
A Replica Control Method for Improving Availability for Read-only Transactions y

Chang Sup Park Myoung Ho Kim Yoon Joon Lee
Department of Computer Science

Korea Advanced Institute of Science and Technology
373-1, Kusong-dong, Yusong-gu, Taejon, 305-701, Korea

fparkcs,mhkim,yjleeg@dbserver.kaist.ac.kr

Abstract

Data replication is often considered in distributed data-
base systems to enhance availability and performance. The
benefit of data replication, however, can only be realized
at the cost of maintaining the consistency of data. In par-
ticular, network partition failures make it more difficult to
achieve high data availability while ensuring strong cor-
rectness criteria such as 1-copy serializability. In this pa-
per, we propose a replica control method to improve the
availability of data in the presence of network partition
failures. Our method extends the traditional primary copy
method by using the relaxed correctness criterion called in-
sular consistency for large-scale distributed systems, where
partition failures frequently occur. We focus on increasing
the availability of data for read-only transactions. We in-
troduce a versionvector as a tool forguaranteeing insu-
lar consistency and present a mechanism that allows read-
only transactions to be executed at any partition as long as
the insular consistency is satisfied. An asynchronous up-
date propagation mechanism is also employed to improve
the performance of update operations. We also show that
the proposed method is correct and give some performance
considerations.

1. Introduction

The main goal of data replication in a distributed data-
base system is to enhance data availability and performance.
By storing important data at multiple sites, we can continue
to execute operations on the data even if failures occur at
some parts of the system. Besides, performance of transac-
tions can be improved because an efficient data access based
on geographic proximity can be provided.

yThis work was supported by Korea Science and Engineering Founda-
tion(KOSEF) through Center for Artificial Intelligence Research(CAIR),
the Engineering Research Center(ERC) of Excellence Program.

A replicated database should provide user transactions
with transparency for replicated data. A read or write oper-
ation on a logical data item in a transaction should be trans-
parently mapped into read or write operations on physical
replicas of the data item, and consistency among the repli-
cas must be maintained according to a predefined correct-
ness criterion. A replica control protocol is required for the
transparent and consistent management of replicas.

One-copy serializability(1SR) [3] is the most widely
used correctness criterion in the literature on replicated
databases. 1SRmeans that the concurrent execution of
transactions on a replicated database must be equivalent to
a serial execution of those transactions on a non-replicated
or one-copydatabase. It is the incorporated notion of seri-
alizability in non-replicated databases and one-copy equiv-
alence, and it can be guaranteed by a concurrency control
algorithm and a replica control protocol.

A distributed system consists of two kinds of compo-
nents: sites, which process information, and communica-
tion links, which transmit information between sites. Both
of them can experience system failures. As for site failures,
we assume the fail-stop model [11]. The most critical com-
munication failure isa network partition failure[5], where a
network is partitioned into multiple sub-networks that can-
not communicate with each other. If two transactions that
update the same data item execute the update on different
replicas in different partitions, an inconsistency can be in-
troduced across the partitions. So difficulty lies in keeping
consistency across all partitions in the face of system fail-
ures while at the same time enhancing data availability [5].

In this paper, we propose a data replication method that
can improve data availability and system performance in a
large-scale distributed database system where network par-
tition failures frequently occur. We use as our correctness
criterion the insular consistency [7] that is a relaxed correct-
ness criterion from1SR. We mainly focus on increasing data
availability for read-only transactions. In our method, most
of read-only transactions can be executed at any partition
in a network regardless of the number of partitions or the

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS’97)
0-8186-8114-4/97 $10.00 � 1997 IEEE

size of each partition. Our protocol is based on the primary
copy method, but has different update mechanisms that do
not severely degrade performance of update transactions.

The remainder of this paper is organized as follows. In
section 2, we discuss previous related works and present the
motivation of our work. Section 3 describes the proposed
replica control protocol in detail and Section 4 proves the
correctness of our method. Finally, we conclude with a dis-
cussion of our work in section 5.

2. Related Works and Motivation

There are broadly two classes of consistency mainte-
nance mechanisms of data replication, i.e.,pessimisticand
optimistic[5]. Pessimistic strategies keep a replicated data-
base in a consistent state all the time by limiting the avail-
ability of data. They restrict the execution of update opera-
tions on a data item within only one partition. Most of the
methods, including the primary copy method and the quo-
rum consensus algorithm, belong to this class. On the other
hand, optimistic strategies do not limit availability and al-
low updates on replicas of a data item in any partition. In
these strategies, the system detects and resolves an inconsis-
tency when it recovers from failures. Optimistic strategies
in general are considered difficult to be applied because they
require the rollback of the transactions that are already com-
mitted or the execution of appropriate compensating trans-
actions.

