
16th IEEE International Conference on Robot & Human Interactive Communication
August 26 - 29, 2007 / Jeju, Korea

A Task-based Approach to Generate Optimal Software-Architecture for
Intelligent Service Robots

Yu-Sik Park', In-Young Ko2, and Sooyong Park3

"2Yu-Sik Park and In-Young Ko, School of Engineering, Information and Communications University, Daejeon, Republic of
Korea, e-mail: (yusikpark, iko)@icu.ac.kr

3 Sooyong Park, Department of Computer Science, Sogang University, Seoul, Republic of Korea,
e-mail: syparkgsogang.ac.kr

Abstract- In order to provide services more reliably, intel-
ligent service robots need to consider various factors, such as
their surrounding environments, user's changing requirements,
and constrained resources. Most of the intelligent service ro-
bots are controlled based on a task-based control system, which
generates a task plan that consists of a sequence of actions, and
executes the actions by invoking the corresponding functions.
However, this task-based control system did not seriously con-
sider resource factors even though intelligent service robots
have limited resources (limited computational power, memory
space, and network bandwidth). If we consider these factors
during the task generation time, the complexity of the plan may
become unmanageable. Therefore, in this paper, we propose a
mechanism for robots to efficiently use their resources
on-demand. We define reusable software-architectures cor-
responding to each action of a task plan, and provide a way of
using the limited resources by minimizing redundant software
components. We conducted an experiment of this mechanism
for an infotainment robot. The experiment shows the effec-
tiveness of our mechanism.

I. INTRODUCTION

An intelligent service robot needs to support robustness
of continually providing services for users at run-time. To
accomplish this, many researchers have developed tech-
niques for robots to deal with changing tasks in the real
world [1, 2]. They developed robot control systems to gen-
erate a plan for a task. The control system generates a plan
for robots to move from an initial state to a goal state. The
plan consists of actions that the robot needs to perform to
accomplish the task. Such plan is normally represented in a
DAG-based structure.

Task-based robots generally use three-layer software
architecture as depicted in Fig. 1. The Decision Layer gen-
erates a task plan and supervises the execution of the plan.
The Execution Layer is in charge of an execution of the
actual functions and controls for the plan. The Function
Layer provides basic functions such as perception and
navigation functions [3].

However, this traditional architecture has three limita-
tions as follows:

* In this three-layer architecture, as we add more condi-
tional factors to consider, the complexity of the plan
generation becomes unmanageable. If the number of
factors increases, the depth of the plan graph grows
exponentially. This would tremendously increase the
planning efforts [4].

* This architecture does not suggest any way to effi-
ciently use the limited resources of the robots by
maintaining only the essential functions that are re-
quired to perform a task.

* The decision layer decides statically which functions to
use rather than it chooses the functions dynamically
based on environmental condition.

To deal with these problems, the SHAGE framework has
been developed. The SHAGE framework enables robots to
analyze generated task plans and select appropriate software
architectures for the actions in a plan. The framework also
provides a mechanism to reduce resource consumption by
identifying and removing redundant functionalities in the
selected architectures. By using this mechanism, we could
successfully reduce the complexity of the plan generation,
and overcome the limited resources of robots.

The rest ofthe paper is organized as follows. In Section 2,
we briefly explain the SHAGE framework. In Section 3, we
elaborate on the task-based architecture generation mecha-
nism. Section 4 presents the experiment that we conducted.
Section 5 discuses about related works that handle resource
variability issues. We draw a conclusion and present future
works in Section 6.

II. THE SHAGE FRAMEWORK

SHAGE is a framework to support self-managed software
for intelligent service robots, stands for Self-Healing,
Adaptive, and Growing software [5]. Our previous research
aimed to adapt robot software to various situations by using
run-time software architecture and a component reconfigu-
ration mechanism. However, our purpose in this paper is to
provide software system that helps intelligent service robots
provide services without a hitch.

