
Ontology based Software Reconfiguration in a Ubiquitous Computing
Environment

Yoonhee Kim1, Eun-kyung Kim1, Jeuyoung Kim1,Eunhye Song1, In-Young Ko2

1A Dept. of Computer Science, Sookmyung Women's University, Korea
{yulan, kimek, wldud5, grace}@sookmyung.ac.kr

2School of Engineering, Information and Communications University, Korea
iko@icu.ac.kr

Abstract

A middleware in ubiquitous computing environment
(UbiComp) is required to support seamless on-demand
services over diverse resource situations in order to
meet various user requirements [1]. Since UbiComp
applications need situation-aware middleware services
in this environment. In this paper, we propose a
semantic middleware architecture to support dynamic
software component reconfiguration based fault and
service ontology to provide fault-tolerance in a
ubiquitous computing environment. Our middleware
includes autonomic management to detect faults,
analyze causes of them, and plan semantically
meaningful strategies to deal with a problem with
associating fault and service ontology trees. We
implemented a referenced prototype, Web-service
based Application Execution Environment (Wapee), as
a proof-of-concept, and showed the efficiency in
runtime recovery.

1. Introduction

The advent of Ubiquitous Computing (UbiComp),
which runs dynamically over heterogeneous
environment emphasizes the needs of service-oriented
middleware services in the concept of computing
anytime, anywhere, and any devices, instead of
resource in computing environment. In the UbiComp
environment, the concept of situation-aware
middleware has played an important role in meeting
user needs with available computing resources
appropriately in dynamic environment. An UbiComp

* This research was supported by the MIC(Ministry of Information
and Communication), Korea, under the ITRC(Information
Technology Research Center) support program supervised by the
IITA(Institute of Information Technology Assessment)

system consists of a heterogeneous set of computing
devices; a set of supported tasks; and some
infrastructures the devices may rely on in order to carry
out their tasks. It hides the heterogeneity of the
resource environments and provides necessary services
to UbiComp applications.

As the diversity and complexity of situations in
UbiComp environment, it is not trivial and realistic to
come up with semantically meaningful middleware
services to support high availability, especially to
recover from faulty situations with predefined recovery
strategies in real world. In addition, pursing
sophisticated controls over complicated faulty situation
takes quite amount of time to analyze the cause and
plan recovery strategies to support fault tolerance, in
order to achieve service continuity in various running
environment.

Fault-tolerance issues have been addressed in
various areas of computing systems such as computer
architecture, operating systems, distributed systems,
mobile computing and computer networks. In this
paper, we discuss semantically meaningful fault-
tolerant middleware architecture to improve
availability of application services in UbiComp
environments. In this paper, we have suggested a
semantic middleware architecture to support dynamic
software component reconfiguration based fault and
service ontology to provide fault-tolerance in a
ubiquitous computing environment. To enable a
service to seamlessly run in ubiquitous environment,
we introduce the Web-service based Application
Execution Environment (Wapee). It consists with Fault
Management (FM) and Runtime Service Management
(RSM) with high fault-tolerance, or continuous
availability. The FM provides ontology-based context
understanding service in the application areas. The
RSM can be dynamically service reconfiguration by
the runtime service manager. Both are presented for the

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 07:07:55 EDT from IEEE Xplore. Restrictions apply.

fast execution time, fault-tolerance and continuous
availability.

The rest of paper is organized as follows. The
related works are introduced in section 2. Section 3
presents overall architecture and the detailed
description of Wapee. In section 4 and 5, the
experiments of our prototype have demonstrated the
semantically meaningful fault detection and recovery
functionality of the mechanism in our architecture and
the efficiency in runtime. We conclude with some
directions for future work at the end of this paper.

2. Related Works

Research on fault tolerance has been more
emphasized to provide seamless and continuous
services in Grid[2], ubiquitous, or distributed
computing environment.

Grid Enactor and Management Service (GEMS) [3]
supports the detection of individual job process failures
for parallel message-passing applications. Failed Jobs
can be canceled and restarted, either on the same local
resource if sufficient nodes are available in a restart
queue, or on another resource. GEMS requires that a
local resource manager support certain fault-detection
and reporting capabilities.