[9] discusseseager replicationand lazy replication. In
the eager replication, an update operation is executed on all
replicas of a data item synchronously in an atomic transac-
tion, while the lazy replication applies an update operation
to only one replica or a subset of replicas in a transaction
and then propagates it to the other replicas asynchronously
after the transaction commits. The difference in their up-
date scheme has a great effect on consistency and update
performance.

2.1. Insular Consistency

In most applications, the frequency of read-only trans-
actions is much higher than that of update transactions.
Hence, there have been many works that specifically fo-
cus on improving data availability for read-only transac-
tions. [7] proposes three correctness criteria for read-only
transactions in a fully replicated database, includinginsular
consistency. The notion of insular consistency that has been
shown to be effective in many applications[2, 7, 12] is as
follows: an execution historyH of some transactions satis-
fies insular consistency if and only if every sub-history that
consists of all update transactions and a read-only transac-
tion inH satisfies1SR. Figure 1 shows an example history
that satisfies insular consistency. In the figure, eachnode

{T 1, T2, T3}: 1SR (T1→T3→T2)

{T 1, T2, T4}: 1SR (T2→T4→T1)

{T 1, T2, T3, T4}: insular consistent

T3: r[x]r[y]

T4: r[y]r[x]

x2
 y2

T1: w[x]

x1
A

T2: w[y]

y1
B

C

D
x3

 y3

Figure 1. An example of insular consistency

represents a site where replicas of data are stored.x1, x2,
andx3 represent three replicas of a data itemx, andy1,
y2, andy3 represent three replicas of a data itemy. We
suppose that update transactionsT1 andT2 are executed at
siteA and siteB respectively, and that after they commit
at those sites, their results, or the new values ofx andy
are independently propagated to siteC and siteD. We also
suppose that failures occur on the communication links be-
tweenA andD, and betweenB andC so that the updates
of x andy cannot be propagated toD andC, respectively.
Now, if read-only transactionsT3 andT4 are executed atC
andD respectively,T3 will see the result of onlyT1, and
T4 will see the result of onlyT2. Therefore, the execu-
tion history offT1; T2; T3; T4g is not one-copy serializable,
while it satisfies insular consistency because the histories of
fT1; T2; T3g, fT1; T2; T4g, andfT1; T2g are all one-copy
serializable.

[12] introduces three notions of consistency and pro-
poses algorithms for executing read-only transactions in
multiversion environment. [2] has also developed a replica
control protocol based on insular consistency to enhance
data availability for read-only transactions by using a new
update propagation mechanism, called Commit Propagation
Mechanism. Our method has some similarities with this
method in that it adopts insular consistency as a correct-
ness criterion and makes use of piggy-backing necessary in-
formation on the messages of the two-phase commit(2PC)
protocol. This method, however, is fundamentally different
from our method in three ways: (1) it is based on the stan-
dard quorum consensus protocol [8], (2) it guarantees insu-
lar consistency with respect to only insular transactions1,
and (3) its protocol becomes relatively complex for a par-
tially replicated database.

1The insular transaction [7] means a read-only transaction that can be
executed entirely at a single site.

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS’97)
0-8186-8114-4/97 $10.00 � 1997 IEEE

2.2. Motivation

Most proposed methods for data replication adopt1SR
as their consistency criteria. There are several problems to
apply these methods in practice. First, the performance of
a system degrades significantly because many replicas need
to be synchronouslyaccessed before committing a transac-
tion. Second, they cannot cope with network partition fail-
ures effectively. When a network is partitioned, most meth-
ods allow read and write operations within only one par-
tition or prohibit write operations in all partitions in order
to prevent the occurrence of inconsistency among different
partitions. Such approaches inevitably impose a severe re-
striction on data availability. Overhead from synchronous
updates and vulnerability for a network partition failure are
more serious in large-scale distributed systems and mobile
computing environment.

It is important to make as many read-only transactions
can be executed as possible when the frequency of read-only
transactions is much higher than that of update transactions.
Since1SRis considered too restrictive for read-only trans-
actions in many applications, we need other correctness cri-
teria to optimize the execution of read-only transactions.

In this paper, we propose a replication method that is
appropriate for large-scale distributed systems or mobile
computing systems, in which network partition failures fre-
quently occur. Our method uses insular consistency as a
correctness criterion and applies an asynchronous propa-
gation scheme for the updates of replicas in remote sites,
which may pay expensive communication cost and experi-
ence frequent communication failures. More importantly,
our method improves data availability by allowing read-
only transactions to execute in any partition including repli-
cas of all data to read as much as possible.

3. Our Replication Method

3.1. Model and Assumption

Our replication method is for the large-scale distributed
environment where many sites are distributed over exten-
sive areas. Some characteristics of this environment are that
communication cost between two sites that are remote from
each other is expensive and that network partition failures
frequently occur.