Fig. 1 Three-layer software architecture for robots

978-1-4244-1635-6/07/$25.00 ©2007 IEEE.

WB1-5

1004
Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:35:28 EDT from IEEE Xplore. Restrictions apply.

WibEu\PeLc A4s.fCxct7ses1 asd cti skpl*mtaskmDdd)ca
..............................

C4pntMxitnlMii c

Fig. 2 Role of the SHAGE framework

The SHAGE framework is located between the decision
layer (deliberative layer) and the execution layer (sequenc-
ing layer). The framework plays a role of a configuration
manager as depicted in Fig. 2. The configuration manager
has two roles: component management and configuration
management. Component management is to manage com-
ponents at run-time by loading and unloading components
for a plan. Configuration management is to generate and
reconfigure software architecture instances. In realizing this
framework, the positioner is added to our framework. The
positioner is responsible for assigning selected components
to SBCs (Single Board Computers). This paper focuses on
selecting and merging sub-architectures for a task plan.

III. TASK-BASED ARCHITECTURE GENERATION

In order to efficiently use limited resources ofrobots, it is
important to minimize redundant software components that
provide similar functionality. Therefore, we propose a
task-based approach to reduce the resource consumption by
identifying redundant components in robot software archi-
tectures. We define a reusable sub-architecture corre-
sponding to each action of a plan.

The architecture generation phase consists of three steps:
sub-architecture search, architecture consolidation, and
concrete architecture generation as depicted in Fig. 3. In the
sub-architecture search phase, the given task plan is ana-
lyzed and sub-architectures are selected. In the architecture
consolidation phase, the selected sub-architectures are
merged into a single architecture by collapsing similar
functionalities. Finally, component instances are selected in
the concrete architecture generation phase.

The sub-architecture search and architecture consolida-
tion phases deal with abstract architectures. Search and in-
ference in these steps are based on an ontology-based rep-
resentation. In this section, we explain the ontology that we
constructed for these phases, and the detail steps of the
phases.

Acn Ontoloy & hitectue Ontoly Comiponent Onlogy
(Properti Qualityat ibute) (Properes Resources

Fig. 3 Task-based architecture generation phase

A. Ontology description model

There are three main ontologies that we use in the archi-
tecture generation phases: the 'Action', 'Sub-architecture',
and 'Components' ontologies as shown in Fig. 4. The Ac-
tion ontology describes services which robots can provide.
Navigation, object recognition, and speech recognition are
example services in this ontology.

The Sub-architecture ontology has information about
the sub-architectures that provide functionality to support an
action. Each class of the Sub-architecture ontology in-
cludes a description about which actions are supported by
the sub-architecture. This enables robots to infer appropriate
sub-architectures for an action in a plan. In addition, this
ontology keeps detail architecture descriptions in a property.
This architecture description specifies components and
connectors that are needed for the architecture, and relations
among them. The components specified in the architecture
description are associated with the classes in the Compo-
nent ontology (see Section 3.2 for details).

The 'Component' ontology is constructed based on the
functionality of components. This ontology is used to select
component instances that are required to concretize a con-
solidated architecture. This ontology also allows robots to
identify alternative components that provide similar func-
tions. In addition, the Component ontology includes de-
scriptions of resources constraints such as computational
power, memory space, and network bandwidth of compo-
nents. By using this information, we can choose a set of
component for an architecture such that the components
optimize the resource consumption.

B. Sub-architecture search

A task plan consists of a sequence of actions and condi-
tional statements. To make robots operate according to the
generated plan, actions in the task plan need to be identified
and their corresponding sub-architectures need to be se-
lected. A task plan from the decision layer specifies neces-
sary actions to perform. Sub-architectures for a specific ac-
tion can be selected by using the Sub-architecture ontology.
There can be multiple sub-architectures that support an ac-
tion. Among the candidate sub-architectures, the robot se-
lects a specific one that satisfies quality requirements of a
user and minimizes the resource consumption.