CORBA [4] have long lacked real support for fault
tolerance. In most cases, a failure was simply reported
to the client and the system undertook no further
action. For example, if a referenced object could not be
reached because its associated server was unavailable,
a client was left on its own. In CORBA version 2.6,
fault tolerance is explicitly addressed.

The Adaptive Reconfigurable Mobile Objects of
Reliability (Armor) [5] middleware architecture offers
a scalable low-overhead way to provide high-
dependability services to applications. It uses
coordinated multithreaded processes to manage
redundant resources across interconnected nodes,
detect errors in user applications and infrastructural
components, and provide failure recovery. The authors
describe their experiences and lessons learned in
deploying Armor in several diverse fields.

3. Wapee Overview

Wapee(Web-service based Application Execution
Environment) is a middleware for UbiComp
environments contrived with the aim of supporting an
application to configure and adapt itself to the
underlying environments. A key in this architecture is
on how resource and service management are faced,
and what is the resulting abstraction to the user.

We expect that there will be so many similar service
instances in UbiComp environments. However, we can
not decide which service instance is most relevant to
the application’s current situation. For selecting most
appropriate one among multiple similar service
instances, service discovery should be aware of context
information of applications. Service instances are
evaluated based on the extent of fitness to current
context such as current location, or preferences. To
evaluate service fitness, Wapee focuses on providing
autonomic fault-tolerance services with fault detection,
fault analysis and recovery with application level
service reconfiguration and its runtime level
deployment (see Fig. 1). Application level service
reconfiguration can be achieved by autonomic
detection and analysis services in application level
Fault Management with semantically meaningful
ontology of U-services and faults in a ubiquitous
environment. The service reconfiguration information
in an Application Description Graph (ADG) is fed in to
Runtime Service Management (RSM) to be realized as
U-services on a prepared resource pool. Based on the
ADG, the RSM asks Autonomic Management
Generation (AMD) Service to create Application
Deployment Description (ADD), which includes
service deployment information such as resource
description of service managers, local schedulers, input
and output data file path, and executables; and runtime
dependency of the U-services in the ADG.

Figure 1. Architecture of Wapee

3.1. Fault Management

When a fault cannot be resolved in the service
manager level, the Wapee’s fault manager reconfigures
the application to utilize an alternative service that
provides the same or similar functionality as the
service that caused the fault. There are some
requirements of the application-level fault manager to
ensure the functional reliability and continuity of an
application:

Functional consistency: An alternative service
must provide the same or similar functionality as the
original one to achieve the consistent goal.

Interoperability: An alternative service must be
interoperable with the adjacent services of the original
one. Not only the interface-level interoperability, but

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 07:07:55 EDT from IEEE Xplore. Restrictions apply.

also the semantic interoperability among the adjacent
services must be ensured.

Effectiveness: An alternative service must be
selected in a way that the service contributes to resolve
the fault situation.

Operational continuity: The execution of an
application must be continued after the reconfiguration
of the application structure with an alternative service.

To meet these requirements, the fault manger in our
framework supports description models to formally
describe the types of fault conditions and the
functionality of services. The fault manager also
provides a service brokering mechanism that identifies
a fault condition based on an exception event and
service status, and finds alternative services that are
interoperable with other services in an application and
effectively resolve the fault condition.

3.1.1. Ontology-based Fault and Service Description
Models. We have developed ontology-based
description models to describe semantics of service
faults and functionalities. We define three ontology
hierarchies: the fault, service, and recovery strategy
ontologies. The fault ontology is for abstracting types
of faults based on their causes such as the limitation of
memory resource, and service errors. The fault
ontology has a property to represent the resource
condition that might cause a fault. The service
ontology is for describing the functionality and
resource requirements of a service. Finally, the
recovery strategy ontology is for describing possible
strategies to resolve a fault condition.

Status
Info.