Without loss of generality, we make the following as-
sumptions in this paper. First, the scheduler in each site
uses a concurrency control algorithm that can guarantee se-
rializable executions of transactions, such as the distributed
two-phase locking algorithm. Second, there is no loss
of the messages transmitted between two sites of differ-
ent clusters. This can be realized with a system service

asynchronous
propagation

cluster1 xt

xt

xt

xp

xs

xs

xs

cluster2

synchronous
update

cluster3

cluster4

xp : the primary copy of x
xs

 : a secondary copy of x
xt

 : a tertiary copy of x

Figure 2. A data replication model in a large-
scale distributed system

such as a Recoverable Queuing System(RQS) [4, 6]. Fi-
nally, distributed sites are geographically grouped into sev-
eral clusters. The communication cost is more expensive
and the communication failures occur more frequentlybe-
tweenclusters than thosewithin a cluster. This is shown in
Figure 2.

Our replication method is based on the primary copy
method [1]. Replicas of each data item are divided into one
primary copy and many backup copies, and all read and
write operations on a data item are first transmitted to the
primary copy site of it and then executed on the primary
copy of the data item to guarantee1SR. Our method, how-
ever, takes further steps of dividing backup copies into two
groups, i.e.,secondary copiesandtertiary copiesaccording
to whether they are contained in the cluster to which the pri-
mary copy belongs or not, and using different update prop-
agation schemes for two kinds of replicas. To put it con-
cretely, while secondary copies in the cluster in which a pri-
mary copy is contained are synchronously updated before a
transaction commits, the result of the update is propagated
to tertiary copies in the other clusters asynchronously after
the transaction commits. By committing a transaction with-
out waiting for expensive update propagation to the other
clusters to be finished, we can decrease the response time
of the transaction.

While a secondary copy of a data item always has the
latest value, which is the same one as the primary copy of
the data item has, a tertiary copy in a different cluster has
a stale value until all the new values written are propagated
to it. Therefore, when many transactions concurrently exe-
cute, many different versions of a data item may exist at the
non-primary copies of it. These versions can be ordered by
the time when they were created.

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS’97)
0-8186-8114-4/97 $10.00 � 1997 IEEE

In our method, the location of the primary copy ofeach
data item is determined as follows. Generally, for each
replicated data item, there exists a site that plays a role of
its owner. The owner site of a data item and the cluster that
contains it are respectively calledhome siteandhome clus-
ter of the data item, and a certain replica in the home site
is designated as the primary copy of the data item. In this
paper, we assume that most update transactions that update
a data item are issued at the home site or at one of the other
sites in the home cluster of the data item. For example, if a
man that resides in an areaA has an account at a bank, he
will visit a branch of the bank in the areaAmore frequently
than branches in the other areas. That means updates on his
account will be originated mainly inA. In this case, we des-
ignate a site in the areaA as the home site of the account
and store the primary copy of it in that site. By using the
notion of the home cluster, we can improve the availability
of a data item in an area where the update requests on the
data item occur most frequently.

On the other hand, when a failure occurs at the primary
copy site of a data item, we select a new primary copy
from the secondary copies in the same cluster along the pre-
defined order of succession or by an election protocol. If a
partition failure occurs in the home cluster of a data item,
we choose a replica as the primary copy from only the ma-
jority partition, as the viewstamped replication method [10]
does, in order to have always only one primary copy in the
entire system for each data item. The new primary copy se-
lected is sure to have the latest value that reflects the results
of all the updates on the data item which had been executed
before the occurrence of the failure.

Our method adopts insular consistency that is relaxed
from 1SRand improves the availability of data for read-
only transactions against network partition failures. It al-
lows read-only transactions that can afford to read stale data
values to read replicas other than the primary copies. In
other words, even if the primary copy of a data item is in-
accessible by site failures or network partition failures, a
transaction that must read the data item can continue to ex-
ecute by reading an accessiblenon-primary copy in the local
cluster or in one of the other near clusters. Our method guar-
antees insular consistency among transactions by exploiting
version vectors, which are defined in the next section.

3.2. Versions and Version Vectors

In our method,each write operation on a data item pro-
duces a newversionof it. Each version of a data item has
the uniqueversion numberwith the data value. Whenever a
new version is created, it is assigned a version number that
sequentially increases by one. Many different versions of
a data item may exist in a replicated database at the same
time because of asynchronouse update propagation to ter-

Notation Meaning

DS fx j a replicated data itemg
V S(x) fxi j a version of the data itemx 2 DSg

V N(xi) i, the version number ofxi 2 V S(x)

RS(T) a readset,fx j r[x] is in the transactionTg
WS(T) a writeset,fx jw[x] is in the transactionTg
Vr(T) fxi j the version ofx 2 RS(T), read byTg
Vw(T) fxi j the new version ofx 2 WS(T),

written byTg

Table 1. Notations

tiary copies, and their version numbers imply the order in
which they were created. Primary and secondary copies al-
ways have the recent versions of data items.