1005
Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:35:28 EDT from IEEE Xplore. Restrictions apply.

action supported 1 hitecture Deskriplji
* required components
* configuraton

omonOnent Desrptio 1

general inforrnatin
Input/output
pre/post conditons

required reE

max-vaIlue max a~LBm

I 1

IMemorFy BandvAt F

'lasspa

X/11

bClssOf

fsources

ax-_alu

3CPUI
CPI

Fig. 4 Ontology description model

A sub-architecture is an abstract architecture corre-
sponding to an action. It specifies a set of abstract compo-
nents and their connections. That is, a sub-architecture
specifies functionality of components and relations among
the constituent components. At the architecture consolida-
tion phase explained in Section III. D, specific component
instances are selected for the abstract components in a
sub-architecture. In this way, multiple implementations of a
sub-architecture can be produced by selecting different sets
of component instances.

Usually, some actions are used in multiple task plans.
Therefore, by defining a sub-architecture for an action, we
can maximize the reusability ofthe sub-architecture, and the
components that constitute the sub-architecture.

C. Consolidated architecture generation

The selected sub-architectures in the previous phase need
to be merged while reducing redundant components that
provide similar functionalities. The hierarchy of the
Component ontology is used to identify similarity between
component functionalities. Component functionalities in a
higher level in the Component ontology subsume their
lower-level functionalities. In other words, higher-level
functionalities are more general than the lower-level func-
tionalities in the ontology hierarchy. Similar components in
different sub-architectures can be identified by using the
following relations:

* Equivalence relation: components in different
sub-architectures correspond to the same class in the
Component ontology. In other words, components
provide the same functionality.

* Subsumption relation: one component in a
sub-architecture provides more specific functionality
than a component in another sub-architecture. In other
words, they appear in the same parent-child path in the
Component ontology hierarchy.

For example, when two sub-architectures are selected as
shown in Fig. 5, the component 'c12' ofthe sub-architecture
1 and the component 'c23' of the sub-architecture 2 can be
merged because 'c12' is equivalent to 'c23', and 'cll' of the
sub-architecture 1 and 'c22' of the sub-architecture 2 can be
merged because 'clI' subsumes 'c23'.

D. Concrete architecture generation

Since a consolidated architecture is an abstract archi-
tecture, component instances need to be selected and asso-
ciated to the architecture to be executed. Components are
selected based on expected resource consumption. The ex-
pected resource consumption of a component is described in
the 'resource' property of the Component ontology. Ex-
pected resource consumption of a component is evaluated
by using off-line simulation. The 'positioner' of the
SHAGE framework monitors a resource status of SBCs and
decides components to use among the selected candidate
components. The 'positioner' also deploys the selected
components to SBCs with considering the resource status
of the SBCs and the total resource consumption of the se-
lected components. We will not explain the detail of this
component- deployment issue in this paper.

sub architecture 1

XC !=

Iu

Component ontology

'IF\Subsumption relation

Equivalence relation

Fig 5 Determination of similar functionality

subClasOf

1006
Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:35:28 EDT from IEEE Xplore. Restrictions apply.

IV. IMPLEMENTATION

In this section, we explain how sub-architectures are
represented formally, and describe the implementation de-
tails of the architecture broker and the component broker.

Sub-architectures are described in Acme, which is a
simple, generic architecture description language that can
be used to specify structure and properties of software ar-
chitecture [6]. We use Acme because it provides powerful
way of specifying various properties of architectural ele-
ments.

Fig. 6 is an example of sub-architecture description for a
navigation function. The navigation sub-architecture con-
sists of 'Coordinator', 'Localizer', 'PathPlanner', 'Map-
Builder', and 'MotionControl'. The functionalities of those
components are specified in the property construct. This
property specifies the URI of a component-ontology class
for its corresponding functionality.

