Boolean network modeling, which is a widely used mod-
eling framework in systems biology [10-18]. Claiming that
Boolean models are useful for representing the cell cycle
regulatory networks since much of the biology seems to
be reflected in the on/off characteristics of the network
components, the first Boolean model for the cell cycle reg-
ulatory network of budding yeast was introduced by Li,
et al. [19]. Even with such a simple representation, they
found that there exists a prominent dynamic gene expres-
sion trajectory satisfying the checkpoint conditions, and
then it leads back to the G1 stationary state. It was also
observed that essential conditions are robustly preserved
at checkpoints under network perturbations. However,
since the model employed synchronous update rules to
represent state transitions such that all the nodes update
their states synchronously at the same time, it lacks the
timing robustness analysis of essential properties.

Timing robustness is the ability of a model to main-
tain its function in the presence of timing perturbations.
Among a few ways to introduce various timing variations,
Boolean modeling often uses an asynchronous updating
of models. Unlike the synchronous update rule, the asyn-
chronous update rule allows a maximum of one variable to
be updated at each time instant, and if multiple variables
are enabled to change, one of them is chosen arbitrarily.
In this way, variations in reaction rates can be represented
depending on the order in which the nodes update their
values (i.e., some of the nodes update their values immedi-
ately while other nodes take longer). Here it is important
to note that this way can generate a large number of dis-
tinct state transition trajectories, possibly as many as the
number of all different order combinations. And such all
different trajectories reflect every possible timing varia-
tion under dynamically changing environments. However,
such a large number of trajectories to explore make it diffi-
cult to perform timing robustness analysis through biolog-
ical simulation, since such simulation generally involves
randomness for trajectory selection.

The main goal of this study is to construct a timing-
robust Boolean model that properly preserves check-
point conditions of the budding yeast cell cycle even
in the presence of timing variations. Towards this goal,
we used a model verification technique, ‘model check-
ing’ [20], to cope with difficulties of timing robust anal-
ysis in conventional simulation based approach. Model

checking is a method for formal verification of finite-
state systems. A model checker, a software tool of
model checking, explores all possible state transitions
(i.e., all possible variations in reaction time) of a given
model under fully asynchronous update rules. This way,
we can then check exhaustively whether essential sys-
tem properties always hold in the model or not. If the
model contains a wrong state transition (i.e., hazard)
that leads to a violation of system properties, a model
checker automatically detects the hazard and produces a
counter-example that can be used to pinpoint the source
of the hazard.

In order to utilize model checkers, it needs to specify
essential system properties in a form that model check-
ers can recognize, which is temporal logic [21]. Hence,
based on the extensive literature studies [1,19,22-29], this
study translates the critical checkpoint conditions of the
budding yeast cell cycle into temporal logic formulas. It
is worthy to note that such conditions should be prop-
erly preserved in order to proceed the cell cycle in the
presence of timing variation. For example, an earlier wok
by Mangla, et al. [30] aimed to extend the Li, et al.’s
model towards a timing-robust model. Though this earlier
work was able to construct a model that preserves the G1
stationary state in a timing-robust manner, it fails to cap-
ture essential checkpoint conditions completely against
variations in reaction rates. It is also turned out that
the checkpoint conditions violated in the Mangla, et al.’s
model cannot be satisfied in the Li, et al.’s model as well
under timing variations. We observed that such inade-
quate sequences of state transitions can cause a significant
failure of the budding yeast cell cycle by violating the M
phase checkpoint conditions. In particular, the both mod-
els allow a division of a budding yeast cell into two before
the completion of its full DNA replication and synthe-
sis. They have the gene expression trajectory that enables
the gene Cdc20 to be activated before the activation of
the gene Clb2, and such out-of-order sequential dynamics
lead a transit to the M phase without completing the G2
phase.

In this study, we present a timing-robust model that
properly preserves all the essential checkpoint conditions
against timing variations. The proposed model is the
complete state-of-the-art model that guarantees no haz-
ard in terms of checkpoints known to date. As a result,
our model naturally eliminates the hazards contained in
the previous models (i.e., Li, et al.’s and Mangla, et al.’s
model). Our simulation results show that the proposed
timing-robust model is more robust even against network
perturbations and can better represent the nature of cell
cycle than previous models. The key to the success of the
cell cycle process is to completely capture the checkpoint
conditions phase-by-phase even in the presence of varia-
tions in reaction rates. To our knowledge this is the first
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work that rigorously examined the timing robustness of
the cell cycle process of budding yeast with respect to
checkpoint conditions using Boolean models.

Results and Discussion
In this study, model checkers, software tools of model
checking, are used to examine whether or not a speci-
fied logical property holds on every possible state of a
Boolean model. The inputs to the model checker con-
sist of a Boolean model, described as a set of vari-
ables and rules that update their values, an initial state,
and a logical property to check. In this study, previ-
ously published Boolean models of the budding yeast
cell cycle (i.e., the Li, et al.’s model and Mangla, et al.’s
model) and the stimulated G1 state are used as input
Boolean models and initial state to the model checker,
respectively.

We derived the logical properties to check from essen-
tial checkpoint conditions of the budding yeast cell cycle.
Based on the comprehensive literature studies [1,19,22-
29], we found that the key regulators of the S, G2 and
M phase checkpoints, Clb2 and Cdc20, are lethal genes.
The activation of Clb2 initiates the M phase, and the acti-
vation and deactivation of Cdc20 trigger the metaphase
to anaphase transition and the exit from mitosis, respec-
tively. Since regulations of Clb2 and Cdc20 are closely
related to the checkpoints, any damages of these genes
can cause a fatal defect of the cell cycle process. Each
checkpoint condition is translated into a group of spe-
cific sequences of state transitions that can be derived by
ordering pairs of state transition among Clb2, Cdc20 and
their interacting genes. For example, the M-metaphase
checkpoint conditions can be rendered into two essen-
tial sequences of state transitions: Clb2 activation should
precede Cdc20 activation; Mcm1 activation should pre-
cede Cdc20 activation. All essential properties derived
from up-to-date checkpoint conditions are described in
Additional file 1 with supporting evidences. Note that no
property is derived from the G1 phase checkpoint because
Boolean models based on the Li, et al.’s study do not
completely include genes related to the checkpoint. Any
state transitions violating such essential sequences of state
transitions are called hazards. In this study, we used the
NuSMV model checker [31] to construct a timing-robust
model that properly preserves up-to-date essential check-
point conditions of the budding yeast cell cycle. With such
logical properties as inputs, the model checker detected
two hazards in the previously published Boolean models
(i.e., Li, et al.’s model and Mangla, et al.’s model) after con-
ducting automatic and exhaustive state space search based
on the fully asynchronous update rule. These hazards vio-
late the M-metaphase (property 4, see Additional file 1)
and M-telophase checkpoint (property 5-7, see Additional
file 1), respectively.

