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Abstract—Most Internet services, including Web, FTP, and streaming, have been realized on top of TCP, which is the de facto

protocol for data delivery over the Internet. Therefore, in order to achieve high-performance data delivery over TCP, we thoroughly

analyze TCP-based data delivery and identify three critical mismatches in a general file system design while supplying data to TCP.

The first is the frequent sleeping/waking up of a server process that accompanies excessive context switching overheads due to

processing TCP data and ACK segments in different contexts. The second is the inefficient uniform data prefetching for TCP

connections, irrespective of their characteristics such as bandwidth, latency, and the status of a send buffer. The third is inefficient disk

access due to the ignorance of abrupt changes in TCP connections. As a remedy to these mismatches, we newly design a TCP-

plugged file system (TPF) which is comprised of three novel mechanisms, each of which relieves the identified mismatches, integrated

data sending routine, TCP aware data prefetching, and eager disk request cancellation. With these mechanisms, TPF becomes

capable of supplying data managed by a file system to TCP connections timely and seamlessly and becomes reactive to abrupt

changes in TCP connections. As a consequence, TPF provides minimal context switching overhead, high buffer utilization, and highly

effective disk access utilization. We have implemented and tested the mechanisms in Linux 2.4. The experimental results show that

the number of context switching is reduced by up to 40 percent and the overall system performance is improved by 3-34 percent.

Index Terms—Operating systems, file systems, TCP, data prefetching, disk scheduling.
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1 INTRODUCTION

BROADLY deployed Internet server systems, such as the
Web, FTP, and streaming servers, are generally

equipped with two indispensable I/O subsystems: network
subsystems, such as TCP and UDP protocol stacks, and disk
subsystems, such as ordinary file systems and databases.
Although each server system provides different types of
Internet services, there is one common and fundamental
operation of the systems: to deliver data managed by disk
subsystems to clients via network subsystems. During data
transfer in the server system, network and disk subsystems
must cooperate with each other.

For performance improvement of Internet server sys-
tems, most studies have focused on either optimizing
individual I/O subsystems [1], [2], [3], [4], [5], [6] or
eliminating data copying among the subsystems [7]. There
have been few studies about interoperation between two
subsystems, considering each subsystem’s specific mechan-
isms. For instance, previous studies have not addressed the
following issues: 1) how TCP mechanisms such as conges-
tion control and flow control will affect the internal
operations of a file system, such as file prefetching, disk
buffer management, and disk scheduling, or 2) what the
most efficient reaction of a file system would be when a
TCP protocol stack receives ACK (acknowledge), FIN, RST
(reset), and ECN (explicit congestion notification) [8]

segments. In an effort to find the best answers to these
questions, we decided to review a current file system
thoroughly in the context of TCP-based data transfer. Thus,
we have closely investigated the dynamics of running
Apache (HTTP) and Wu-FTPd (FTP) servers by observing
the following details:

1. TCP buffer profiles according to the bandwidth and
latency of a TCP connection,

2. TCP ACK and data segment processing mechanisms,
3. a data prefetching mechanism in a file system and

prefetched data access timing, and
4. the above three behaviors under severe network

congestion and a high connection abortion rate.

For this investigation, we narrowed down the network
subsystems to a TCP protocol stack since it is the de facto
transport protocol over the Internet and uses the Ext2 file
system of Linux, which has a page cache for data
prefetching and a disk scheduler to maximize disk
throughput. The overall I/O subsystem architecture of the
Linux is illustrated in Fig. 1. In the architecture, for sending
data via TCP connections, first, a server application loads
data from disk to a page cache and then copies the data to a
send buffer, initiating TCP/IP protocol processing. Last, the
processed data is delivered to NIC by DMA.

Our investigation disclosed the three rudimentary
operations of the file system, which are summarized as
follows:

. We observed frequent sleeping/waking up of the
server processes while sending TCP segments due to
the limited size of the send buffer for a TCP
connection. This problem becomes worse when the
connection has high latency because it leads to a large
number of unacknowledged TCP segments in the
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buffer and, finally, increases the number of pending
TCP segments in the buffer. Although the size
limitation of the buffer can be partly alleviated by
the adaptive resizing of the send buffer [9], a server
still suffers from the severe context switching over-
heads which accompany frequent sleeping/waking
up of server processes. This is because TCP data
segment sending routines and TCP ACK segment
receiving routines are executed in different contexts.

. TCP has a flow control and congestion control
mechanism to adapt itself to a dynamically changing
status of network paths between two end points of a
TCP connection. Therefore, at a given time, each TCP
connection has a different bandwidth and latency so
that it needs a different amount of data from a
storage in place to transmit. However, conventional
data prefetching mechanisms load the fixed amount
of data without considering the bandwidth and
latency of each connection. If too much data is
loaded for a low-bandwidth TCP connection, it will
waste disk bandwidth and memory. We need a new
prefetching mechanism to make a file system
capable of supplying data in a timely and contin-
uous manner to TCP connections.

. To deal with frequent network congestion in the
Internet, a variety of congestion control mechanisms
have been proposed. When a TCP connection detects
congestion symptoms, such as reception of dupli-
cated ACK and ECN segments, it reduces the size of
a congestion window by half. From the view point of
data delivery in a server, the bandwidth of the
connection will be cut in half immediately so that it
will not need data from storage as much as it did a
second before. However, current data prefetching
algorithms will continue to pump data out of storage
at the same rate. In addition, a recent study [10]
pointed out that abnormal TCP connection termina-
tion frequently occurs due to human behavior and
browser implementation. It reported that more than
15 percent of TCP connections were terminated by
RST segments. On the reception of an RST segment,
a server will not deliver data over the connection

immediately. However, a current file system keeps
pumping data out of a storage which will not be
delivered to clients until the corresponding file is
explicitly closed by the server application. Thus, we
need a file system which can deal with abrupt
changes in a TCP connection by either reducing the
data prefetching rate or by stopping prefetching for
an aborted connection.

In an effort to solve the identified design imperfection in the
disk subsystem, we have designed and implemented TPF in
Linux. Deliberating on our investigation into the TCP
protocol stack and the disk subsystem, we devised three
new mechanisms for the performance improvement of data
delivery over TCP: integrated data sending routine (IDRC),
TCP aware data prefetching (TDAP), and eager disk request
cancellation (EDRC).

First, IDSR is targeted for minimizing context switching
while sending TCP data segments and receiving TCP ACK
segments. The ACK reception routines and TCP data
sending routines of a TCP protocol stack are executed in
different contexts, leading a sender process to frequent
process blocking/waking up. It is inevitable in modern
operating systems since, in order to make them resilient and
responsive to multiple prioritized events, they have
adopted multiple and prioritized contexts such as a
hardware interrupt context, software interrupt context,
and process context. However, from the viewpoint of a
TCP data flow, it is more efficient to integrate the TCP data
sending and ACK reception routines that are originally
executed in different contexts so as to minimize the frequent
sleeping/waking up of the server process.