OWL Files N DOM! OWL FM"

Fig. 7 Broker architecture

The entire process of task-based architecture generation
can be demonstrated through the visualization unit of the
brokers as shown in Fig. 9. The GUI consists ofthree views:
the ontology view (the upper side), architecture view (the
lower-left side), and candidate component view (the low-
er-right side). The ontology view presents an action that is
currently focused, and the selected sub-architectures, and
their constituent components. The architecture view shows
a graphical structure of a sub-architecture and its architec-
ture description in Acme. The candidate component view
shows the resource properties of the candidate components
for the consolidated architecture.

V. RELATED WORKS

Fig. 6 An example of sub-architecture description

Fig. 7 shows the architecture of the architecture and the
component broker. When a task plan is given from the de-
cision layer, the message handler finds necessary actions
and then sends them to the architecture brokering engine.
The architecture brokering engine then accesses ontologies
stored in the repository to search and consolidate
sub-architectures. The brokering engines are implemented
in Java, and use the Jena library which provides APIs to
access and manage ontology-based models [7].

Finally, the component brokering engine searches can-
didate components for a selected sub-architecture. Infor-
mation about the selected sub-architecture and required
components is packaged by the service information gen-
erator and sent to the configuration manager in the SHAGE
framework. The visualization unit graphically presents
brokering stages and architecture consolidation process. Fig.
9 shows the screen shot of the visualization unit.

The ontologies are created by using the Protege ontology
editor [8]. The onologies are described in RDF (Resource
Description Framework) as depicted in Fig. 8. RDF is a
framework for representing semantic information on the
Semantic Web. RDF descriptions of sub-architectures and
components are stored in a repository system [9].

Ubiquitous computing environment includes similar
factors to consider as we do for intelligent service robots.
The Aura project developed a self-adaptive computing in-
frastructure that automates the configuration and recon-
figuration of heterogeneous computing environments [10].
Aura provides users with services that match required ser-
vice qualities by doing optimal resource allocation.

Jie, et al. at the Microsoft research institute proposed an
approach to share intermediate sensing and computing re-
sults among tasks [11]. In this research, they experimented
with network devices called Microserver that accept users'
tasks. Microserver is constrained by CPU speed, memory
size, and communication bandwidth. In this research, they
identified overlapping operations from multiple tasks and
shared intermediate results among tasks.

The above two researches are similar to our research in
terms of a task-based approach to handle resource variabil-
ity. However, while they regard applications as a recon-
figurable unit, we consider components and
sub-architectures as reconfiguration units.

r
6 r abu;'&o*Sivii rnao~inst anc 2i 15

rPo 1 CIMALSSATH 1'A.1.. 4t . 1is XI ii

rdy \IAONINH N ML emsOXISM ba- NMrbotbr:COMPONENTiSDE!SCRtITItON
PATfP'{-SIAM. SteeoIS Mti XF]iswnba)iisedSIAMnl`X[1
to,ilboCMPONEN"r-NAME=SLAM"'
fdfi.1abdi 1Si1vennLQt9 iance 0 l5i,>

<rdftype td eiirVm'uoV isionbadMapBi dir

LgA l

Fig. 8 An example of a component description written in RDF

1007
Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:35:28 EDT from IEEE Xplore. Restrictions apply.

Fig. 9 GUI of the brokers

In addition to resource constraints, Volpe, et al. at Cali-
fornia Institute of Technology proposed a two-layer archi-
tecture for robotics to make existing components for robots
be reused [12]. In this research, they decreased the com-
plexity of component development for robots by using ob-
ject-oriented design in a function layer and by making ab-
stracted components provide extensibility of systems. This
research aims to enable application developers to efficiently
develop new components by using the existing ones. When
components for robots are developed under this environment,
it enables robot to select and acquire various existing com-
ponents.