Table 1 shows the notations related to data items and
their versions. We define four basic relations on versions
as follows.

Definition 1 4 basic relations on versions

1. �wr is a binary relation on the set of versions of data
items, such thatxi �wr yj iff xi 2 Vw(Tm) \ Vr(Tn)
and yj 2 Vw(Tn) for two different transactionsTm
andTn.

2. �ww is a binary relation on the set of versions of data
items, such thatxi �ww xj iff xi 2 Vw(Tm) and
xj 2 Vw(Tn) for two different transactionsTm and
Tn, andxi; xj are two versions of a data itemx such
thatV N (xj) = V N (xi) + 1.

3. �rw is a binary relation on the set of versions of data
items, such thatxi �rw yj iff xi 2 Vw(Tm) and
yj 2 Vw(Tn) for two different transactionsTm and
Tn, and there existsyj�1 such thatyj�1 �ww yj and
yj�1 �wr xi.

4. =w is a binary relation on the set of versions of data
items, such thatxi =w yj iff xi; yj 2 Vw(Tn) for a
transactionTn.

Figure 3 depicts the above basic relations as graphs,
which represent relationships among the versions that are
read or written by update transactions. A nodexi denotes
a version of a data itemx. A directed edge fromxi to yj
which is labeled withTk means that there exists a transac-
tion Tk such thatxi 2 Vr(Tk) and yj 2 Vw(Tk), and a
directed edge intoxi which is labeled withTk only means
xi 2 Vw(Tk). Since all update transactions executed on the
primary copies are serializable in our method, these graphs
describe the serializable executions of update transactions.
The relations�wr ,�ww, and�rw imply that there exist re-
spectively a write-read conflict, a write-write conflict, and a

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS’97)
0-8186-8114-4/97 $10.00 � 1997 IEEE

xi

Tm xj
Tn

xi <ww xj

xi

Tn

Tn

xi =w yj

yj

xi <wr yj

yj

Tm

Tn

xi

Tn

yj-1

Tm

xi <rw yj

xi

yj

Figure 3. The basic relations on versions

read-write conflict between two transactions, e.g.,Tm and
Tn in the figure, that created two related versions. So each
of them determines a direct serialization order betweenTm
andTn. The relation=w is an equivalent relation that means
the creation of two versions of different data by an update
transaction. Now, we define the following relation using the
above four relations.

Definition 2 �nf is a relation which is defined by

�nf � �wr [�ww [�rw [=w

We denote the transitive closure of this relation as�
�

nf .
xi �

�

nf yj means that a transactionTm that createdxi pre-
cedes a transactionTn that createdyj directly or indirectly
in a serialization order, or thatxi andyj were created by the
same transactionT .

A version vectoris an ordered list of version numbers,
in which a version number of a version for each data item
is stored. For example, ifn data items are replicated in a
database,n version numbers, one for each data item, are
stored in a version vector in a predefined order. There are
two kinds of version vectors:Read Bound Version Vector
andNext Read Bound Version Vector.

Definition 3 Read Bound Version Vector(RBV)
The Read Bound Version Vector of a versionxi is a version
vector whose element for a data itemy inDS is defined by

RBVxi [y]
2 = V N (yj)

whereyj 2 V S(y), yj �nf xi, and there is noyk 2 V S(y)
such thatyj ��nf yk, yk ��nf xi, andyk 6= yj.

RBV is defined for each version of a data item and is
stored with each replica of the version. The version ofy

2 In this paper, we index an element of a version vector by the name of
a data item for convenience’ sake.

x1

z1 z2 z3

y1

x2 x3

y2 y3

T1

T3

T2

T3

T4

T5

T5

RBVx1=(1,1,1)

RBVy1=(1,1,1)

RBVz1=(1,1,1)

RBVx2=(2,1,1)

RBVy2=(1,2,2)

RBVz2=(1,1,2)
NRBVz2=(0,2,0)

RBVx3=(3,3,2)

RBVy3=(3,3,2)

RBVz3=(1,2,3)

 x1 <ww x2 <ww x3

 y1 <ww y2 <ww y3

 z1 <ww z2 <ww z3

 z2 <wr y2 , x2 <wr y3

 y2 <rw z3

 x1 =w y1 =w z1

 x3 =w y3

(a) (b)

Figure 4. An example of RBV and NRBV

whose version number isRBVxi [y] is the one that was cre-
ated either by an update transaction that createdxi or by
an update transaction that precedes the transaction that cre-
atedxi in the serialization order and most recentlyupdated
y. That means it is the oldest version ofy that can be read
with xi in a read-only transaction while insular consistency
is not violated. We call this version asread bound version
of y for xi. RBV stored with a replica is updated whenever
a new version is created and stored in the replica, and it is
used in the validation process of a read-only transaction.