Timing robustness of the budding yeast cell cycle
The first hazard in the Mangla, et al.’s model is shown
in Figure 1. The hazard can lead the model to a biologi-
cally undesirable situation, in which it enters the M phase
even though the DNA synthesis process is not complete.
It violates the property 4 of the M-metaphase check-
point conditions (see Additional file 1). Such inadequate
state transition can occur when Clb5 gets activated in the
model. After Clb5 transitions to 1, both Clb2 and Mcm1
are enabled to change from 0 to 1 (Figure 1B). There
are two cases, depending on which of Clb2 and Mcm1
changes first. If Clb2 changes first, the cell cycle normally
proceeds to the M phase through the G2 phase, guaran-
teeing the completion of DNA synthesis [23]. However, if
Mcm1 changes first, Cdc20 is enabled to change from 0
to 1 (Figure 1C). As shown in Figure 1D, the first hazard
is detected when Cdc20 transitions to 1 before the acti-
vation of Clb2, which means that the division of a cell
into two can begin before the completion of DNA repli-
cation. Note that the activation of Clb2 is required for the
proper cell progression to the M phase and that Cdc20
becomes active after Clb2 phosphorylates APC core pro-
teins (e.g., Cdc16, Cdc23, and Cdc27) [23]. There can
be a further timing gap between the activation of Clb2
and Cdc20 in reality because, even if the phosphorylated
form of the APC is bound to Cdc20, Cdc20 becomes
active only after the chromosomes properly align in the
metaphase stage.

The Mangla, et al.’s model can be revised to eliminate
the first hazard by adjusting the weight of an edge. When
the weight of the edge from Clb5 to Mcm1 decreases to
a low level, it ensures that when Clb5 is activated, only
Clb2 is able to be subsequently activated, but Mcm1 is
not (Figure 1E). Note that either of Clb2 and Mcm1 can
be activated in any order in the Mangla, et al.’s model.
Chen, et al. [22] supports this revision, showing that Clb5
makes a stronger reaction to Clb2 than to Mcm1. Other
works [32,33] also support this revision, revealing that
Clb2 and Mcm1 make positive feedbacks; Mcm1 is acti-
vated by the low level activation of Clb2, and then the
activation of Mcm1 causes Clb2 to be activated at a higher
level of concentration in return. Such a biological evidence
was reflected in part to the Mangla, et al.’s model such
that Clb2 has one of three possible values: 0, represent-
ing a negligible concentration of Clb2; 1, representing a
low concentration; and 2, representing a high concentra-
tion. However, the Mangla, et al.’s model does not capture
the positive feedback completely. In the model, Clb2 is
able to be activated to at high concentration (i.e., the
level of 2) without forming positive feedback. We revised
the Mangla, et al.’s model by eliminating the first haz-
ard, and the revised model is able to capture the proper
dynamics due to the positive feedback between Clb2
and Mcm1.



Hong et al. BMC Systems Biology 2012, 6:129 Page 4 of 14
http://www.biomedcentral.com/1752-0509/6/129

A B

C

D E

Figure 1 Budding yeast model. Nodes in the graph represent molecules. Lines with arrowhead represent the activation, and lines with flat ends
indicate the inhibition. Thin arrows represent a low weight, a weight of 1/3, normal arrows indicate a medium weight, a weight of 1, and thick arrows
represent a high weight, a weight of 3. (A) The model from Mangla, et al. [30]. (B) A subset of the model that highlights the first hazard. Nodes with
values marked with * are enabled to change to the values. If Clb5 transitions to 1, both Clb2 and Mcm1 are eligible to change their values to 1 at the
next time step. (C) If Mcm1 activates first, Cdc20 is enable to update its value as well as Clb2. (D) If Cdc20 activates before Clb2 transitions to 1, the first
hazard occurs. (E) The hazard can be eliminated by replacing the weight of the reaction between Clb5 and Mcm1 to the one with the lower weight.

The second hazard violating the properties 5 to 7 of the
M-telophase checkpoint conditions (see Additional file 1)
occurs after Cdc20 transitions to 1 (Figure 2A). Since the
activation of Swi5 is mostly dependent on the activation of
Cdc20 [22], Swi5 should be activated when Cdc20 transi-
tions to 1 regardless of the activation level of Clb2. In the
Mangla, et al.’s model, however, Swi5 is able to change its
state only when the activation level of Clb2 decreases to 1
from 2; if the concentration level of Clb2 is 2, Swi5 remains
deactivated until the level of Clb2 becomes 1 even though
Cdc20 is activated. Such inadequate state transition can
cause the model to inevitably delay the exit from mito-
sis. The complete division of a budding yeast cell related
gene, Sic1, is deferred to be activated since the activa-
tion of the transcription factor of Sic1 (i.e., Swi5) became
delayed.

According to the study by Chen, et al. [22], the activa-
tion of Mcm1 causes Swi5 to be transcribed at a low level,
and then Swi5 is activated at a higher level after Cdc20
is activated. To capture this understanding, we revise the
model so that Swi5 also has one of three possible values:

0, 1, or 2 like Clb2. In addition, the model is revised such
that the reactions from Cdc20 and Clb2 make stronger
and weaker impacts on Swi5, respectively. This revision
ensures that Swi5 is activated to 1 by its transcription fac-
tor, Mcm1, and then activated to 2 after Cdc20 is activated
regardless of the activation level of Clb2, since reduced
inhibition from Clb2 cannot dominate the level of tran-
scription of Swi5 anymore (Figure 2B). In accordance
with previous observation [22], the model is additionally
revised to have a weaker reaction from Swi5 to Sic1. This
revision guarantees the reaction from Swi5 to have impact
on the activation of Sic1 only when the concentration of
Swi5 increases to the highest level of 2.