Second, we design an adaptive prefetching mechanism,
TDAP, which dynamically adjusts the amount of data to be
prefetched according to the dynamic states of a given TCP
connection characterized by a TCP flow control, a congestion
control, and the bandwidth and latency of two end points of
the TCP connection. By observing the movement of a TCP
sliding window along a TCP sequence space and the number
of pending segments in the send buffer, our new mechanism
calculates how much data needs to be loaded into a memory
buffer within a certain time constraint to sustain the outgoing
data rate of the connection.

Third, an eager disk request cancellation (EDRC) is to
maximize an effective disk throughput by making a disk
request scheduler responsive to the abrupt changes in TCP
connections, such as packet loss (duplicated ACKs),
congestion notification (ECN), FIN, and RST. On the
reception of those segments, EDRC scans the disk requests
in the disk scheduler. If there is any request which is related
to the TCP connection where abrupt changes occur, it either
moves the queued requests into a delay queue or cancels
the requests and frees the related memory pages, depend-
ing on the disk load. As a consequence, it enhances the
efficiency of the disk access and the memory utilization.

TPF is a part of our cluster-based Internet server
development project [11], [12], [13], [14]. In our server,
TPF has been integrated into Apache (HTTP), FTP, and
TCP-based streaming servers as the key primitive for a
TCP-based data delivery over the Internet. It can be also
extended to other application areas, including a content
distribution network [15] and peer-to-peer file sharing, as
long as they use TCP as a transfer protocol. TPF is not
targeted to small file transfers that do not appear to be
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affected by TCP network dynamics, but, instead, to large
files and streaming data transfers.

The remainder of this paper is organized as follows:
Previous studies about data delivery over the Internet in
operating systems will be explained in Section 2. In
Section 3, TPF with elaboration on three novel mechanisms
will be given in detail. Section 4 presents our experimental
results and we conclude our paper in Section 5.

2 RELATED WORKS

2.1 Previous Research on Internet Server

There have been many studies on the performance
improvement of operating systems in the context of Internet
servers [1], [2], [3], [4], [5], [6], [12]. Most of the studies
optimized network or disk subsystems in the scope of
individual subsystems. In the intersubsystem scope, a few
studies have explored intersubsystem data copy elimination
[7] and inbound/outbound TCP connections splicing [16],
[17]. In IO-Lite [7], with a unified buffer which can be
accessed and managed by both the disk and the network
subsystem, all data copying and multiple buffering across
subsystems can be eliminated. Our study has focused on
optimizing data delivery timing and context between
subsystems so that it is complementary to IO-Lite. TCP
splice maximizes the performance of an application-layer
proxy by achieving the tightest possible coupling between
the two TCP connections coterminating at the proxy. With
TCP splice, incoming data packets from one TCP connection
are forwarded to the other TCP connection without
intervention of the proxy so as to reduce the scheduling
and context switching overhead. Conceptually similarly, we
have spliced a disk subsystem to a TCP protocol stack by
providing a new prefetching mechanism, a disk scheduler,
integrated TCP data, and ACK segment processing routines
especially optimized for the dynamic characteristics of TCP
connections.

UCFS, a user-space file system for Web proxy servers [18],
was devised to drastically improve their I/O performance. It
manages its own data and metadata in a user space by
bypassing an in-kernel file system. Its cluster-based data
block management scheme, or an extension of the log-
structured file system (LFS) [19], significantly improves disk
I/O performance by clustering Web files that are likely to be
requested together. In their approach, they only focused on
the reduction in disk access without considering data
delivery over a network connection, which is the integral
part of proxy servers. We assert that TPF must work together
with UCFS for further performance improvement.

ECEM [12] manages correlated I/O events from the
network and disk subsystem in such a way that it
minimizes the chance of process scheduling during data
copying between an application buffer and kernel buffer. By
doing so, it also improves data cache efficiency since two
data copying operations between an application buffer and
a kernel buffer are executed continuously without yielding
the CPU to other processes. This approach, however, is only
applicable to the case where data is copied via an
application buffer and is not applicable to the case where
data is copied from a disk buffer to a network buffer
directly, which is quite a popular practice in modern
networked servers. Besides, this approach requires program
modification to use an ECEM library and recompilation,

which makes it less viable in practical servers. Our TPF is
designed to support direct copying from a disk subsystem
to a TCP protocol stack and to require no program
modification.

The dynamic buffer allocation method [9] addresses how
to allocate an optimally sized send buffer for an individual
TCP connection that enables the TCP connection to use the
maximum available bandwidth. The size is determined by
considering the bandwidth-delay product, congestion win-
dow, RTT, and ReadTime (data fetching time from a disk) of
a given connection. It minimizes the frequency of data
misses in a TCP connection by dynamically increasing or
decreasing the size of the send buffer. In this approach,
ReadTime plays a key role in deciding how much data needs
to be loaded into the buffer from a disk. Basically, this
approach tries to fetch enough data to fill the send buffer at
every RTT, which will severely damage overall disk
throughput due to frequent and fragmented disk access,
which was not identified in their simulation-based study.
Most modern operating systems are equipped with a data
prefetching mechanism for maximizing disk throughput,
minimizing disk access latency, and overlapping computa-
tion and disk access (asynchronous disk access). Our TPF is
based on a prefetching mechanism and optimizes the
amount of data to be prefetched by considering the
characteristics of a given TCP connection as well as a disk
subsystem. As a result, we believe that TPF and this method
(dynamic buffer allocation excluding the ReadTime part)
complement each other, producing further performance
improvement.

2.2 Previous Research on Multimedia System

This research group proposed many techniques for the
improvement of streaming data transfer from servers to
clients and guaranteeing stream rates [20], [21], [22], [23]. In
the proposed techniques, buffer management and prefetch-
ing mechanisms for streaming data have been the essential
components of the servers. A prefetching method is used to
allocate data ahead of the actual data transfer, using read-
ahead techniques which are usually customized for the
streaming characteristics. There are two kinds of read-
ahead techniques: fixed size (FS) [20] and fixed duration
(FD) [21]. In FS, a disk subsystem prefetches the fixed
amount of data. It is simple, but inefficient if there are
multiple, different rate streams in the servers. In FD, the
amount of prefteched data is proportional to the stream
rate. Our work, TDAP, is based on the FD.

In [22], the size of the read-ahead buffers changes
dynamically according to the requirements of each stream
media. At initialization, a fixed amount of memory is
allocated to all connections and then the amount is adjusted
with respect to the corresponding stream rate over time.
Using CTL (Constant Time Length)-based models, the
optimal number of buffers can be allocated to each stream.
When it comes to implementation, CTL requires very
restricted meta information that is hardly provided by
modern operating systems.