Figure 4 shows an example of versions and their version
vectors that are created and stored by some update transac-
tions. In Figure 4-(a), the elements of version vectors are
denoted in the order ofx, y, andz. In this example, the
basic relations on the versions exist as shown in Figure 4-
(b). These relations determine the serialization order among
the transactions andRBV of each version as shown in Fig-
ure 4-(a). For example, the serialization order amongT2,
T3, andT5 is determined toT2 ! T3 ! T5 by z2 �wr y2
andy2 �ww y3, and the values ofRBVy2 [z] andRBVy3 [z]
are set to 2, the version number ofz2. From the previously
described meaning of the elements ofRBV , these values
imply that insular consistency is violated ify2 or y3 is read
in a read-only transaction with a version ofz that is older
thanz2. For example, when a read-only transactionTr reads
y2 andz1, a cycle consisting ofT2, T3, andTr is generated
in the serialization graph of committed transactions.

Definition 4 Next Read Bound Version Vector(NRBV)
LetVc be the set of the most recent versions of all data items.
The Next Read Bound Version Vector ofxc, the most recent
version of a data itemx, is a version vector whose element
for a data itemy is defined by

NRBVxc [y] � maxfRBVzc [y]g
for 8zc 2 Vc such thatxc �wr zc.

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS’97)
0-8186-8114-4/97 $10.00 � 1997 IEEE

NRBV is defined for the most recent version of a data
item and is stored with the primary and secondary copies
of the data item. It is updated whenever the data item is
read by an update transaction.NRBV is an auxiliary ver-
sion vector forRBV ; when a new version is created, it is
used in determining the value of a newRBV of the ver-
sion. In the above definition, until the most recent version
of x, xc is updated to the next version,xc+1, some neces-
sary elements ofRBV of zc are stored inNRBV of xc on
the ground thatxc �wr zc directly induceszc �rw xc+1.
In Figure 4, for example, afterT3 readsz2 and writesy2,
the update ofz from z2 into z3 by T4 inducesy2 �ru z3.
SinceT3 that createdy2 precedesT4 that createdz3 in the
serialization order, the read bound version ofy for z3 whose
version number will be stored inRBVz3 [y] must bey2. To
reflect this fact when executingT4 and computingRBV of
z3, we store inNRBVz2 [y] the version number ofy2 that
was created byT3 that readz2, and then we make use of it
later when determining the element ofRBV of z3.

3.3. Update Transactions

In this section, we describe how to manage version
vectors when executing update transactions. An update
transaction is issued from any client site and that site serves
as the coordinator for the transaction. All read and write
operations requested from the client site are transferred to
and executed on the primary copies of the target data. A
write operation is also transferred to the secondary copies
of the data item in the home cluster. When all operations of
an update transaction are issued and executed, the 2PC pro-
tocol starts at the client site with the participants, namely,
all of the primary copies and the secondary copies that
participated in the transaction. The additional computations
to update version vectors ateach site and the transmissions
of necessary information between the client site and the
participant site are included in the 2PC protocol as follows.

Phase 1:The client sends the PREPARE message to all the
participants. The primary copy sites that can commit send
the following data with the VOTECOMMIT message to
the client.

� RBV s of all the primary copies on which read or write
operations were executed

� NRBV s of all the primary copies on which write op-
erations were executed

After the client receives the VOTECOMMIT messages
from all the participants, it determines a new version vector
NewRBV , which is defined by

NewRBV [x] =

8>>><
>>>:

RBVxc [x] + 1 (if xc+1 2 Vw(T))

maxfRBVyc [x];RBVzc [x];NRBVzc [x]g
for 8yc 2 Vr(T) and
8zc+1 2 Vw(T) (otherwise)

wherexc �ww xc+1 andzc �ww zc+1.

Phase 2:When the result of the transaction is determined
to COMMIT at the client, it sendsNewRBV to all the
participants with the COMMIT message. Each site that
received the messageupdatesRBV of the primary copy or
a secondary copy as well asNRBV of the primary copy as
follows.

for 8xc 2 Vw(T) and 8y 2 DS

RBVxc [y] = NewRBV [y];

NRBVxc [y] = 0;

for 8yc 2 Vr(T) such that yc+1 =2 Vw(T) and 8y 2 DS

NRBVyc [y] = maxfNRBVyc [y]; NewRBV [y]g;

Then the participant site sends an acknowledgment to the
client and commits the transaction. The client finishes the
2PC protocol after it receives the acknowledgments from all
the participants. Meanwhile, update propagation starts from
each primary copy which wasupdated by this transaction to
the tertiary copies contained in the other clusters. In this
propagation, the new data value and the newRBV are sent,
and a local update transaction is originated ateach tertiary
copy site. This update propagation is assured of being ex-
ecuted only once and within a finite period of time by an
order-preserving and eventual delivery mechanism.