Figure 2C represents the final hazard-free model for the
budding yeast cell cycle. We found that the checkpoint
conditions violated in the Mangla, et al.’s model cannot be
satisfied in the Li, et al.’s model as well. To our knowledge,
the proposed model is the first timing-robust model that
properly captures up-to-date checkpoint conditions of the
budding yeast cell cycle in the presence of variations in
reaction rates.
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Figure 2 Budding yeast model. (A) A subset of the Mangla, et al.’s model that highlights the second hazard. Since Clb2 is activated to the highest
level, the activation of Cdc20 cannot activate Swi5. (B) The hazard can be eliminated by replacing the weights of reactions, from Cdc20 and Clb2 to
Swi5, to stronger and weaker levels, respectively. Swi5 is also extended to have one of three eligible values like Clb2. (C) The final timing-robust
model for the budding yeast cell cycle. Lines with blue are modified from the Mangla, et al.’s model.

Temporal evolution of gene states for budding yeast cell
cycle models
Mathematical modeling based on biochemical rate
equations, provides a rigorous and reliable tool for unrav-
eling the complexities of molecular regulatory networks.
However, this approach is only suited for small and well-
characterized systems with known kinetic parameters
since there is a lack of detailed knowledge of quantitative
reaction kinetics for most of the reactions in a cell [1,34].
Fortunately, the cell cycle regulatory system of budding
yeast is most fully worked out, so its control system is
revealed in exquisite details. The mathematical model of
the budding yeast cell cycle has been published by Chen, et
al. [22], and the model is widely used due to its acceptable
accuracy in explaining a real cell [35,36].

To investigate how closely Boolean models of the bud-
ding yeast cell cycle represent nature, we compared the
temporal evolutions of gene states in Boolean models
to that in the mathematical model. Note that the asyn-
chronous update rule allows a maximum of one variable
to be updated at each time instant, and if multiple vari-
ables are enabled to change, one of them is chosen in an
arbitrary fashion. Thus, too many different state transi-
tions can exist under the asynchronous update rule. When
applying the synchronous update rule to Boolean mod-
els for simple comparison, we observed that the temporal
evolution of gene states in the proposed model maintains
a similar structure to those in the other Boolean models
overall. However, we also found that the extension from

the Mangla, et al.’s model leads some genes in the pro-
posed model to evolve analogously to the dynamics of the
corresponding genes in the mathematical model in some
period, and such genes are closely related to the hazards
which are eliminated during the extension.

As shown in Figure 3A, the mathematical model clearly
shows a positive feedback between Clb2 and Mcm1: Clb2
is transcribed at a low concentration in the interval from
30 to 45, which is sufficient to activate Mcm1, and then
Clb2 is transcribed at a higher level at the time of 50 via
the activation of Mcm1. The temporal evolution of the
proposed model also forms positive feedback as shown
in Figure 3D, but the other two models cannot result in
such a relationship since both Clb2 and Mcm1 are acti-
vated simultaneously at the time of 5. In the application of
the asynchronous update rule, those previously published
Boolean models (Figures 3B and 3C) can generate the haz-
ard since Cdc20 can be activated before the transcription
of Clb2 if Mcm1 is activated first under the condition that
both Clb2 and Mcm1 are enabled to change.

Moreover, the temporal evolution of Swi5 in the pro-
posed model is closer to the dynamics of the gene in reality
(Figure 4D). Consistent with the mathematical model,
Swi5 in the proposed model is first transcribed at a low
concentration (i.e., a value of 1) at the time of 7 by the
activation of Mcm1. It is then activated to a high con-
centration (i.e., a value of 2) at the next time step after
Cdc20 is activated. However, in the other Boolean mod-
els, it is shown that Swi5 is still in the inactive state even
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Figure 3 Temporal evolution of variables related to the first hazard in the budding yeast cell cycle model. X-axis and y-axis represent the
time and the level of activation concentration in simulation, respectively. (A) The low level activation of Clb2 through the time of 30 to 45 causes the
transcription of Mcm1. Finally, Clb2 is activated to a high level by Mcm1. (B)-(C) At the time of 5, both Clb2 and Mcm1 are activated and do not form
a positive feedback. (D) Clb2 is first activated at the time of 4, and then Mcm1 is activated. After the transcription of Mcm1, Clb2 is activated to value
of 2, a high activation level, at the time of 7.

after Mcm1 becomes activated. Specifically, Swi5 is deac-
tivated until Clb2 is degraded to the low level of activation
regardless of the activation of Cdc20 in the Mangla, et al.’s
model.

From this simulation, it appears that the proposed
model follows similar dynamics as those in the other
Boolean models, even if the proposed model is extended
from the others. In addition, in the proposed model,
the temporal evolution of genes related to the extension
shows better consistency with the one in the mathematical
model of the budding yeast cell cycle. Therefore, the pro-
posed model which is constructed by eliminating hazards

in the previous models better reflects the nature of cell
cycle than the previously published Boolean models.

Relative durations of each cell cycle phase
Many efforts have been made to discover checkpoints and
key transcription factors responsible for phase transitions
in cell cycles [1,19,22-29]. Therefore, it is useful for cell
cycle models to reflect properties on the duration of each
phase in a cell cycle.

Recent studies have assumed that every edge in the
yeast cell cycle regulatory network proceeds with the same
speed since transcriptions normally happen on similar
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Figure 4 Temporal evolution of variables related to the second hazard in the budding yeast cell cycle model. X-axis and y-axis represent the
time and the level of activation concentration in simulation, respectively. (A) Swi5 is activated to a low level by Mcm1, and then transcribed to a
high level via the activation of Cdc20 at the time of 80. (B) Swi5 is inactive until Cdc20 is activated regardless of the activation of Mcm1. (C) Swi5 is
deactivated until Cdc20 is activated regardless of the activation of Mcm1. (D) Swi5 is activated to a low level by the activation of Mcm1 at the time
of 6, and then transcribed to a high level via the activation of Cdc20 at the time of 8.

time scales [37,38]. Following this assumption, we com-
pared the average length of state transitions in each phase
in the models, referring to the relative duration of each
phase in nature. The S phase begins when the state of
the model is the same as the stationary G1 phase except
that Cln3 is 1. Table 1 shows that in the Li, et al.’s model,
the average length of the S phase is 9.30 and the average
length of the G2/M is 7.56. In the Mangla, et al.’s model,
the average length of the G2/M becomes longer, which is
10.89. These results are inconsistent with the experimen-
tal data, in which it was observed that the relative duration
of the G2/M phase is twice as long as that of the S phase
[39,40]. However, in the proposed model, the G2/M phase

is almost twice as long on average than the S phase. In
our understanding, this is because the S phase becomes
shorter with our revision of the Mangla, et al.’s model
with regard to positive feedback between Clb2 and Mcm1,
and the G2/M phase becomes longer with our extension
of Swi5’s activation level, which produced additional state
transitions to reach the end of the M phase.