Recently, [23] was proposed to guarantee the bandwidth
of stream data and the fast response of text data in an
integrated multimedia server. It is based on FD and tackles
the limitation of CTL by dynamically sensing characteristics
of each stream. It senses the data consumption rate of a
stream server and monitors the disk I/O time of its request

LIM AND PARK: TPF: TCP PLUGGED FILE SYSTEM FOR EFFICIENT DATA DELIVERY OVER TCP 461



dynamically. With the collected information, it adjusts the
read-ahead size and the size of data buffer for each stream.

Our newly proposed prefetching mechanism has a few
strengths over the two previously mentioned approaches.
When it comes to data transferring over TCP, the send
buffers of TCP connections play a crucial role in reflecting
the dynamic characteristics of TCP connections. Previous
studies have not taken the buffering effect in the send
buffers caused by high-latency and the TCP flow control
mechanism into account, but TPF takes full advantage of
the effect. Also, our direct mapping TCP sequence space
into a file prefetching space provides more fine control than
previous approaches do. Furthermore, our approach is
enhanced with a new disk-scheduling mechanism which
copes with abrupt changes in TCP connections by either
delaying or cancelling queued disk requests if necessary.

3 DESIGN OF THE TCP-PLUGGED FILE SYSTEM

One of the most common, fundamental operations in
Internet server systems is to deliver data managed by a
file system to clients via TCP connections. In order to
improve the operation, we have investigated the server
systems in the context of TCP-based data transfer, yielding
two critical questions: 1) How will TCP mechanisms such as
congestion control and flow control affect the internal
operations of a file system such as file prefetching, disk
buffer management, and disk scheduling and 2) what will
the most efficient reaction of a file system be when a TCP
protocol stack receives ACK (acknowledge), RST (reset),
and ECN (explicit congestion notification) [8] segments. By
deliberating on the questions, we found three operations to
be improved in a file system when it was used as a data
provider to a TCP protocol stack, which are summarized as
follows:

. The routines for sending TCP segments and receiv-
ing TCP ACK segments are executed in different
contexts. Considering the fact that TCP ACK
segment receiving routines are invoked approxi-
mately half as frequently as TCP segment sending
routines due to the nature of TCP, the context
switching problem should be taken care of. More-
over, the limited size of the send buffer of a TCP
connection worsens frequent context switching
among processes.

. The fixed amount of data is prefetched, irrespective
of the dynamically changing status of each TCP
connection.

. Once issued, disk requests cannot be withdrawn
even if the will-be-loaded data is highly unlikely to
be used due to the abrupt change in the correspond-
ing TCP connections.

In an attempt to improve the above three operations, we
have designed a new file system, or TPF, which is especially
optimized for the components and mechanisms of a TCP
protocol stack. TPF has three novel mechanisms: IDSR,
TDAP, and EDRC. In the following sections, each mechan-
ism will be elaborated.

3.1 Integrated Data Sending Routine (IDSR)

IDSR is targeted to minimizing the frequent sleeping/
waking up of a server process while processing TCP data

and ACK segments by newly providing integrated routines
for sending data and receiving ACK in the same context. In
order to integrate the routines without breaking any
semantic of a TCP protocol stack and the integrity of
operating systems, we need to understand the TCP protocol
stack and the prioritized multiple-context concept of an
operating system in depth. In the following paragraphs,
both issues will be covered in detail and then IDSR will be
explained.

The key component of a network subsystem is a TCP/IP
protocol stack which is comprised of

1. TCP-packet processing routines including checksum
calculation, TCP packet header processing, TCP
segmentation, etc.;

2. TCP packet flow control routines, including a TCP
sliding window control, congestion control, flow
control, and packet retransmission;

3. memory buffer management, including a send and
receive buffer; and

4. four timers for maintaining established TCP
connections.

In this paper, we only focus on data delivery over TCP that
is steered by a TCP/IP protocol stack, as stated in the
previous section. By the TCP’s nature, all TCP packets sent
to clients must be ACKed by the clients and packet
transferring is accordingly controlled by the three TCP
control mechanisms mentioned above [24]. The packet
transfer rate and latency of each TCP connection vary
according to the packet consumption rate of a client-side
application and the dynamic status of the network path
established between the server and the client. From the
perspective of a TCP/IP protocol stack, a disk subsystem is
a data provider whose role is to load an adequate amount of
data from a disk to memory buffers by considering a data
sending rate of a corresponding TCP connection.

The two subsystems, that is, a network subsystem and a
disk subsystem, are mostly realized within an operating
system which has adopted an interrupt-based I/O request
processing scheme and multiple control contexts, such as a
process context, soft interrupt context, and H/W interrupt
context [25] with different priorities. The priorities of the
contexts are ordered like “H/W interrupt context > soft
interrupt context > process context.” Therefore, on the
occurrence of an H/W interrupt, a user process or a system
daemon, running in either a process context or a soft
interrupt context, should relinquish CPU for an H/W
interrupt handler running in an H/W interrupt context. In
this type of operating system, an Internet server application
running in the lowest priority, a process context, needs to
collaborate with H/W interrupt handlers and soft interrupt
handlers running in an H/W and soft interrupt context,
respectively, in order to transfer data from a disk into a
network interface card (NIC). Since processing I/O requests
in the different contexts incurs context switching and
scheduling, data transferring between the two subsystems
is not contiguous intrinsically in terms of context switching.
In the following paragraph, we explain how two subsys-
tems are implemented in multiple-context operating sys-
tems such as Linux, Unix, BSD, etc.

The execution of routines for sending TCP data and
receiving TCP ACK in a multiple-context operating system
occurs in the order shown in Fig. 2a.
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1. A server process reads data from a disk into a data
buffer (a page cache in Linux) in an H/W interrupt
context, C2. Depending on the server implementa-
tion, the process may copy the data into buffers in a
user space.

2. In the C1 context, the loaded data is copied into the
send buffer until the buffer has no more available
space in it. Then, the current process is scheduled
out, relinquishing the CPU to one of the other
running processes and waiting for available space in
the buffer. It occurs very frequently due to the
limited size of the send buffer.

3. The data in the send buffer is processed by a TCP
protocol stack in the C1 context and then it is copied
to NIC by DMA in the H/W context.

4. As a response, corresponding ACK segments are
transmitted and they are processed through a TCP
protocol stack in the C3 context.

5. Finally, in the same context, it relieves the ACKed
data in the send buffer, checking to see if there is a
waiting process for free space in the buffer. If there is
one, it wakes up the process.

As explained so far, whenever data is sent to a client, the
data should be ACKed [24], introducing additional context
switching for processing incoming ACK segments in a
server-side operating system. Worse, an ACK arrival rate is
approximately half that of a TCP data sending rate [24].
Thus, it is obvious that a current operating system suffers
from severe context switching overheads, being exacerbated
by the context switching overheads between Internet server
processes due to the limited size of a send buffer, as
described in the previous section. Therefore, in an effort to
reduce the overall amount of context switching, we
developed IDSR, which integrates the data sending routines

with the ACK segment receiving routines so as to be
executed in the same context.