3.4. Read-only Transactions

In our method, all read operations in a read-only
transaction can be executed on any replica. If all reads are
executed on the primary copies, they always get the recent
values of data by concurrency control processes in the
primary copy sites. But if a read operation in a transaction
is executed on a non-primary copy, the results of all read
operations in the transaction must be validated before
the transaction commits in order to guarantee the insular
consistency criterion to be satisfied. Therefore, our strategy
for executing a read-only transaction operates under the
optimistic assumption that at least insular consistency can
be mostly satisfied in the history consisting of it and other
transactions. The validation rule for deciding whether a
read-only transactionTr can commit or not is as follows.

Validation Rule:
if for any two versionsxi andyj in Vr(Tr),
RBVxi [x] � RBVyj [x] andRBVyj [y] � RBVxi [y]

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS’97)
0-8186-8114-4/97 $10.00 � 1997 IEEE

then commitTr
else abortTr

The condition in the above rule means that, foreach ver-
sion of a data item read in a read-only transaction, all ver-
sions of the other data items that were read with it are the
same versions as the read bound versions of the data items
in itsRBV , or the later versions than them. In Figure 4, for
example, we suppose a read-only transactionTr that reads
bothy andz selectsy1 andz3. ThenRBVy1 [y] = 1 and
RBVz3 [y] = 2 lead toRBVy1 [y] < RBVz3 [y], and insular
consistency is violated since a cycleTr ! T3 ! T4 ! Tr
is generated in the history. On the other hand, ifTr chooses
y3 and z1, RBVz1 [z] = 1 and RBVy3 [z] = 2 lead to
RBVz1 [z] < RBVy3 [z], and insular consistency is also vi-
olated because a cycleTr ! T2 ! T3 ! T5 ! Tr is
generated in the history. However, reading a pair ofy3 and
z3, ory2 andz3, ory3 andz2 in Tr satisfies the condition of
theValidation Rule, and the transaction can commit with
insular consistency maintained. If the results of a read-
only transaction fail in the validation process, we should
re-execute the transaction on other replicas after aborting it.

4. Proof of Correctness

The correctness criterion which is used in our repli-
cation method is insular consistency, which requires any
history consisting of each read-only transaction and all
update transactions should be one-copy serializable. In our
method, all read and write operations in update transactions
are executed first on the primary copies, so that all update
transactions are guaranteed to be one-copy serializable
by concurrency control processes in the primary copy
sites. In this section, we prove that our method guarantees
insular consistency for any execution of transactions by
showing that a read-only transaction passed theValidation
Rule of the previous section satisfies1SRwith all update
transactions.

Lemma 1 for 8xi 2 Vw(Ti), 8yj 2 Vw(Tj) such that
Ti; Tj 2 H andTi 6= Tj ,

xi �
�

nf yj () Ti !
� Tj 2 SG(H)3

PROOF

(If) We can prove by the mathematical induction on the path
length fromTi to Tj in SG(H).

Basis of induction.If Ti ! Tj 2 SG(H), by the def-
inition of the serialization graph, there must exist at least
one of three conflicts, i.e., a write-read conflict, a read-write
conflict, and a write-write conflict, betweenTi andTj .

3
SG(H) denotes the serialization graph [3] for a historyH , and

Ti !
�
Tj 2 SG(H) means that there exists a path fromTi to Tj in

SG(H).

1. write-read conflict:
There exists a version of a data itemz, zi, such that
zi 2 Vw(Ti) \ Vr(Tj). xi =w zi andzi �wr yj infer
xi �

�

nf yj .

2. read-write conflict:
There exist two versions of a data itemz, i.e., zj�1
and zj , such thatzj�1 2 Vr(Ti) and zj 2 Vw(Tj).
zj�1 �ww zj andzj�1 �wr xi infer xi �rw zj, and it
andzj =w yj subsequently inferxi ��nf yj .

3. write-write conflict:
There exist two versions of a data itemz, i.e., zi and
zi+1, such thatzi 2 Vw(Ti) and zi+1 2 Vw(Tj).
xi =w zi, zi �ww zi+1, and zi+1 =w yj infer
xi �

�

nf yj .

Induction step. we suppose that
Ti !

n Tj 2 SG(H) =) xi �
�

nf yj for any positive
integer n. If Ti !

n+1 Tj 2 SG(H), there exists an
update transactionTk such thatTi !n Tk 2 SG(H) and
Tk ! Tj 2 SG(H). By the above assumption andBasis of
induction, xi ��nf zk andzk ��nf yj for 8zk 2 Vw(Tk).
Therefore, we havexi ��nf yj from the transitiveness of
the relation��nf .
(Only if) We can prove by the mathematical induction on
the number of times of the relational products of�nf .

Basis of induction.if xi �nf yj , namely,xi �wr yj
or xi �ww yj or xi �rw yj , Ti ! Tj 2 SG(H) by the
definition of the serialization graph and the meanings of the
relations�wr ,�ww, and�rw.