Attractor analysis
We used the proposed model to study the attractors of
the network dynamics by starting from each of the 29 ×
32 = 4, 608 states in the 11-node proposed model with
two 3-valued nodes. We found that all of the initial states
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Table 1 Average length of state transitions for each phase and their variation

Phase
The Li, et al.’s model The Mangla, et al.’s model The proposed model

Average Variation Average Variation Average Variation

S 9.30 1.55 9.30 1.55 7.47 0.41

G2/M 7.56 1.25 10.89 2.14 12.52 1.72

Consistent with the experimental data [39,40], the average length of the G2/M phase is about two times longer than the one of the S phase, in the proposed model.

eventually flow into one of the nine stationary states, also
called attractors (Table 2). The basin size of an attractor is
the number of initial states which reach the attractor after
a finite number of time steps. As seen in Table 2, there is
one big fixed point which attracts 4,323 or ≈ 94% protein
states from 4,608 initial states. This is consistent with a
previous study [19] which reveals that the model has one
big attractor, and the dominant attractor is the biological
G1 stationary state. Interestingly, the basin size of the big
attractor in the proposed model is much larger than the
one presented in the Li, et al.’s model (i.e., 1,764 or ≈ 86%,
Table 3). It is also larger than the one in the Mangla, et
al.’s model (i.e., 2769 or ≈ 90%, Table 4). It is obvious that
the proposed model is more stable than the other mod-
els of budding yeast because the big attractor represents
a cell’s stationary state, and the basin size is the largest in
the proposed model. Under normal conditions, a cell will
be sitting at the state that the biggest attractor represents,
waiting for another round of divisions.

Number of different state transitions and timing
robustness
Table 5 shows the number of different state transitions
for each cell cycle phase, and the major difference among
the three models is found in the G2 phase. To investigate
the relationships between the number of different state
transitions and the timing robustness of the model, we
introduced random mutations into the models. To perturb
only an interested cell cycle phase, we applied mutations

to edges related to the corresponding phase by deleting,
adding, or re-weighting them. In this way, 200 mutant
networks were generated, and then checked whether or
not the dynamics of networks preserve the G1 stationary
state as their global attractor under the fully asynchronous
update rule using the NuSMV model checker. In the phase
transition from the G2 phase to the M phase, the Mangla,
et al.’s model was found to be vulnerable to mutations
(Table 6), and the fraction of timing-robust mutants hold-
ing the cell cycle property was much smaller than in the
proposed model. It was even smaller than those from
the other phases in the same model. This is interpreted
to indicate that incomplete construction of the positive
feedback between Clb2 and Mcm1 in the Mangla, et al.’s
model causes the G2 phase to be fragile to perturba-
tions. In addition, the extension of the budding yeast cell
cycle model by elimination of such hazards increases the
number of viable state transitions to correctly arrive at the
M phase from the G2 phase, which allows the proposed
model to have about 10% greater timing robustness. The
Li, et al.’s model includes hazards which drives the model
to different attractors rather than the G1 stationary state.
Thus, mutants of the model are also unlikely to hold the
property, as shown in Table 6.

We conjecture that the network robustness of a model
is closely related to the number of different biological
state transitions which satisfy properties of the model.
This is because even if some state transitions are altered
by mutations, the remaining transitions are likely to hold

Table 2 Attractors and their basin sizes of the proposed model

Basin size Cln3 MBF SBF Cln2 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb2 Mcm1

4323 0 0 0 0 1 0 0 0 1 0 0

87 0 1 1 1 0 2 1 0 1 0 0

68 0 0 1 1 0 0 0 0 0 0 0

46 0 1 0 0 1 0 0 0 1 0 0

44 0 0 0 0 0 0 0 0 0 0 0

16 0 0 1 1 0 2 1 0 1 0 0

12 0 0 0 0 1 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 1 0 0

2 0 1 0 0 0 0 0 0 1 0 0

Each attractor is represented in a row. The first column is the size of the basin of attraction for the attractor. The other 11 columns show the protein states of the
attractor. In the proposed model, the biggest fixed point representing the stationary G1 phase attracts 4,323 or ≈ 94% from 4,608 initial states.
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Table 3 Attractors and their basin sizes of the Li, et al.’s model

Basin size Cln3 MBF SBF Cln2 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb2 Mcm1

1764 0 0 0 0 1 0 0 0 1 0 0

151 0 0 1 1 0 0 0 0 0 0 0

109 0 1 0 0 1 0 0 0 1 0 0

9 0 0 0 0 0 0 0 0 1 0 0

7 0 1 0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

Each row and column represents the same as Table 2. In the Li, et al.’s model, the biggest fixed point representing the stationary G1 phase attracts 1,764 or ≈ 86%
from 2,048 initial states.

biological properties of the model, and our simulation
results demonstrate this.

Limitations
The proposed model is the timing-robust model that
properly preserves all the essential checkpoint conditions
against timing variations. Although the proposed model
is the complete state-of-the-art model that guarantees
no hazard in terms of checkpoints known to date, it
still has a gap with quantitative models. Our model is
not yet directly applicable to explaining and predicting
the quantitative outcome of biological experiments of the
budding yeast cell cycle. Quantitative models can poten-
tially describe molecular interactions with high precision
and in quantitative terms that correspond to realistic
laboratory measurements. However, Boolean models can
still be used by a subset of researchers because of easy
understanding of the dynamics of the budding yeast cell
cycle. We expect that the proposed model can be used to
help them by providing a more stable and timing-robust
Boolean model.