A set of routines executed in the different contexts, C1
and C3 of Fig. 2a, are integrated into the one context C3
of Fig. 2b, which is represented with the thick black line.
In IDSR, the data sending routines are executed in the
same context just after the execution of the ACK receiving
routines is completed without context switching. In other
words, the ACK processing routines executed in a soft
interrupt context continuously send the next data whose
amount is identical to the amount of data just acknowl-
edged by the incoming ACK segments in the current
context. By virtue of the self-clocking1 behavior of TCP [24],
IDSR becomes able to continue to pump data to clients
without any delay. As a result, the sending rate of TCP data
segments can be synchronized with the incoming rate of
ACK segments, which reflects the status of an established
network path to clients.

3.1.1 Implementation Detail in Linux

This section illustrates how to implement IDSR in Linux 2.4.
The detail of data delivery over TCP at a function level is
pictured in Fig. 3.

Initially, a server process examines whether a target data
is in a page cache. If not, it will queue a disk read request
and then sleep. When the data from the disk is ready to
transfer, device_intr_handler(), or an H/W interrupt handler,
puts the data into the page cache by DMA. After that,
end_buffer_io_async() is executed in a soft interrupt context.
It manipulates a few flags for buffer management and
synchronization and then wakes up the sleeping process.
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The waken process copies the data into the send buffer of a
corresponding TCP connection in a process context. After
processing the data through a TCP/IP protocol stack in the
same context, the data is put into dev_pkt_queue. Finally,
hard_start_xmit() initiates DMA to copy the data into NIC in
a soft interrupt context.

In response to the data, a client generates an ACK
segment every two full TCP data segments. On the
reception of the ACK segments, netif_rx() is executed in
an H/W interrupt context, putting the segments into the
input_pkt_queue. In the soft interrupt context, the segments
are processed through the TCP/IP protocol stack. Last,
tcp_ack() is called, emptying the ACKed data in the send
buffer and waking up the sleeping process for a free buffer
space, if any.

In IDSR implementation in Linux, a set of routines
executed in a process and soft interrupt context in Fig. 3 is
integrated into one soft interrupt context, represented with
the dashed box. In the dashed box, the data sending
routines are executed in the same soft interrupt context just
after the execution of the ACK receiving routines without
context switching.

3.1.2 Scheduling Fairness Issue in Linux

As explained so far, IDSR integrates a set of routines for
sending data in a process context into the routines (soft
interrupt handler in Linux) for processing ACK segments in
a soft interrupt context. The soft interrupt handler always
preempts the execution of user processes as long as the
handlers are not turned off. From the standpoint of schedul-
ing and priority, it needs to be addressed that TCP data
sending routines are quite heavy due to checksumming, data
copying, and TCP segmentation and IDSR makes those heavy
routines run in a higher priority context than a process
context. Obviously, it will lengthen the overall execution of a
soft interrupt handler, leading other concurrently running
processes in a process context to starvation. To mitigate this
potential starvation problem, we introduce a low-priority
kernel daemon which deals with TCP ACK and data
segments in the same priority level as the process context’s.
In our implementation, we extended the softirqd [25] which is
already included in Linux in order to prevent the interrupt

live-lock problem of network packet processing from
degrading overall system throughput.

3.2 TCP Dynamics Aware Prefetching (TDAP)

To transfer data from disks to a client, first it needs to be
loaded into a memory buffer (a page cache in Linux). On
loading data, in a modern operating system, a prefetching
mechanism plays a key role in deciding how much data
needs to be loaded in advance for the performance
improvement of disk access. Conventional prefetching
mechanisms are rudimentary because they prefetch a
statically predetermined amount of data into a memory
buffer only if the data is accessed sequentially without
considering the dynamically changing bandwidth and
latency of corresponding TCP connections. For example,
in Fig. 4, the TCP connection for 1 Mbps video streaming is
handled in the same manner as the TCP connection for
64 kbps audio streaming; 31 pages are prefetched for each
connection in Linux. To send 31 pages, the TCP connection
for the video streaming takes 1 second and the other one for
the audio streaming takes 15.5 seconds. The last page of the
prefetched data for the audio streaming needs to be
retained in the page cache for 15.5 seconds. Obviously,
too much data is loaded for the audio streaming, causing
inefficient disk access and memory buffer utilization. What
is worse, in data-intensive servers, prefetched data are
prematurely evicted from the cache even before being
accessed, causing additional and unnecessary disk I/O [26].
To alleviate this problem, we devised a novel prefetching
mechanism, TDAP, which is adaptive to dynamic changes
in the bandwidth and latency of TCP connections. Prior to
illustrating how TDAP works, we need to explain how the
states of TCP connections are maintained in a TCP protocol
stack and how the bandwidth and latency of TCP
connections affects the dynamic profile of a send buffer.
Both issues will be explained in the following paragraphs.

Dynamic TCP states can be observed by reading the
variables of a TCP sequence space at a given moment that is
maintained by a TCP protocol stack [24].

. snd_nxt: The sequence number of the next data byte
to be sent.
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. snd_una: The sequence number of the first unac-
knowledged data byte. It is equivalent to the
sequence number of the greatest ACK received.

The left and right edge of the sliding window in Fig. 5 are

snd_una and

snd unaþminðadvertised window; usable send bufferÞ;

respectively. When a receiver acknowledges data, the

sliding window moves to the right along the TCP sequence

space. The relative motion of the two edges of the window

either increases or decreases its available buffer space for

outgoing data. The speed of the window movement is

mainly determined by the bandwidth of the TCP connec-

tion. For our new prefetching mechanism, we defined three

new variables, UAB, PB, and AB, in terms of the absolute

size of a buffer space in a send buffer.

. UAB (Un-Acknowledged Buffer): A portion of a send
buffer that is already sent but yet-to-be-acknowledged
so that the portion cannot be released yet for
retransmission. It is identical to snu nxt� snd una.

. PB (Pending Buffer): A portion of a send buffer that
is already written into the send buffer by a user
process (server process) but not sent to a client due
to the TCP flow control mechanism.

. AB (Available Buffer): A portion of a send buffer
that is immediately available for new data.

To see how the bandwidth and latency of a TCP
connection affect the size of PB, we set an experimental
environment that was comprised of a client, a server, and a
WAN router [27]. The router emulates a WAN environment
by providing a set of configurable parameters for each
connection such as latency, bandwidth, packet drop ratio,
etc. We opened a TCP connection between the client and the
server via the router and varied the bandwidth and latency
of the connection. When the connection became stable, the
size of PB was probed. Fig. 6 illustrates that, as bandwidth
and latency increase, the sizes of PBs of 200 kbps, 1 Mbps,
5 Mbps, and 10 Mbps connections also increase up to 1, 38,
48, and 48 segments, respectively, whose upper bound is
limited by the size of the send buffer (128 Kbytes,
90 segments) and maximally allowable number of pack-
ets-in-flight. When the number of packets-in-flight reaches a
certain value (in Linux, approximately half of the send
buffer size), the actual packet transmission is suspended
until some of the sent packets are acknowledged. Therefore,
from the view point of a disk subsystem, PB is an important
factor for prefetching data from disks because PB can be
considered as a margin prior to the shortage of data in a
page cache. Thus, we decide to take full advantage of PB in
the design of our new prefetching mechanism, while
conventional prefetching mechanisms have not considered
the amount of PB in calculating the amount of data to be
prefetched.