<A>5
<x>7</x>

Alternative
Service
Name

‘D’

Service
Ontology

Recovery Strategy
Ontology

Fault
Ontology

An Ontological
Concept

SubClassOf RequiredStrategy ResourceStatus ResourceRequirement

Figure 2. Major steps of the semantically-based
service brokering process

3.1.2. Semantically-based Service Brokering. Fig. 2
shows the major steps to find alternative services of a
service that caused an exception. When an exception
occurs in a service, the system reports the current
status of the service and its environment. The service
broker matches this fault information against the
resource-condition property of the fault ontology to
identify the corresponding fault semantics [6]. To find
relevant fault semantics as much as possible, we adopt
a semantic relaxation method, which, in an ontology
hierarchy, collects nodes that have the same set of

properties and are on the same subsumption hierarchy
– direct parents and children (Step 1 in Fig. 2).

Once a set of possible faults is identified, the
service broker retrieves relevant recovery strategies to
resolve the faults (Step 2 in Fig. 2). The service broker
then finds services that provide the same or similar
functionality as the original service. A semantic
relaxation method, which is similar to the method that
we used for the fault ontology, is applied to the service
ontology to extend the service set (Step 3 in Fig. 2).
The resource-requirement property of each service is
then compared with the resource description in each of
the recovery strategies retrieved. Only the services that
can contribute to resolve the fault (the services that
meet the resource requirements) are selected as
candidate services that can be used to substitute the
original service (Step 4 in Fig. 2).

3.2. Runtime Service Management (RSM)

RSM is responsible for instantiating and monitoring
service (See Fig. 3). The RSM makes estimates of the
resource usage of job submissions in order to ensure
efficient use of grid resources [8]. Examples of service
failures include service crashes due to bugs and
operating system errors, faulty operation of services
like sensing incorrect context, wrong inferring delivery
of events. Service failures can potentially lead to
failure of the UbiComp system.

The purpose of Monitoring service is to provide
real-time job monitoring and status feedback to a
steering service while operating in close interaction
with an execution service, such as Condor, to provide
interactivity, fault tolerance and error detection. Once a
job is submitted in Wapee, Monitoring services
periodically monitors a job that has been submitted for
execution in the Virtual Organization (VO) and reports
job status. Whenever the state of a job changes the
Monitoring service will update the repository. It
supports querying job status and monitoring of output
and error streams of running jobs. Resource
Monitoring Service gathers information of resource in
VO.

The RSM also addresses autonomic reconfiguration
because different invocations of the same service may
result in the selection of different components. In the
Wapee architecture, it is primarily responsible for
planning and initiating configuration changes in the
system. Development of this adaptive reconfiguration
mechanism requires identification of output
information provided by the system and input
information that the mechanism can inject into the
system to affect change. The dynamic resource
management service we have designed is in charge of
detecting configuration changes, updating the

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 07:07:55 EDT from IEEE Xplore. Restrictions apply.

distribution of directory entries on cluster nodes in the
event of a configuration change, triggering
reconfiguration of distributed services when needed.

Autonomic Service Reconfiguration interacts with
other components of RSM or Fault Management to
search currently available services to be suitable to the
context change. To adopt new service, it should check
and verify available resources or resource conflicts
among services to avoid service crush or malfunction
of applications.

Figure 3. The architecture of RSM

To meet the requirement of high availability and
fault tolerance, replication scheme is used. Fig. 3
depicts the implementation of the Replication Manager
(RM) in a typical deployment scenario at a local site
replicates data from one or more remote sites. The RM
replicates the data and the processes of an application,
and distributes the replicas across the processors in the
system. The Fault Detector of Wapee offers their fault
notifications to the replication manager, thereby
allowing it to restore the degree of replication if a
replica has crashed. When a fault occurs, Fault
Detectors detect fault in the objects, and report faults to
the Fault Notifier. The Fault Notifier receives reports
from the Fault Detectors, and propagates the reports as
fault event notifications. The Runtime Service
Management reasons about the fault reports that it has
received. The operations of RM include location,
identifying where desired data files exist on the Grid;
transfer, moving the desired data files to the local
system efficiently; and registration. We considered
primary-backup replication for achieving fault-
tolerance.