VI. CONCLUSION AND FUTURE WORK

In this paper we described a task-based approach to gen-
erate optimal software-architecture for intelligent service
robots. To make intelligent service robots reliably provide
their services with the limited resources, we have developed
an architecture broker and a component broker. Our ap-
proach includes an architecture generation mechanism that
selects appropriate sub-architectures and components for the
actions specified in a task plan. We defined reusable
sub-architectures corresponding to each action of a task plan,
and proposed a way to select sub-architectures and compo-
nents to produce concrete architectures. Intelligent service
robots, even though their resources are limited, need to pro-
vide various services for the users. Separating resource fac-
tors from the task plan generation reduces the complexity of
task plan generation dramatically.

However, in addition to the topological optimization that
we presented in this paper, we are currently working on
developing a temporal optimization method. It will provide

the capability of preloading necessary components that are
needed in a temporal window of a plan. Also, it will help
robots decide when components are no longer needed and
need to be unloaded. This temporal optimization will be
possible by analyzing the temporal relation between actions
of a task plan.

VII. ACKNOWLEDGMENTS

This research was performed for the Intelligent Robotics
Development Program, one of the 21st Century Frontier
R&D Programs funded by the Ministry of Commerce, In-
dustry and Energy of Korea.

VIII. REFERENCES

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, An Archi-
tecture for Autonomy, The International Journal ofRobotics Research,
Vol. 17, No. 4, 315-337.

[2] E. Gat. On Three-Layer Architectures. In D. Kortenkamp, R. Bon-
nasso, and R. Murphy, editors, Artificial Intelligence and Mobile
Robots, Boston, MA, 1998. MIT Press.

[3] ChuXin Chen and Mohan M. Trivedi, Task Planning and Action Co-
ordination in Integrated Sensor-Based Robots, IEEE Transaction on
SYSTEMS, MAN, AND CYBERNETICS, Vol. 25, No. 4, APRIL
1995.

[4] Jayaputera, G.; Loke, S.; Zaslavsky, A., Performance evaluation of
dynamically assembled multiagent systems, Intelligent Agent Tech-
nology, IEEE/WIC/ACM International Conference on, 19-22 Sept.
2005 Page(s):451 - 454.

[5] Dongsun Kim, Sooyong Park, Youngkyun Jin, Yu-Sik Park, In-Young
Ko, Kwanwoo Lee, Junhee Lee, Yeon-Chool Park, Sukhan Lee.
SHAGE: A Framework for self-managed Robot Software, Interna-
tional Conference on Software Engineering, Proceedings of the 2006
international workshop on Self-adaptation and self-managing systems,
Shangai, China.

[6] David Garlan, Robert Monroe, David Wile, Acme: Architectural De-
scription of Component-Based Systems, Proceedings of the 1997

1008
Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:35:28 EDT from IEEE Xplore. Restrictions apply.

conference of the Centre for Advanced Studies on Collaborative re-
search, Toronto, Ontario, Canada.

[7] Jena Semantic Web Framework,
[8] What is Protege?, in f
[9] Hyung-Min Koo, In-Young Ko. A Repository Framework for

Self-Growing Robot Software, Proceedings of 12th Asia-Pacific
Software Engineering Conference (APSEC'2005), Taiwan, December
2005.

[10] Joao Pedro Sousa, Vahe Poladian, David Garlan, Bradley Schmerl,
Mary Shaw, Task-based Adaptation for Ubiquitous Computing, IEEE

Transactions on Systems, Man and Cybernetics, Vol. 36, 328-340,
May 2006.

[11] Jie Liu, Elaine Cheong, and Feng Zhao, "semantics-based optimiza-
tion across uncoordinated tasks in networked embedded systems"
Proceedings of the 5th ACM Conference on Embedded Software
(EMSOFT 2005), September 18-22, 2005, Jersey City, New Jersey,
USA.

[12] R. Volpe, et al., "The CLARAty Architecture forRobotic Autonomy."
Proceedings of the 2001 IEEE Aerospace Conference, Big Sky
Montana, March 10-17 2001.

1009
Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 06:35:28 EDT from IEEE Xplore. Restrictions apply.