In order to devise a TCP-friendly prefetching algorithm
from scratch, TDAP is based on two of the previously
mentioned factors: bandwidth and PB (by latency). New
state variables required for preserving the status of file
prefetching are defined in TDAP for an individual TCP
connection: LP , PP , and NPP in addition to UAB, PB, and
AB. These variables have the following meanings:

. LP : The greatest index of pages that are loaded into
a page cache.
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Fig. 4. Conventional prefetching mechanism (Linux).

Fig. 5. A data prefetching based on network bandwidth and latency.



. PP : The greatest index of pages that a prefetch has
requested, but that the file system has not yet
completed processing.

. NPP : The greatest index of the next-to-be-pre-
fetched pages

Whenever TDAP is activated, the following variables are
calculated to determine the optimal amount of data to be
prefetched:

. D1: The set of data that has already been put into the
send buffer, but has not been sent to a client due to
the TCP flow control mechanism.

D1 ¼ PB ¼ �ppos� snd nxt: ð1Þ

. D2: The set of data that resides in a page cache,
waiting to be moved to a send buffer.

D2 ¼ LP � �ppos: ð2Þ

. D3: The set of data that may not reside in the page
cache, but for which the corresponding disk requests
are already generated and enqueued for prefetching.

D3 ¼ PP � LP: ð3Þ

. D4: The set of data which has not been prefetched
yet, but will be prefetched in the next prefetching
trial.

D4 ¼ NPP � PP: ð4Þ

D1 is identical to PB, as shown in Fig. 5.
To estimate the amount of data to be prefetched, or D4,

we consider the current network characteristics that are
reflected in D1 and the moving speed of snd_una, or the
TCP ACK arrival rate with which we can measure the
approximate bandwidth of a given TCP connection. The
amount of data which resides in a physical memory, or not
in the memory but prefetched, is D1þD2þD3. It takes

Tn ¼
D1n þD2n þD3n

Bn
ð5Þ

for the data to be sent to clients where n denotes the
nth connection and Bn denotes bandwidth of the
nth connection. In other words, Tn is the time margin

before data miss occurs in the page cache in data
transmission of the nth connection. TDAP needs to keep
Tn close to TD to sustain the outgoing bandwidth of the
nth connection without data miss, where TD is the ideal
data buffering time and is calculated as follows:

TD ¼ 2 � BD

Bnet
; ð6Þ

where BD is a measured disk bandwidth against random
disk I/O access and Bnet is

PN
i¼1 Bi or the overall network

bandwidth at the moment. The 2 coefficient is necessary
since, at the moment when ppos is moving into a current
prefetching window, queuing disk requests for the next
prefetching window is heuristically optimal.

Whenever the sliding window moves to the right and
Tn � TD

2 , TDAP will prefetch D4 KBytes to keep Tn close to
TD, as follows:

D4 ¼
minðTD�TnBn

; Ma

Bn=Bnet
; HmaxÞ; if TD2 � Tn

0; if TD2 < Tn;

(
ð7Þ

where Ma is the amount of memory that is available for
prefetching. Ma is obtained by subtracting the amount of
memory holding data that is prefetched but not yet accessed
from overall memory in the page cache. The second term of
(7) is to prevent page thrashing, where prefetched but yet-
to-be-accessed pages are prematurely evicted from the
cache, causing additional disk I/O. In other words, TD�TnBnet

is
for proportionally sharing disk bandwidth and Ma

Bn=Bnet
is for

proportionally sharing available memory among TCP
connections. The last term of (7), Hmax, is the maximum
number of pages bounded by underlying devices. For
example, in an SCSI disk controller, the maximum number
of elements in a scatter-gather list is bounded above by 128.
Thus, at most 128 pages in Linux can be included in a single
scatter-gather list, which is mapped to a single disk I/O
request. For a 516 Kbyte prefetching operation, however,
two disk I/O requests, one for 512 Kbytes and the other for
the remaining 4 Kbytes, are generated due to the constraint
of a scatter-gather list, degrading the performance of disk
access. In order to elude this problem, Hmax limits the
maximum size of a single prefetching operation.

3.2.1 TDAP Comparison

For prefetching, Linux defines the following variables [25]
for each open file:

. f raend: Position of the first byte after the read-
ahead group and the read-ahead window.

. f ralen: Length in bytes of the current read-ahead
group. The group of data requested in the last read-
ahead operation.

. f rawin: Length in bytes of the current read-ahead
window. The group of data requested in the last two
read-ahead operations.

. f ramax: The maximum number of characters to get
in the next read-ahead operation.

. �ppos: Byte position of read data at a given moment.

Fig. 7 illustrates the interaction between a TCP sequence
space and a Linux prefetching space. Whenever the right
edge of a sliding window increases, data is put into the
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Fig. 6. The size of the Pending Buffer (PB) with varying bandwidth and

latency.



usable window, moving �ppos to the right. When �ppos
reaches the point, f raend� f fralen, f rawin, and f ralen
move to the right by f ramax, 31 pages (4,096 bytes/page)
in a steady state. f ramax is fixed and it is not sensitive to a
sliding speed of the window (connection’s bandwidth).

Prefetching a fixed amount of data leads to low efficiency
of memory-buffer utilization and disk access. For example,
TCP connections for both 64 Kbps music streaming and
1 Mbps high-quality video streaming prefetch the same
f ramax amount of data, or 31 pages (124 kbytes) into a
page cache. It will take 17.32 seconds and 1 second to send
all data in the cache, respectively. In the presence of
memory pressure, prefetched data is likely to be evicted
from the cache by a Linux memory management daemon,
bdflush, even before they are sent due to the shortage of
memory buffer. It is unlikely, in TDAP, if TD is 2 seconds,
that 1 page and 248 pages will be prefetched, respectively,
for both cases and the occupied memory space will be
released in 2 seconds, improving the efficiency of memory-
buffer utilization and disk access.

3.3 Eager Disk Request Cancellation (EDRC)

In this section, we describe the solution for the most
effective reaction of a disk subsystem when a TCP protocol
stack receives a duplicated ACK, FIN, RST, and ECN
segment.