3.2.1. Fault-tolerant Approaches. Our middleware
makes context aware applications easy to be developed
and deployed. When context change from an
application is acquired and the change is resulted as a
fault, the middleware reconfigures Application
Deployment Description to meet requirements with the
help of Fault Management(FM). The Runtime Service
Management (RSM) has a reconfigured ADD. To

create reconfigured ADD, RSM requests FM to
identify faults and provide recovery strategy using
fault, service, and recovery strategies ontology trees.
The reconfigured services that passed through FM’s
service brokering process are notified to RSM to
generate ADD. When the reconfigured context in ADD
is activated, user level application functionalities will
be provided continuously. The following procedure is
Autonomic management for fault-tolerance. A fault
tolerance process is summarized in the following
pseudo-code (Table. 1).

Table 1 pseudo-code

program
 begin
 // Application and domain
requirements from ADG
 set Application Requirement
 {job_ID, job_type, executable,
serviceName,
 arguments,library_path}
 set Domain
 {max_time, max_cpu_time,
max_memory, min_memory}
 Service_Configuration{}
 Service_Instantiation{}

 Monitoring_of_Resources {return
Resource_Info}
 Execution {
 Job Running (event
Context_Change);
 if (Context_Change == fault) {
 Fault_Categorizes();
 if(Fault_Level == Runtime) {
 AlterResource =
Monitoring_of_Resources();

Service_Instantiation(AlterResource);
 }else {
 Monitoring_of_Resources();
 AlterService =
Fault_Management ();

ServiceConfiguration(AlterService);
 }
 }
 Monitoring_of_Jobs { return
Context_Change;}
end.

User can create the ADG through setting of
application and domain. And then ADD is configured
and service is initiated. When a fault occurs during
execution, an autonomic management will be executed
by the RSM and FM with fault properties. If a fault is
classified that can be resolved at the runtime service
level then it takes only service re-instantiation. In other
case, we extend the fault handling mechanism to the
application level, to FM, such that services can be

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 07:07:55 EDT from IEEE Xplore. Restrictions apply.

reconfigured to utilize alternative services that provide
the same or similar functionality as the service that
caused the fault. Because of autonomic fault tolerance,
a system maintains its level of reliability and
availability, through reconfiguration in response to
changes in its environment of execution.

4. Implementation

A prototype is to develop a workflow solution for
complex grid applications to support the design,
execution, monitoring, and performance visualization
phases of development in a user-friendly way. We have
developed a GUI based tool, Wapee Client, for
workflow management, as shown in Fig. 4. A visual
interface that allows for the graphical manipulation of
workflow process instances provides a rich medium for
the communication of dependencies and relationships
between constituent jobs of a workflow process
instance.

Figure 4 Client Interface

A job in workflow is represented by a set of
interdependent tasks arranged in a Directed Acyclic
Graph (DAG) [7]. After the creation of the DAG the
resources identified in the workflow must be mapped
onto the available grid resources [8]. The RSM
supports run-time execution and job monitoring.
Output results can also be available for a view from the
Wapee Client.

Our main approach to autonomically service
reconfiguration is performed in two steps. First,
context-aware service discovery provides a set of
services that are candidate to the configuration. Second,
starting from the selected services and user task,
context-aware process integration provides a set of
configuration schemes that conform to the task’s
behavior further meeting all the context requirements.

5. Experiment Results

We present a simple example that describes how
our autonomic service reconfiguration algorithm can
be used in a UbiComp environment. This example
scenario is web-based applications, such as

aggregation, searching and ranking about enormous
web-based information. First, user can gather
tremendous editorials on various newspaper website in
the same breath using ‘Wrapper Applications’ of
distinct type. Each ‘Wrapper application’ takes
different time when it finishes. We choose three
‘Wrapper Applications’ for this experiment. And then,
user can both view the result and send input-file for
other applications at next phase. We select ‘Ranking
application’ and ‘Search application’ for mid-
applications of our experiment. The ‘Search
application’ searches some words at forepart result.
The ‘Ranking application’ finds selected word at
forepart result and then shows ranking.
Finally we join the whole information through
different applications using ‘Aggregation application’.

For example, when a fault occurs at ‘Searching
application’ phase, Wapee analyze fault properties and
classify the fault type, and replace another useful
searching application using fault recovery strategy of
FM. Our defined configuration property of searching
application is shown in Fig. 5. Searching method-1
requires large memory but it takes short time to ends.
Searching method-2 is slower than method-1 but it is a
reliable task.