The main obstacle in application of model checking in
practice is the state space explosion problem [20]. Since
model checkers should examine all the possible model

states, the number of states can grow exponentially in
the number of program variables. When verifying a large-
scale biological system, it is intractable to explore the
entire state spaces because they exceed computational
limits (i.e., time and memory). This problem is known as
state space explosion. The last 30 years have seen various
techniques for resolving the state space explosion problem
[41]. In particular, several techniques have been intro-
duced to decrease the number of states to be explored and
the memory requirements needed for storing explored
states, leading to substantial reduction in state space [42].
We further expect that biological experts can propose
biology-specific insight and knowledge to state space
reduction techniques, such as biological abstraction that
allows a set of biologically equivalent states to be consid-
ered as a single symbolic state, resulting in significant state
space reduction.

Conclusions
Timing robustness analysis is one of the most important
and challenging problems in systems biology [43-45]. It
is critical for biological systems to maintain its essen-
tial dynamics robustly under various reaction delays in
dynamically changing environments [46-49]. Pointing out

Table 4 Attractors and their basin sizes of the Mangla, et al.’s model

Basin size Cln3 MBF SBF Cln2 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb2 Mcm1

2769 0 0 0 0 1 0 0 0 1 0 0

159 0 1 1 1 0 1 1 0 1 0 0

52 0 0 1 1 0 0 0 0 0 0 0

44 0 1 0 0 1 0 0 0 1 0 0

18 0 0 1 1 0 1 1 0 1 0 0

17 0 0 0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0 0 0 0

Each row and column represents the same as Table 2. In the Mangla, et al.’s model, the biggest fixed point representing the stationary G1 phase attracts 2,769 or ≈
90% from 3,072 initial states.
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Table 5 Number of different state transitions for each phase

Phase
Li, et al. Mangla, et al. Proposed

Number of state transitions Number of state transitions Number of state transitions

G1 51 51 51

S 6 6 1

G2 9 35 215

M 3 4 4

The major difference among the three models in terms of the number of different state transitions for each cell cycle phase is found in the G2 phase.

that time delays are common and substantial in gene reg-
ulatory networks, Chen, et al. [50] proposed a method to
design robust gene regulatory networks under biochem-
ical timing variations and molecular noises. Lopez-Aviles,
et al. [51] revealed that time delays have a significant
influence on fundamental dynamics by showing that the
unidirectionality of eukaryotic cell cycle transitions (i.e.,
G1→S→G2→M→G1) can hold only after a certain
amount of time delays of cyclin degradation.

Boolean network modeling, which is now a widely used
modeling framework in systems biology, requires tim-
ing robustness analysis since reaction kinetic parame-
ters inevitably vary over a certain range. However, most
researchers paid little attention to timing robust analysis
so far and assumed that Boolean models are updated in
a synchronous manner, neglecting timing variations [30].
Considering the importance of robustness of biological
systems over timing variations, timing robustness analysis
needs to be carefully considered in most Boolean network
models.

A number of experimental studies on budding yeast,
Saccharomyces cerevisiae, illuminated its cell cycle

dynamics in greater detail than any other eukaryotic
organisms [1,2]. Such rich experimental results have fos-
tered a growing attention to modeling of the budding yeast
cell cycle network as it is recognized as a good benchmark
example for studying the fundamental design principles
behind the well-orchestrated behavior [3-9]. In particu-
lar, Li, et al. [19] presented a yeast cell cycle network
model that has brought a substantial influence on other
studies on the yeast cell cycle. It provided a basis for
constructing more robust models under stochastic envi-
ronmental fluctuation [52-55]. Other studies extended the
Li, et al.’s model by incorporating activation/deactivation
delays with the auxiliary nodes [24,56].

Building upon the Li, et al.’s model, Mangla, et al. [30]
was able to construct a model that preserves the G1
stationary state in a timing-robust manner, it fails to cap-
ture essential checkpoint conditions completely against
variations in reaction rates. Hence, we proposed here a
timing-robust Boolean model that properly preserves up-
to-date checkpoint conditions of the budding yeast cell
cycle. Our model provides a basis for other subsequent
further studies on budding yeast cell cycle analysis with

Table 6 Fraction of timing-robust mutants for each phase

Phase
Mutation Li, et al. Mangla, et al. Proposed

distance % of timing-robust % of timing-robust % of timing-robust

G1

1 0.00 0.31 0.31

2 0.00 0.22 0.22

3 0.00 0.15 0.15

S

1 0.00 0.26 0.22

2 0.00 0.12 0.20

3 0.00 0.07 0.10

G2

1 0.00 0.17 0.27

2 0.00 0.09 0.21

3 0.00 0.08 0.12

M

1 0.00 0.22 0.28

2 0.00 0.14 0.16

3 0.00 0.13 0.13

The second column represents the number of mutations applied to a model. To perturb only an interested cell cycle phase, we applied mutations to edges related to
the corresponding phase by deleting, adding, or re-weighting them. In this way, 200 mutant networks were generated, and then checked whether they preserve the
desired attractor, the G1 stationary state under the asynchronous update rule using NuSMV. Columns from third to fifth represent the fraction of timing-robust
mutants in each model.
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Boolean network models that would result in biologically
more robust results.

Boolean modeling and analysis of complex biological
networks aim to provide a system-level understanding
on complex biological phenomena [10-18]. In practice,
however, constructing Boolean network models from bio-
logical data typically requires a significant amount of
manual efforts through repetitive modeling and checking
processes; models are commonly revised iteratively until
they conform with targeted essential behavior of biologi-
cal systems [57-60]. Model checking could facilitate such
repetitive designing processes by performing automatic
checking of biologically plausible models and suggesting
new testable predictions upon every model-based simula-
tion failure [11,20,61-65]. For instance, Fisher, et al. [61]
inferred new regulation of inductive and lateral signaling
crosstalk of C. elegans according to the testable predic-
tions suggested by a model checker and then confirmed
the newly inferred regulation with biological experiments.

In systems biology, mathematical models are becoming
too complicated to be validated by examining some essen-
tial dynamics in an ad hoc way. It becomes even more
difficult to check manually whether a combination of
dynamics (e.g., ordered dynamics) are met simultaneously
in complex biological networks [66]. On the other hand,
model checking can validate a set of essential functional-
ities and their combinations in an automatic manner. So,
model checking can be beneficial to modeling and anal-
ysis of biological systems, particularly for developmental
systems [67] and cell-fate decision systems [68] where it is
crucial to maintain ordered dynamics over environmen-
tal variations. In this respect, our model checking-based
approach can be useful and provide a systematic frame-
work for robustness analysis.