Induction step. For any positive integern, we let the
n-th transitive extension of�nf be �

n
nf and assume

xi �
n
nf yj =) Ti !

� Tj 2 SG(H). If xi �
n+1
nf yj , (1)

xi �
n
nf yj or (2) there existszk satisfyingxi �n

nf zk
and zk �

n
nf yj. In the case of (1), by the above in-

duction hypothesis, we haveTi !� Tj 2 SG(H). In
the case of (2), by the above induction hypothesis, we
haveTi !� Tk 2 SG(H) andTk !

� Tj 2 SG(H).
Consequently, we haveTi !� Tj 2 SG(H). 2

Theorem 1 a read-only transactionTr in H passes the
Validation Rule if and only if the serialization graph of the
sub-historyHs, SG(Hs), consisting ofTr and all update
transactions inH is acyclic.

PROOF

(If) Suppose thatTr fails to satisfy the validation condi-
tion. Then, as Figure 5-(a) shows, there exist two versions,
i.e., xi 2 Vw(Ti) and yk 2 Vw(Tk), such thatxi; yk 2

Vr(Tr) but RBVyk [x] = V N (xj) wherexj 2 Vw(Tj)
andV N (xi) < V N (xj), that is,RBVxi [x] < RBVyk [x].
Fromxi 2 Vr(Tr), we have

Tr ! Tj (1)

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS’97)
0-8186-8114-4/97 $10.00 � 1997 IEEE

yk

xjxi
Ti

Tj

Tk

RBVyk[x] = VN(xj)

Tr

(a)

(b)

xi

Tr

RBVyj[x] ≥ VN(xi+1)

yj

Tn. . .xi+1T1

T2

Figure 5. The proof of Theorem 1

RBVyk [x] = V N (xj) infersxj ��p yk by the definition
of RBV , and byLemma 1we have

Tj !
� Tk or Tj = Tk (2)

In addition,yk 2 Vw(Tk) \ Vr(Tr), namely, there exists
a write-read conflict betweenTk andTr on yk, so that we
have

Tk ! Tr (3)

From (1), (2), and (3), we haveTr ! Tj !
� Tk ! Tr

or Tr ! Tj(= Tk) ! Tr . Hence, there exists a cyclic path
in SG(Hs), which is a contradiction.
(Only if) Suppose that there exists a cyclic path inSG(Hs).
Since the sub-history of all update transactions is one-
copy serializable,Tr must be included in that cyclic
path. Without loss of generality, let that cyclic path be
Tr ! T1 ! � � � ! Tn ! Tr . FromTr ! T1, there exists
a data itemx such thatx 2 R� Set(Tr) \W � Set(T1).
As Figure 5-(b) shows, if we choosexi 2 Vr(Tr) then
xi+1 2 Vw(T1). FromTn ! Tr , there existsyj such that
yj 2 Vw(Tn) \ Vr(Tr). SinceT1 !� Tn, xi+1 ��p yj
by Lemma 1, and then by the definition ofRBV ,
RBVyj [x] � V N (xi+1) = RBVxi [x] + 1. Consequently,
we haveRBVyj [x] > RBVxi [x] for xi; yj 2 Vr(Tr), so
thatTr does not satisfy the validation condition, which is a
contradiction. 2

The aboveTheorem 1and the serializability theorem of
[3] directly infer the next corollary.

Corollary 1 If all read-only transactions in a historyH
pass theValidation Rule,H satisfies insular consistency.

5. Discussion and Conclusion

In this paper, we proposed a replication method which
is applicable to large-scale distributed database systems.

While our method bases on the traditional primary copy
method, it uses insular consistency as a correctness crite-
rion for the execution of transactions. Moreover, It updates
synchronously only the replicas in the cluster that contains
the primary copy and then asynchronously propagates the
update to the other replicas. Our method can improve data
availability for read-only transactions more than other tra-
ditional methods can do.

We introduced the notion of version vectors to maintain
in each replica the necessary information to guarantee in-
sular consistency for execution of transactions. By integrat-
ing all necessary transmissions of information between sites
into the general 2PC protocol, our method does not need
any extra phase for exchanging messages related to version
vectors during the execution of a transaction.

The characteristics of our method in regard of four im-
portant measures are discussed as follows.

� Consistency: Insular consistency is a correctness cri-
terion that can be used more generally than other
application-specific correctness criteria. It guarantees
1SRfor any execution of transactions including a read-
only transaction and all update transactions. This im-
plies the result of a read-only transaction is the values
of data items in a database in a feasible consistent state.
Using insular consistency can improve data availabil-
ity for a read-only transaction by ignoring its relation
with the other read-only transactions.

� Availability: Traditional replication methods guaran-
teeing1SRhave a drawback that they degrade data
availability when a network partition failure occurs.
In our method using insular consistency, many read-
only transactions that cannot be executed to the end
with other replica control protocols because of a net-
work partition failure can be executed and committed,
so that data availability can be much improved.