On the reception of an RST and FIN segment, a disk
subsystem releases kernel-data structures, such as TCP
send/receive buffers and related metadata structures
owned by the corresponding TCP connections, terminating
data transmission over the TCP connections immediately.
On the other hand, the reception of duplicated ACK and
ECN segments activates a TCP congestion control mechan-
ism that cuts down the congestion window by half, also
reducing the transmission rate of the corresponding TCP
connections by half. In both cases, a conventional disk
subsystem will not take any immediate action against the
changes. Therefore, it continues to load data whose disk
requests are already created and queued to the disk queue,
wasting disk bandwidth and memory. The prefetching will
stop only after the corresponding file control (generally
called as a file descriptor) is explicitly closed by a server
application. Prefetched data will remain in the memory

until an operating system runs out of memory so as to
invoke a buffer replacement daemon [25]. In this design,
there is an obvious downside; data which is highly unlikely
to be accessed in the near future will be loaded at the
expense of disk bandwidth and memory buffer. For
example, let us assume that an ECN segment arrives at a
NIC, as pictured in Fig. 8a. A TCP protocol will reduce the
congestion window size by half, decreasing the transmis-
sion rate of the corresponding TCP connection by half. At
that moment, disk requests for prefetching in a disk request
scheduler will be issued to a disk without reflecting the
abrupt changes in the connection. The prefetching will load
twice the amount of data to sustain the half-reduced
outgoing transmission rate of the connection. If there is
insufficient memory and a disk is busy, the prefetching will
sacrifice the overall performance of a server system.

In order to get deep insight into a disk subsystem, we
profiled a running Apache HTTP server, mainly focusing
on a disk request queue and page allocation/reclamation
for prefetching. For profiling, we interconnected a server
with 1.8 GHz Pentium 4 and 1 G memory, and clients by a
Gigabit ethernet. The clients established HTTP connections
to the server and then downloaded movie files from the
server as fast as possible. Fig. 9a shows the average number
of queued disk requests (AQDR) in the disk request queue
and the number of the queued disk requests per TCP
connection. As the number of connections increased, AQDR
also increased up to the point of 150 connections. After that,
the system is saturated due to heavy disk load. When there
are 200 connections, AQDR appears at around 250, which
means 250 issued requests are waiting for disk service at a
given moment. As the number of client connections
increased AQDR/connection decreased from 2.3 to 0.8.
Actually, the number of disk requests generated during
prefetching outnumbered 250, but the elevator scheduling
algorithm [25] sorts and merges incoming requests to boost
disk throughput, yielding relatively small AQDR/connec-
tion. Fig. 9b shows the number of pages (4 Kbytes) allocated
for prefetching and the page reclamation time that shows
how long the prefetched pages stay in the page cache prior
to reclamation. Each disk request reserves 300—70 pages for
will-be-loaded data with respect to the number of connec-
tions. After prefetched pages stay in the page cache for
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21-34 seconds, they are freed for other data. Based on the
profiling result, we can derive one fact that, even when a
TCP connection is aborted by RST or FIN, the current Linux
will continue to prefetch 1.2 Mbytes to 0.29 Mbytes and the
loaded pages will stay for 21 to 34 seconds in the cache,
wasting the memory pages and disk bandwidth.

We devised an eager disk request cancellation mechan-
ism (EDRC) which scans queued disk requests in a disk
queue, either moving selected requests into a delay queue
or cancelling them immediately according to the type of
received segments in the corresponding connections.
Fig. 8b illustrates EDRC with an additional delay queue.
On the reception of an RST segment, EDRC scans the
disk requests queued in a disk request queue. If there is
any request that is germane to the TCP connection, it
eagerly removes the requests out of the queue, freeing the
memory allocated to the requests for DMA. On the
reception of both ECN and duplicated ACKs, related disk
requests are moved to the delay queue temporarily or the
deadline of the disk requests is increased by TD

2 , depend-
ing on disk load. If a disk is underutilized, EDRC will not
take any action against the reception of duplicated ACKs
and ECN. In brief, EDRC enhances the efficiency of
resources, such as disk-bandwidth and memory utilization,
by reclaiming the resources allocated to TCP connections
when the connections require less resources.

3.3.1 Interaction with a Current Linux Disk Scheduler

The ultimate goal of a Linux disk scheduler is to maximize
throughput by minimizing a disk-head seek time. In

addition, starvation and fairness also need to be considered.
The organization of the scheduler is illustrated in Fig. 10.
The block layer generates disk I/O requests into the
I/O scheduler. Then, the scheduler sorts and merges the
requests according to the scheduling policy (Linux 2.4
adopts an elevator algorithm). Finally, the requests are
queued to the device queue and a disk interrupt handler
services the requests one by one.

In our Linux implementation, EDRC scans the device
queue and moves selected disk requests to a delay queue.
After a specified delay time passes, it puts the requests back
to the device queue. Since EDRC does not modify any
current I/O scheduling policy and its implementation, it is
complementary to the existing I/O scheduler. By adding
minimal extra codes for a scanning operation and a delay
queue, EDRC improves an effective disk throughput and
memory utilization, making the disk scheduler responsive
to abrupt network changes such as packet loss (duplicated
ACKs), congestion notification (ECN), and RST.

4 PERFORMANCE EVALUATION

In this section, we present performance results obtained
with our prototype implementation of TPF in Linux 2.4. It
was developed as a kernel module with an internal code
patch to sendfile() without any modification to the current
syntax of sendfile(). Hence, neither application modification
nor recompilation is required to utilize TPF as long as
applications use sendfile() as a data transfer primitive. An
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Fig. 8. Eager disk request cancellation. (a) Conventional disk scheduling. (b) EDRC-based disk scheduling.

Fig. 9. Disk subsystem profiling result. (a) Disk queue profiling. (b) Page allocation/reclamation profiling.



Apache HTTP server [28] was configured to use sendfile() in
our experiments.

A server running Apache has a 1.8 GHz Pentium 4
processor, 1 GB main memory, and Seagate SCSI ST-
373307LC disk. Four client machines with the same H/W

specification to the server were used to drive the server
with a variety of input patterns. Especially, for WAN
environment emulation, we used a NIST WAN router [27].
All machines were interconnected by Gigabit Ethernet. TPF

is targeted for performance improvement of servers which
handle a number of concurrent TCP connections. Therefore,
the performance metric to be measured in the following

experiments is overall server transmission rate under
various workload patterns.

4.1 Various Disk Load and Memory Cache Hit Rate
of IDSR

The first experiment measures the performance of IDSR by
varying the locality of downloaded data. Increases in the
locality decrease the disk load in the server so that we can
observe how IDSR operates with respect to changing disk

load and memory requirements. At the time when an
experiment is initiated, all clients establish TCP connections,
send HTTP requests to Apache, and then download the target

movie files (384 MBytes) as fast as possible. At 20 locality,
20 percent of clients download the same movie file.

