
A Cell-Based Approach for Evolutionary Component Repositories for
Intelligent Service Robots

Hyung-Min Koo, In-Young Ko

Information and Communications University (ICU)
119 Munjiro, Yuseong-gu, Daejeon, 305-732, Korea

{hyungminkoo, iko}@icu.ac.kr

Abstract

Self-growing software is a software system that grows

its functionalities and configurations by itself
according to dynamically monitored situations. A
component repository system is one of the essential
parts of self-growing robot software, and the SemBots
project at ICU is developing a cell-based distributed
repository system that reconfigures its structure
dynamically for reflecting accessibility evolutionarily.
To accomplish evolutionary repositories, we invent the
concept of a cell that is a logical grouping of
distributed repositories based on an ontology
hierarchy. In addition, it is also a unit for evolutionary
reconfiguration of the repository structure. In this
paper, we describe the requirements and architecture
of the cell-based repository system for self-growing
software. We also present a prototype implementation
and experiment of the repository system. Through the
cell-based repositories, we achieve improved
performance of self-growing actions for robots and
efficient management of components for developers.

Keywords: Self-growing Software, Intelligent
Service Robots, Distributed Ontology Repositories,
Distributed Component Repositories

1. Introduction

An intelligent service robot is “a robot that senses
the environment, recognizes troubled situations,
determines how to solve the problems and performs
relevant behaviors to overcome situations” [1].
Intelligent Service Robots can not contain all
functionalities that are required in an internal system,
because it is hard to anticipate all situations that robots
could be faced with. However, as the robotic
community grows gradually, software components are
continually being updated and new components are
continually being developed for this purpose.

A component repository system is one of the
essential parts of self-growing robot software. Robots
can add to their functionalities from various external
repositories, so that the internal repositories of robots
can contain essential components reflecting changes of
components and recognition of an environment. This
process is shown in Fig 1. Robots can share their
knowledge and components with each other by using a
repository system, so that the trials and errors of these
robots can be reduced and the robots’ self-evolution
processes can be improved. Component /application
developers can also share components to develop
robot components and applications. Through the
repository system, developers can register new robot
components and applications to make robots or human
users use them more effectively, and so that reusability
of components can be improved.

Fig. 1. Usages of Repositories for Intelligent

Service Robots

To apply the repositories to a robot platform, an

experiment was performed using the repositories on an
Infotainment robot platform from DASA tech. We
experimented with an initial and essential functionality
that supported the acquisition of ontologies and
components for robots. Fig 6 below shows screen shots
of the experiment with the components of the
repositories listed below them. For this experiment,
three external repositories were used.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 09,2010 at 03:41:04 EST from IEEE Xplore. Restrictions apply.

As Fig 2 shows, the robot contains laser-based, IR-
based and Sonar-based path planners in its internal
repository. The robot receives a human user’s
command, and then it tries to go to a goal position
based on a laser-based path planner. During navigation,
it meets an unknown and unexpected obstacle which
the laser sensor cannot detect. After that, the robot
changes from that path planner to other path planners:
the IR-based path planner and Sonar-based path
planner of internal repository. However, the robot
cannot avoid the obstacle with those sensor-based path
planners. The robot makes a decision that a Vision-
based path planner is needed to avoid this obstacle by
decision maker & learner, and connect to external
repositories. The robot finds out that the third external
repository contains a Vision-based path planner and
acquires that component. By changing the path planner
to Vision-based path planner, the robot can avoid the
obstacle and can reach the goal position.

Fig. 2. An Experiment using an Infotainment Robot

Two more problems were defined from the
experiment: low performance in the acquisition
process and low manageability and sharability of
external repositories.

The performance of accessing external repositories
was low, because of the one-on-one connection
between the robots and the external repositories. This
resulted in low performance of searching and
acquisition for components, because robots and
developers had to connect to each external repository.
Robots and developers had to know the information
and data contained in the external repositories and had
to search through all of the knowledge in the external
repositories. Therefore, this resulted in low
performance of the search process.

This experiment assumed that there were just three
external repositories, but available components and
repositories will grow as robot communities continue
to evolve. Therefore, manageability and sharability of
external repositories is low, because one repository is
one server. It results in inefficient management for
physically distributed repositories, and cannot support

faults of external repositories. Robots and developers
can not acquire new components when repositories are
faced with problems.