Methods
NuSMV
Model checking [20] is a technique for the verification of
correctness properties of finite-state systems. One bene-
fit of this technique is that systems can be automatically
verified by use of a tool, called a model checker. The system
is translated into a model described in the input language
of the model checker. The model checker explores every
state space of the given model to check whether system
properties hold in the model or not. If the model vio-
lates any of the system specifications, the model checker
produces an execution trace (i.e., counter-example) show-
ing why the specification turns out false in the model.
Counter-examples usually serve as good hints when a
model is revised.

We used a symbolic model checker, NuSMV [31], as
in the study by Mangla, et al. [30]. NuSMV can eas-
ily switch its modes in exploring state spaces between
synchronous and asynchronous manners by introducing

a single control variable. NuSMV, therefore, is useful to
test whether a budding yeast cell cycle model satisfies
its own cell cycle properties both in synchronous and
asynchronous manners. We chose a Boolean decision dia-
gram (BDD)-based implementation for the exploration of
state spaces among various implementation candidates.
Traditional representation of Boolean functions gener-
ates redundant state spaces explicitly when exploring state
spaces. On the other hand, the BDD data structure can
keep much smaller state spaces in the exploration of state
spaces than the traditional ones do. Thus, BDD is bene-
ficial in dealing with the state space explosion problem,
which is one of the main challenges of model checking
techniques for the verification of large-scale systems.

A NuSMV model consists of one or more modules.
Each module can declare variables and their update rules.
Variables can be declared to have a range of discrete
values. The rules specify how to initiate variables and
update them at every time step from their current val-
ues. Update rules can be non-deterministic since they can
result in different values of a variable under the same con-
dition. NuSMV checks whether a given property holds
over all different possibilities. In describing our budding
yeast cell cycle model in the NuSMV input language, we
assign a single variable to each node of the model and
specify the update rules of every variable. By default, vari-
ables in the NuSMV model are updated in a synchronous
manner. There is a global clock and all modules execute
in parallel every time the global clock ticks. To apply
the asynchronous update rule to the NuSMV model, we
define an additional control variable. At each time step,
the control variable indicates which variable to update
in a non-deterministic manner such that only the update
rules of the chosen variable can execute in the model. In
addition, we add a FAIRNESS property to every variable
to prevent the control variable from repeatedly choosing
the same variables for update, which would cause other
variables not to be chosen for a long time.

Programs in the language can be annotated by prop-
erties expressed in temporal logic, that is, computation
tree logic (CTL) [21]. Besides the properties describing
the sequences of transitions between states, some proper-
ties such as “eventually” or “never” can also be specified
with special temporal operators in CTL. For example, cell
cycle properties (e.g., a cell starts from the G1 phase, and
eventually returns to the G1 stationary phase after a divi-
sion; Cdc20 activation should never begin before Clb2
activation) can be encoded by CTL formulas.

Boolean model construction
In this paper, we presented Boolean networks of the bud-
ding yeast cell cycle. Boolean models include nodes and
edges for different components and interactions of the
system, respectively. Each node in the Boolean model has
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one of two values: 1 for ON (active) and 0 for OFF (inac-
tive). A state S of each node i at any time instant t (denoted
as Si(t)) is determined according to a Boolean function
(rule) and the states of its input nodes at the previous
time instant t − 1. Most Boolean functions are thresh-
old based [18]. When the value of a node is updated, it is
assigned one if the weighted sum of positive and negative
inputs exceeds a pre-defined threshold for that node. For
example, the Li, et al.’s model describes its Boolean rule as
follows [19]:

Si(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1,
∑

j
wijSj(t − 1) > θi

0,
∑

j
wijSj(t − 1) < θi

Si(t − 1),
∑

j
wijSj(t − 1) = θi,

where wij represents the weight of an incoming edge to
a node i from a node j, and the threshold (denoted by θi)
is set to zero.

A synchronous Boolean model is one of the simplest
implementations for the application of such Boolean
update rules to nodes. In such a model, a Boolean update
rule is applied to all the nodes simultaneously at each
time instant. Synchronous models are deterministic since
nodes are assumed to work in the same time scale, result-
ing in convergence to the same state from the same initial
condition after the same number of time steps. As the
result of applying the Boolean function described above
synchronously, the first synchronous Boolean model for
the budding yeast cell cycle, the Li, et al.’s model, con-
verged into seven attractors from 211 initial states in the
11-node network model.

Although synchronous Boolean models have been
widely used due to their simple nature and ease of imple-
mentation, they lack consideration of a variety of time
scales in biological systems. To deal with this drawback,
asynchronous models are suggested in which a maximum
of one node is chosen to be updated at each time instant.
Since it is usually unknown exactly how long specific bio-
logical processes take, most asynchronous algorithms are
non-deterministic in a way that a single node is randomly
chosen at each time unit. The Mangla, et al.’s model is
constructed by the use of the NuSMV model checker
such that it can preserve its desirable attractor, the G1
stationary state in every possible combination of node
updating order. The model is designed to be independent
of whatever time scales biological reactions are subject
to; thus the model is considered timing-robust model. To
construct a timing-robust budding yeast cell cycle model
dealing with the hazards of the Li, et al.’s model, the
Mangla, et al.’s model allows Clb2 to have one of three
possible values (i.e., 0, 1 or 2) and edges assigned to one
of three magnitudes of weights (i.e., ± 1

3 , ±1 or ±3). The

Boolean rule is also defined, extending that of the Li, et
al.’s model, as follows:

Si(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Si(t − 1) − 1,
∑

j
wijSj(t − 1) < θi,Si(t−1)

Si(t − 1) + 1,
∑

j
wijSj(t − 1) ≥ θi,Si(t−1)+1

Si(t − 1), otherwise.

In the model, the thresholds for the value of 1 (denoted
by θi,1) and 2 (denoted by θi,2) for a node i are set to 0.5
and 1.5, respectively.