An update operation in an update transaction cannot
be executed if the primary copy of a target data is in-
accessible. That is a restriction of the primary copy
method that guarantee1SR. While our method, having
regard to update performance, uses the asynchronous
update scheme for replicas out of the home cluster, it
copes with a site failure of the primary copy by keep-
ing the secondary copies in the home cluster equiva-
lent to the primary copy. As we suppose in this paper,
when more update requests are issued within the home
cluster than from the other clusters, we can maintain
update availability in the home cluster in a high degree
as compared with that in the other clusters.

� Performance: By using an asynchronous update prop-
agation scheme for replicas remote from the primary

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS’97)
0-8186-8114-4/97 $10.00 � 1997 IEEE

copy, response time of transactions can be highly im-
proved. On the other hand, throughput of transactions
is closely related to data availability. Since our method
improves data availability particularly for read-only
transactions as mentioned above, it can also increase
throughput of the system where read-only transactions
are predominantly issued.

� Storage and communication cost: The additional data
structures that are used for guaranteeing insular con-
sistency like version vectors inevitably lead to an in-
crease in the amount of storage and communication
messages. Their overheads are as follows.

1. Storage cost:
The storage cost of version vectors in the primary
copy isO(2n) and that of a secondary or tertiary
copy isO(n), wheren is the number of replicated
data items.

2. Communication cost of read-only transactions:
The amount of the additional messages transmit-
ted isO(mn), wherem is the average number of
data items read by a read-only transaction.

3. Communication cost of update transactions:
When we denote the average numbers of read op-
erations and write operations in the update trans-
action asr andw respectively, and denote the
numbers of secondary copies and tertiary copies
ass and t respectively, the amount of the addi-
tional messages transmitted at commit is as fol-
lows:

cost in Phase 1 + cost in Phase 2 + cost
of update propagation
= O(rn + 2wn) + O(wn(s + 1)) +
O(nwt)
= O(rn+ 2wn+wnd)

whered is the average number of replicas of a
data item, i.e.,d = s+ t+ 1.

As represented above, the storage and communication
cost of our method depends on the number of repli-
cated data items and the number of replicas. The num-
ber of replicated data items is closely related to the
granularity of replication. Generally, it can be vari-
ously determined by applications, and our method is
appropriate for a relatively coarse granularity such as
a fragment or a relation. As for the number of replicas,
a trade-off with data availability is needed.

On the other hand, our method can be incorporated with
other traditional replica control protocols for improving
data availability of read-only transactions against network
partition failures.

As for further works, It is needed to define more practi-
cal and more useful correctness criteria to improve perfor-
mance of data replication. In addition, considerations about
scalability of a system are required to design a replication
method for large-scale distributed systems.

References

[1] P. Alsberg and J. Day. A principle for resilient sharing of
distributed resources. InProc. of 2nd IEEE Int’l Conf. on
Software Engineering, pages 627–644, 1976.

[2] P. Aristides and A. Abbadi. Fast read-only transactions in
replicated databases. InProc. of 8th IEEE Int’l. Conf. on
Data Engineering, pages 246–253, Tempe, AZ, Feb. 1992.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman.Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[4] P. A. Bernstein, M. Hsu, and B. Mann. Implementing recov-
erable requests using queues. InProc. of ACM-SIGMOD
Int’l Conf. on Management of Data, pages 112–122, 1990.

[5] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consis-
tency in partitioned networks.ACM Computing Surveys,
17(3):341–370, Sept. 1985.

[6] S. Dietzen. Distributed transaction processing with Encina
and the OSF DCE. Technical report, Transarc Corporation,
Sept. 1992.

[7] H. Garcia-Molina and G. Wiederhold. Read-only transac-
tions in a distributed database.ACM Trans. on Database
Systems, 7(2):209–234, June 1982.

[8] D. Gifford. Weighted voting for replicated data. InProc. of
7th Symp. on Operating System Principles, pages 150–162,
Dec. 1979.

[9] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. InProc. of ACM-SIGMOD Int’l
Conf. on Management of Data, pages 173–183, Montreal,
Canada, June 1996.

[10] B. Oki and B. Liskov. Viewstamped replication: A general
primary copy method to support highly available distributed
systems. InProc. of 7th ACM Symp. on Principles of Dis-
tributed Computing, Toronto, Canada, Aug. 1988.

[11] R. Schlichting and F. Schneider. Fail-stop processors: An
approach to designing fault-tolerant distributed computing
systems.ACM Trans. on Computer Systems, 1(3):222–238,
1983.

[12] W. Weihl. Distributed version management for read-only
actions. IEEE Trans. on Software Engineering, 13(1):55–
64, Jan. 1987.

Proceedings of the 1997 International Database Engineering and Applications Symposium (IDEAS’97)
0-8186-8114-4/97 $10.00 � 1997 IEEE