Figure 5. Our test scenario

If fault occurs during using ‘Advance Searching’
application, we can overcome the fault using RSM and
FM. If fault is classified that cannot be resolved at the
runtime service manager level. To overcome such
situation, we extend the fault handling mechanism to
the application level, Fault Manager, such that the
application can be reconfigured to utilize an alternative
service that provides the same or similar functionality
as the service that caused the fault. Its case is alterative
service, ‘Simple Searching’.

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 07:07:55 EDT from IEEE Xplore. Restrictions apply.

Figure 6. Performance Comparison using Wapee
and non-Wapee of the Job

On Fig. 6 we showed the success rate and
percentage of used fault-tolerance mechanism in
Wapee. Wapee detect fault and recover them through
Runtime Service Manager (RSM). The whole
procedure takes about 326 seconds. This fault-
tolerance mechanism is very basic algorithms that try
to allocate resources on the nearest surrogate possible.
If faults cannot be resolved at the service manager
level then the RSM notify the fault handling
information to the Fault Manager at application level.
The whole procedure takes about 350 seconds, if
Wapee detected these faults and recovered them using
semantically Ontology, as shown in Fig. 6 below graph.

These figures tell us that using fault recovery
system, Wapee, increases service availability and
executes resource efficiently in ubiquitous computing
environments. It also shows us that the overhead ratio
of middleware and application is kept in a relatively
stable level (16.16% using RSM, 24.68% using FM)
regardless of the variation of resource environment and
service configurations. Our experiment validates the
practicability and soundness of Wapee. The overhead
of middleware is kept in a small ratio with respect to
the overall system cost.

6. Conclusion & Future Works

Wapee, an autonomic management middleware,
executes likely faulty applications successfully with
semantically meaningful strategies associating with
service and fault ontology trees in ubiquitous
environments. When a fault is found in runtime
execution, Runtime Service Management (RSM)
autonomically identifies the faults and decides if the
fault might be resolved in runtime level or not. For
resolvable faults in runtime, RSM configures
Application Deployment Description again to obtain
alternative resources for the application. Otherwise,
Fault Management supports dynamic software
component reconfiguration plan based fault and service

ontology to provide fault-tolerance in a ubiquitous
computing environment.

Description Graph (ADG) with the help of the
semantics of services and faults ontology; and informs
the ADG for new deployment of the application
autonomically. This allows better semantic
interoperability between different context information
on UbiComp environment. In addition, Wapee client,
one of other strengths of Wapee, provides easy-of-use
user interface for application construction, runtime
execution, real-time monitoring and visualization of
results.

For future work in Wapee, we are planning to
implant an effective and autonomic meta-scheduler in
collaboration with various local schedulers. Scheduling
will be done with some consideration of application
configuration information, environmental condition,
user profile, and other special requirement such as fault
tolerance policies to improve the quality of an
application and resource utilization.

7. References

[1] M. Weiser, The computer for the 21st Century Scientific
American, Vol. 265, No. 3, pp. 94-104, September, 1991.

[2] I. Foster. C. Kesselman, S. Tuecke. The Anatomy of the
Grid: Enabling Scalable Virtual Organizations International
J. Supercomputer Applications, 2001.

[3] Satish Tadepalli, Calvin Ribbens, Srinid Varadarahan
GEMS: A Job Management System for Fault Tolerant Grid
Computing High Performance Computing Symposium, 2004

[4] CORBA Fault http://www.omg.org/cgi-
bin/apps/doc?formal/01-09-29.pdf

[5] Zbigniew Kalbarczyk,Ravishankar K Iyer, Long Wang,
Application Fault Tolerance with Armor Middleware Internet
Computing, March/April 2005 (Vol 9, No 2) pp 28-37

[6] Y. Hainning, E. Letha, Towards a semantic-based
approach for software reusable component classification and
Retrieval In Proceedings of the 42nd annual Southeast
regional conference, 110-115, 2004

[7] Condor DAGMan
http://www.cs.wisc.edu/condor/dagman/

[8] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman
Grid Information Services for Distributed Resource Sharing
Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), IEEE
Press, August 2001

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 07:07:55 EDT from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