Basically, the model proposed in this study extended a
set of available values and weights for each node and edge,
respectively. The proposed model also follows the same
Boolean function as the Mangla, et al.’s model follows,
but it refined the Mangla, et al.’s model to hold essen-
tial checkpoint conditions as well. It finally became the
timing-robust model that captures up-to-date checkpoint
conditions of the budding yeast cell cycle.

Additional file

Additional file 1: Essential ordered properties derived from
checkpoints. The PDF file contains a list of all the essential ordered
properties derived from the up-to-date checkpoint conditions.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
CH and IS jointly conceived the study, and wrote the manuscript. ML and DK
(Dongsan Kim) interpreted simulation results and helped draft the manuscript.
DK (Dongsup Kim) and KC critically reviewed the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea Government (MEST) (2009-0086964).

Author details
1Department of Computer Science, KAIST, Daejeon, Korea. 2Department of Bio
and Brain Engineering, KAIST, Daejeon, Korea.

Received: 26 October 2011 Accepted: 30 August 2012
Published: 28 September 2012

References
1. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ: Kinetic

Analysis of a Molecular Model of the Budding Yeast Cell Cycle. Mol
Biol Cell 2000, 11:369–391.

2. Charvin G, Cross FR, Siggia ED: Forced periodic expression of G1
cyclins phase-locks the budding yeast cell cycle. Proceedings of the
National Academy of Sciences 2009, 106(16):6632–6637.

3. Shmulevich I, Kauffman SA, Aldana M: Eukaryotic cells are
dynamically ordered or critical but not chaotic. Proceedings of the
National Academy of Sciences of the United States of America 2005,
102(38):13439–13444.

4. Kauffman SA: Metabolic stabiligy and epigenesis in randomly
constructed genetic nets. J Theor Biol 1969, 22:437–467.

5. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE,
Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M,
Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S,
McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M,

http://www.biomedcentral.com/content/supplementary/1752-0509-6-129-S1.pdf


Hong et al. BMC Systems Biology 2012, 6:129 Page 13 of 14
http://www.biomedcentral.com/1752-0509/6/129

Voss E, Furtak K, et al.: A Protein Interaction Map of Drosophila
melanogaster. Science 2003, 302(5651):1727–1736.

6. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK,
Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J,
Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB,
Volkert TL, Fraenkel E, Gifford DK, Young RA: Transcriptional Regulatory
Networks in Saccharomyces cerevisiae. Science 2002,
298(5594):799–804.

7. Shen L, Chepelev I, Liu J, Wang W: Prediction of quantitative
phenotypes based on genetic networks: a case study in yeast
sporulation. BMC Syst Biol 2010, 4:128.

8. Ding S, Wang W: Recipes and mechanisms of cellular
reprogramming: a case study on budding yeast Saccharomyces
cerevisiae. BMC Syst Biol 2011, 5:50.

9. Eriksson O, Andersson T, Zhou Y, Tegner J: Decoding complex biological
networks - tracing essential and modulatory parameters in complex
and simplified models of the cell cycle. BMC Syst Biol 2011, 5:123.

10. Helikar T, Konvalina J, Heidel J, Rogers JA: Emergent decision-making in
biological signal transduction networks. Proceedings of the National
Academy of Sciences 2008, 105(6):1913–1918.

11. Faure A, Naldi A, Chaouiya C, Thieffry D: Dynamical analysis of a generic
Boolean model for the control of the mammalian cell cycle.
Bioinformatics 2006, 22(14):e124–e131.

12. Davidich MI, Bornholdt S: Boolean Network Model Predicts Cell Cycle
Sequence of Fission Yeast. PLoS ONE 2008, 3(2):e1672.

13. Mendoza L, Thieffry D, Alvarez-Buylla ER: Genetic control of flower
morphogenesis in Arabidopsis thaliana: a logical analysis.
Bioinformatics 1999, 15(7):593–606.

14. Albert R, Othmer HG: The topology of the regulatory interactions
predicts the expression pattern of the segment polarity genes in
Drosophila melanogaster. J Theor Biol 2003, 223:1–18.

15. Klamt S, Saez-Rodriguez J, Lindquist J, Simeoni L, Gilles E: A
methodology for the structural and functional analysis of signaling
and regulatory networks. BMC Bioinf 2006, 7:56.

16. Chaves M, Albert R, Sontagm ED: Robustness and fragility of Boolean
models for genetic regulatory networks. J Theor Biol 2005,
235(3):431–449.

17. Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U,
Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B: A Logical
Model Provides Insights into T Cell Receptor Signaling. PLoS Comput
Biol 2007, 3(8):e163.

18. Bornholdt S: Boolean network models of cellular regulation:
prospects and limitations. J R Soc Interface 2008, 5(Suppl 1):S85–S94.

19. Li F, Long T, Lu Y, Ouyang Q, Tang C: The yeast cell cycle network is
robustly designed. Proceedings of the National Academy of Sciences of the
United States of America 2004, 101:4781–4786.

20. Clarke EM, Grumberg OJ, Peled DA: Model Checking. Cambridge: The MIT
Press; 1999.

21. Heljanko K: Model Checking the Branching Time Temporal Logic CTL.
Research Report A45, Helsinki University of Technology, Digital Systems
Laboratory, Espoo, Finland 1997.

22. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ:
Integrative analysis of cell cycle control in budding yeast. Mol Biol
Cell 2004, 15:3841–3862.

23. Calzone L: Temporal organization of the budding yeast cell cycle:
General principles and detailed simulations. PhD thesis, Virginia
Polytechnic Institute and State University, Department of Biology 2003.

24. Irons D: Logical analysis of the budding yeast cell cycle. J Theor Biol
2009, 257(4):543–559.

25. Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ,
Zeitlinger J, Gifford DK, Jaakkola TS, Young RA: Serial Regulation of
Transcriptional Regulators in the Yeast Cell Cycle. Cell 2001,
106(6):697–708.

26. Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B:
Two yeast forkhead genes regulate the cell cycle and pseudohyphal
growth. Nature 2000, 406:90–94.

27. Kumar R, Reynolds DM, Shevchenko A, Shevchenko A, Goldstone SD,
Dalton S: Forkhead transcription factors, Fkh1p and Fkh2p,
collaborate with Mcm1p to control transcription required for
M-phase. Curr Biol 2000, 10(15):896–906.