The overall server bandwidth with increasing the
number of simultaneous client connections and the locality
of the downloaded data is illustrated in Fig. 11. When the
locality is at 0 percent, the bandwidth of the conventional
Linux and IDSR decreases from 312 Mbps to 152 Mbps and
from 324 Mbps to 157 Mbps, respectively, as the number of
simultaneous connections increases. Our observation into
the degradation demonstrates that more than 70 percent of
CPU time is idle when there are 10 connections and the
CPU idle time is increased as the number of simultaneous
connections is increased by up to 84 percent, as shown in
Fig. 11c. Therefore, it is ensured that the performance
inhibitor of the server is the disk bottleneck. Even though
both cases are hit by significant performance degradation,
IDSR shows 5-12 Mbps (4-5 percent) bandwidth improve-
ment as compared to the conventional Linux. Fig. 11b
confirms that around a 10 percent decrease in the number of
context switching is achieved by IDSR.

As the locality is increased, the bandwidths of both cases
are improved. This is because the disk load is decreased due
to the proportional increase in the memory cache hit rate.
When the locality is 100 percent, 612 Mbps, the peak
performance of IDSR is obtained. The performance im-
provement ranges from 49 Mbps to 68 Mbps (11-13 percent)
as compared to Linux. The CPU utilization reaches to
0.7-0.91. One interesting observation at 100 percent locality
is that the peak performance degradation with increasing
connections is approximately 12 percent, a significantly
reduced result, compared to 50 percent of 0 percent locality.
Differently, the number of context switching soars over
50,000, yielding the 12 percent performance degradation.
IDSR always achieves the better performance in overall
ranges, showing around 5 percent to 13 percent according
to the locality.

In order to get deep insights into the running Linux kernel
with IDSR, we performed a system-level profiling by using
oprofile [29], which is capable of collecting execution profiles
of all execution entities of the Linux OS including user
processes (thread-level), libraries, and the kernel itself. Fig. 12
shows the profiling results with 200 TCP connections and
100 percent memory cache hit rate. The symbols in boldface
represent different entities: Apache (httpd), network device
driver (ns83820), and the Linux kernel (vmlinux). The most
interesting routines are listed selectively in Fig. 12. Around
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Fig. 10. Linux disk I/O scheduler.

Fig. 11. Network transmission rate and context switching overhead. (a) Transmission rate. (b) Context switching. (c) CPU utilization.



33 percent of CPU cycles are consumed for data copying,
memory allocation, and scheduling, while TCP and IP take
20 percent and 15 percent, respectively, for protocol
processing. On the other hand, Apache itself takes only
0.27 percent of the CPU cycles. This is because HTTP
protocol processing in a user mode is minimal in our
experiments since a single TCP connection generates only
one HTTP request to download a movie file, so, overall, we
have a total of 200 HTTP requests during profiling. With
IDSR, we found two outstanding routines: wait_for_tcp_
memory and __wake_up. The names of functions are self-
explanatory. wait_for_tcp_memory at 0.045 percent, 58 C-code
lines and 0.77 percent of __wake_up, eight C-code lines are
reduced to 0.001 percent and 0.191 percent, respectively.
They are significantly reduced by IDSR, considering the
small number of C-code lines. Therefore, our profiling
result confirms that IDSR minimizes the frequency of
scheduling.

4.2 Fairness for Low Priority Process of IDSR

In order to investigate the process scheduling fairness

problem caused by IDSR, we run an HTTP server together

with a user process that does matrix multiplications (MM)

repeatedly. The MM process runs entirely in a process

context, the lowest priority in Linux, making it vulnerable

to higher priority routines. Fig. 13 illustrates the throughput

of MM under three cases: intact Linux, IDSR running in a

soft interrupt context, and IDSR with sofirqd, a low-priority

daemon. In the experiment, to keep the CPU busy, the

locality was set at 0 percent and, to impose the same

amount of load to the server system, clients were set to

download files at a fixed speed ranging from 100 Mbps to

400 Mbps. As the downloading speed is increased, the MM

throughput is decreased in all cases. As expected, IDSR

shows the worst throughput. The throughput degradation

of MM by IDSR is approximately 21-40 percent compared to

Linux. The degradation was compensated for by introdu-

cing softirqd, showing almost the same throughput to Linux.

This result convinced us that the fairness issue in IDSR can

be minimized by using a low-priority kernel daemon.

4.3 Bandwidth Effect of TDAP

In the previous experiment, all clients download movie files
from the server as fast as possible, evenly sharing available
server bandwidth so that all connections have a similar
bandwidth. As a result, the same amount of data is
prefetched for all connections, making TDAP have no
impact on server performance. So, in order to highlight how
TDAP works, we divided connections into two groups; one
is 1 Mbps connections and the other is 200 Kbps. One Mbps
represents high-quality video stream and 200 Kbps repre-
sents audio streaming on the Internet. The 1 Mbps clients
consume received data at 1 Mbps. In this experiment, the
number of 1 Mbps connections is fixed at 180 and the
number of 200 Kbps connections is increased from 100 to
300. The average bandwidth of each group is illustrated in
Fig. 14. Three bars represent the average transmission rate
of the conventional Linux, IDSR, and IDSR + TDAP from
left to right.

Fig. 14a shows the measured average bandwidth of the
1 Mbps group. In Linux, as the number of 200 Kbps
connections is increased, the bandwidth drops steeply from
675 Kbps to 440 Kbps. Comparatively, IDSR shows much
improved bandwidth ranging from 718 Kbps to 580 Kbps.
Last, IDSR enhanced with TDAP outperforms the other two
methods. Its bandwidth ranges from 816 Kbps to 680 Kbps,
achieving 11-15 percent and 16-36 percent improved
bandwidth compared to that of IDSR only and Linux,
respectively. On the other hand, the bandwidth degradation
ratio of 200 Kbps connections ranges from 15 percent to
30 percent, much smaller than that of 1 Mbps, 32-56 percent.

In the experiment, TD ranges from 2.76 to 3.08 seconds
with respect to the number of 200 Kbps connections.
Therefore, around 184 Kbytes and 24 Kbytes are loaded
on prefetching for 1 Mbps and 200 Kbps connections,
respectively, while 128 Kbytes are loaded for 1 Mbps and
200 Kbps connections in the other two cases. For a 1 Mbps
connection, TDAP generates a disk request to load
184 Kbytes, which is 56 Kbytes larger than for other cases.
Also, disk request generation rates are 0.69 requests/sec for
TDAP and 1.02 requests/sec for the other cases. When it
comes to disk access, a rule of thumb is to load as much
data as possible in a single request in order to achieve high
disk throughput. One hundred eighty-four Kbytes is
determined by TDAP so as to increase overall disk
throughput without sacrificing the transmission rates of
200 Kbps connections. We also measured page thrashing,
wherein prefetched pages are prematurely evicted from a
page cache without being accessed. In the IDSR case,
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Fig. 12. Execution profile (100 percent memory cache hit rate).

Fig. 13. IDSR fairness measurement.



approximately 160 pages/sec was observed, while TDAP
had no page thrashing because of the second term of (7).
Based on these observations, it becomes clear that, without
sacrificing the performance of connections with a low
transmission rate, we achieve more bandwidth for high
transmission rate by preventing page thrashing and prior-
itizing disk accesses according to the transmission rate of a
TCP connection.