28. MacKay VL, Mai B, Waters L, Breeden LL: Early Cell Cycle Box-Mediated
Transcription of CLN3 and SWI4 Contributes to the Proper Timing of
the G1-to-S Transition in Budding Yeast. Mol Cell Biol 2001,
21(13):4140–4148.

29. Lydall D, Ammerer G, Nasmyth K: A new role for MCM1 in yeast: cell
cycle regulation of Swi5 transcription. Genes and Dev 1991,
5:2405–2419.

30. Mangla K, Dill DL, Horowitz MA: Timing Robustness in the Budding
and Fission Yeast Cell Cycles. PLoS ONE 2010, 5:e8906.

31. Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M,
Sebastiani R, Tacchella A: NuSMV Version 2: An OpenSource Tool for
Symbolic Model Checking. In Proc. International Conference on
Computer-Aided Verification (CAV 2002) Volume 2404 of LNCS,
Copenhagen, Denmark: Springer; 2002.

32. Amon A, Tyers M, Futcher B, Nasmyth K: Mechanisms that help the
yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2
cyclins and repress G1 cyclins. Cell 1993, 74:993–1007.

33. Maher M, Cong F, Kindelberger D, Nasmyth K, Dalton S: Cell
cycle-regulated transcription of the CLB2 gene is dependent on
Mcm1 and a ternary complex factor. Mol Cell Biol 1995,
15:3129–3137.

34. von Dassow, G, Meir E, Munro EM, Odell GM: The segment polarity
network is a robust develpmental module. Nature 2000, 406:188–192.

35. Sobie EA: Computational Modeling of the Cell Cycle. Science Signaling
2011, 4(192):tr11.

36. Vinod PK, Freire P, Rattani A, Ciliberto A, Uhlmann F, Novak B:
Computational modelling of mitotic exit in budding yeast: the role
of separase and Cdc14 endocycles. J R Soc Interface 2011,
8(61):1128–1141.

37. Larson DR: What do expression dynamics tell us about the
mechanism of transcription? Curr Opin Genet Dev 2011, 21(5):591–599.

38. Peil K, Varv S, Looke M, Kristjuhan K, Kristjuhan A: Uniform Distribution
of Elongating RNA Polymerase II Complexes in Transcribed Gene
Locus. J Biol Chem 2011, 286(27):23817–23822.

39. Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A,
Nurse P, Bahler J: Periodic gene expression program of the fission
yeast cell cycle. Nat Genet 2004, 36:809–817.

40. Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JES, Iversen ES,
Hartemink AJ, Haase SB: Global control of cell cycle transcription by
coupled CDK and network oscillators. Nature 2008, 453:944–947.

41. Grumberg O, Veith H (Eds): 25 Years of Model Checking - History,
Achievements, Perspectives, Volume 5000 of Lecture Notes in Computer
Science, Springer 2008.

42. Pelanek R: Fighting State Space Explosion: Review and Evaluation. In
Formal Methods for Industrial Critical Systems, Volume 5596 of Lecture Notes
in Computer Science. Edited by Cofer D. Fantechi A: Springer Berlin /
Heidelberg; 2009:37–52.

43. Rao CV, Wolf DM, Arkin AP: Control, exploitation and tolerance of
intracellular noise. Nature 2002, 420:231–237.

44. McAdams H, Arkin A: Stochastic mechanisms in gene expression.
Proceedings of the National Academy of Sciences 1997, 94(3):814–819.

45. Hasty J, McMillen D, Isaacs F, Collins JJ: Computational studies of gene
regulatory networks: in numero molecular biology. Nat Rev Genet
2001, 2:268–279.

46. Kitano H: Systems Biology: A Brief Overview. Science 2002,
295(5560):1662–1664.

47. Csete ME, Doyle JC: Reverse Engineering of Biological Complexity.
Science 2002, 295(5560):1664–1669.

48. Kitano H: Biological robustness. Nat Rev Genet 2004, 5:826–837.
49. Kitano H: Towards a theory of biological robustness. Mol Syst Biol 2007,

3:137.
50. Chen BS, Chang YT: A systematic molecular circuit design method for

gene networks under biochemical time delays and molecular
noises. BMC Syst Biol 2008, 2:103.

51. Lopez-Aviles S, Kapuy O, Novak B, Uhlmann F: Irreversibility of mitotic
exit is the consequence of systems-level feedback. Nature 2009,
459:592–595.

52. Zhang Y, Qian M, Ouyang Q, Deng M, Li F, Tang C: Stochastic model of
yeast cell-cycle network. Physica D: Nonlinear Phenomena 2006,
219:35–39.



Hong et al. BMC Systems Biology 2012, 6:129 Page 14 of 14
http://www.biomedcentral.com/1752-0509/6/129

53. Braunewell S, Bornholdt S: Superstability of the yeast cell-cycle
dynamics: Ensuring causality in the presence of biochemical
stochasticity. J Theor Biol 2007, 245(4):638–643.

54. Ge H, Qian H, Qian M: Synchronized dynamics and non-equilibrium
steady states in a stochastic yeast cell cycle network. Math Biosci
2008, 211:132–152.

55. Okabe Y, Sasai M: Stable Stochastic Dynamics in Yeast Cell Cycle.
Biophys J 2007, 93(10):3451–3459.

56. Faure A, Chaouiya C, Ciliberto A, Thieffry D: Logical modelling and
analysis of the budding yeast cell cycle. BMC Bioinf 2007, 8(Suppl 8):P1.

57. Akutsu T, Miyano S, Kuhara S: Identification Of Genetic Networks From
A Small Number Of Gene Expression Patterns Under The Boolean
Network Model . In Proceedings of the Pacific Symposium on
Biocomputing, Big Island, Hawaii: World Scientific Press; 1999:17–28.

58. Ideker TE, Thorsson V, Karp RM: Discovery of Regulatory Interactions
Through Perturbation: Inference and Experimental Design. In
Proceedings of the Pacific Symposium on Biocomputing, Oahu, Hawaii:
World Scientific Press ; 2000:305–316.

59. Maki Y, Tominaga D, Okamoto M, Watanabe S, Eguchi Y: Development
Of A System For The Inference Of Large Scale Genetic Networks . In
Proceedings of the Pacific Symposium on Biocomputing, Big Island, Hawaii:
World Scientific Press; 2001:446–458.
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