Overall server transmission rates of the three methods
are illustrated in Fig. 14c. The rate of Linux is degraded by
23 percent to 37 percent as the number of 200 Kbps
connections is increased. The degradation is partly relieved
by IDSR, which shows a 20 percent rate drop. It is further
improved by TDAP, topping an approximately 12 percent
rate drop.

4.4 High Latency Effect (Large PB) of TDAP

In an attempt to observe the latency effect on the
prefetching mechanism, we put 200 msec and 10 msec
RTT into connections between a server and the clients. The
longer RTT leads to the larger PB, as pointed out in
Section 3.2. In our network configuration of Linux, the
maximum size of a send buffer is 128 Kbytes so that, with
200 msec RTT, a maximum of 40 segments will remain as a
pending segment in the buffer. We generate two input
patterns; Pattern 1 generates 100 1 Mbps connections and
terminates the connections all together after one second;
Pattern 2 is the same as Pattern 1 except that the connection
lifetime is increased to 3 seconds. Before starting the input
patterns, we establish 100 1 Mbps connection with 10 msec
RTT and 100 1 Mbps connection with 200 msec RTT, and
then run the server around one minute to bring the TCP
connections to steady states.

Fig. 15a illustrates the average bandwidth with Pattern 1.
Without TDAP, when 100 new connections are established,
the average bandwidth of 10 msec RTT connections
abruptly drops from 100 Mbps to 54 Mbps. The bandwidth
drop of 200 msec RTT connections is smaller than that of
10 msec RTT connections because more pending segments
in the send buffer of 200 msec connections are able to
tolerate the short-term bursting disk load. TDAP takes the
number of pending segments into its prefetching calcula-
tion in such a way that 10 msec RTT connections take
precedence of disk access over the 200 msec RTT connec-
tions. As illustrated in Fig. 15a, TDAP improves the

bandwidth of 10 msec RTT connections so that the
bandwidth reaches 200 msec RTT connections. In Fig. 15b,
the lifetime of bursting connections increases to 3 seconds.
After 2 seconds, all pending segments of 200 msec
connections are consumed. Then, all connections in the
groups start competing against each other to win disk
access so that all four cases show similar bandwidth at
63 seconds. This observation confirms that our TDAP
becomes capable of tolerating a short-term load variation
by utilizing pending segments in a send buffer.

4.5 TCP Connection Termination of EDRC

EDRC enables a disk subsystem to cancel disk requests
queued in a device queue on the reception of FIN or RST.
We observed the performance of EDRC when 15 percent of
connections were terminated by RST, as shown in Fig. 16a.
At the beginning of this experiment, clients established
300 connections and let them run for 60 seconds. At
60 seconds, clients instantly terminated 45 connections by
sending RST, reducing the overall number of connections
from 300 to 255. On the steady states of 255 connections, the
expected bandwidth is 168 Mbps. Thus, we expect that the
termination of 45 connections will increase the overall
bandwidth from 157 Mbps to 168 Mbps. Without EDRC, it
takes approximately 3 seconds to reach the target band-
width of 168 Mbps. EDRC reduces the time delay by a third,
or 2 seconds. On the reception of RST, it cancels all
corresponding disk requests and frees the memory pages
allocated for the disk requests immediately. As a result,
available disk bandwidth for other connections increases.
Our profiling shows that, during the first second, 70 queued
disk requests to load 5 Mbytes data into the page cache are
removed from the disk queue immediately and it saves
5,000 memory pages in the cache.

4.6 Network Congestion of EDRC

Fig. 16b shows the same experimental result on the
reception of duplicated ACK or ECN segments. In order to
emulate the reception of ACK and ECN segments, we modify
a server-side kernel to have a new system call that cuts the size
of the congestion window in half. In this case, not all disk
requests are delayed. Depending on the bandwidth of a given
connection, a portion of disk requests are delayed by putting
them into the delay queue of EDRC. After 60 seconds,
20 percent of an established connection’s congestion win-
dows shrink to half the size. Without EDRC, during that
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Fig. 14. Transmission rates in the combination of low and high bandwidth connections. (a) Transmission rate of 1 Mbps connections.

(b) Transmission rate of 200 kbps connections. (c) Overall server transmission rate.



period, no performance difference is observed, as shown in
Fig. 16b. It is unlikely that EDRC will present a bandwidth
increase, topping 162 Mbps. This improvement is less than
that of the reception of RST segments. Our profiling result
explains that, at 60 seconds, EDRC defers the execution of
23 disk requests to load 1.7 Mbytes data. This performance
result confirms that EDRC makes a file system more resilient
to abrupt changes in a TCP connection.

5 CONCLUSION

We have thoroughly analyzed the interaction between a file
system and a TCP protocol stack in general operating
systems on which widely deployed Internet servers run. We
found that there were three mismatches during the
interaction between a disk subsystem and a TCP/IP
protocol stack that limit the data delivery performance of
the servers. As a remedy to the mismatches, we have
designed a new file system amortized with three mechan-
isms, each of which proposes an efficient TCP segment
sending method, a TCP dynamics-aware data prefetching

algorithm, and an eager disk request cancellation or a delay
mechanism by sensing abrupt changes in TCP connections.
Regarding a programming API, we patched the internal
codes of sendfile() so as to require neither modification nor
recompilation of server program codes for utilizing TPF.
Thus, our implementation in Linux 2.4 presents its
feasibility and practicality and the experimental results
confirm 3-34 percent throughput improvement by reducing
the number of context switches and improving the effective
disk access ratio.

All three mechanisms are applicable to large and
continuous data transfer rather than small file transfer.
Only IDSR is beneficial for small file transfer due to the
TCP’s slow start mechanism. Three mechanisms can be
selectively adopted to improve a file system by considering
the characteristics of target applications. For example, for a
caching server, where most contents are retained in
memory without requiring disk accesses, only IDSR will
help to improve the performance of file transfer since the
other two mechanisms, TDAP and IDSR, are designed to
streamline the disk access of a file system. Differently, a
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Fig. 15. WAN delay effect: RTT 200 msec. (a) The bandwidth against Pattern 1: 1 second burstiness (60-61). (b) The bandwidth against Pattern 2:

3 second burstiness (60-63).

Fig. 16. The performance impact of eager disk request cancellation (in both cases, IDSR and TDAP are set on). (a) RST effect (b) Duplicated ACK or

ECN effect.



streaming server that supports a multiple of different

streaming rates concurrently can utilize TDAP for the

performance improvement. We believe that TPF can

facilitate the development of not only conventional applica-

tions, such as FTP, Web, and streaming over TCP, but also

emerging applications, such as NAS, Web-Disk, and Peer-

to-Peer, as long as they utilize TCP as a transport protocol

and file systems as a disk access method.
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