In the final paper, we will describe the requirements
and architecture of the cell-based approach for the
evolutionary component repository system for self-
growing robot software. Prototype implementation and
an experiment with the repository system will also be
presented. In Section 2, the requirements of the
repository system for self-growing software will be
explained. In Section 3, related work will be discussed.
In Sections 4 and 5, we will explain our approaches
and the prototype implementation of the repository
system. In section 6, we will evaluate our approach by
discerning whether our approach meets the
requirements or not. Finally, the thesis will be
concluded in Section 7.

2. Related Work
 Our repository system is related to distributed
ontology repositories and distributed component
repositories. We analyze these related works briefly in
this section.

2.1 Distributed Ontology Repositories
There are some researches on distributed ontology

repository. These distributed ontology repositories
have some limitations: the fixed structure of
repositories, lack of evolutionary support, unclear
criteria for distribution, lack of transparent access,
inefficient management of knowledge, and lack of a
reliability support. [3, 4, 5, 6]

2.2 Distributed Component Repositories
There are some researches on distributed component

repository. These distributed component repositories
have also some limitations to support self-growing
robot software: the fixed structure of repositories, lack
of evolutionary support, unclear criteria for
distribution, keyword-based search, manual
classification, lack of transparent access, and lack of a
reliability support. [7, 8, 9, 10, 11, 12]

3. Requirements of Repositories for
Intelligent Service Robots

In this subsection, we discuss specific requirements
of the software component repository system for self-
growing robot software.
▪ Evolvability

- Evolvability for robots: There are many kinds of
environments that robots can face with. Therefore,
robots have to contain functionalities and

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 09,2010 at 03:41:04 EST from IEEE Xplore. Restrictions apply.

configurations that are appropriate for each
environment instead all robots have same
functionalities and configurations. In addition, the
repositories should have criteria for replacing
components stored in internal repositories with
newly acquired or updated components. These
criteria are used to decide what components have to
be retired and what components have to be
uploaded to the internal repository.

- Evolvability of repositories structure for robots and
developers: As a scale of distributed knowledge
and the number of components are increased
gradually, repositories should provide way to
evolve their structure by reflecting newly updated
or developed knowledge and components from
distributed repositories, so that robots and
developers can use those knowledge and
components effectively.

▪ Transparent access: Transparent access provide a
way to access various external repositories with a
little overhead, in comparison with accessing each
distributed repository. If robots should access each
external repository, robots have to know locations of
distributed repositories and data of components those
are stored in the repositories, and it is hard to search
appropriate components. This makes the
performance of acquisition process low.

Therefore, repositories should provide the
transparent access to search external repositories.

▪ Transparent sharing: When knowledge is updated
or new components are developed, component
developers use their accessible repositories.
Therefore, repositories should provide the
transparent sharing that supports developers can just
update into their accessible repositories then updated
knowledge or components are reflected to robots and
other developers.

▪ Semantically-based search: Usual component
repositories use keyword-based indexing and
searching. This keyword-based approach results in
inaccurate search results [13]. Therefore, it is needed
to support semantically-based matching mechanism
that can retrieve components based on various
aspects: functionalities, quality attributes, and
properties of components (e.g. resources for
components, user requirements, etc.).

▪ Automatic Classification: Human users can decide
where to classify components that are acquired from
external repositories. However, since robots can not
make judgment, the repositories should support to
automatic classification of acquired components for
robots.

4. A Cell-based Repositories Architecture
In this section, we describe our approaches for the

cell-based repository for self-growing robot software.
We also explain the architecture of the repository.

4.1 A Cell

Fig. 3. A Structure of Cells

A cell is a logical grouping unit of distributed

repositories based on functionalities of components.
These groups contain components that have similar
role of functionalities. As the Fig. 3 shows,
components can be classified to some parts based on
generalized functionalities of intelligent service robot
domain: HRI (Human Robot Interaction),
communications, locomotion, sensing, operation, home
security, and power management. Therefore, a
structure of cells consists of the highest schemas of
component ontology. HRI is a group for user interface
between robots and human users, such as voice
recognition, face recognition. Communications is a
group for data communication protocols and their
application components. Locomotion is for moving
robots’ wheels, legs, arms, and so on. Sensing is for
sensors such as laser sensors, vision sensors, sonar
sensors, and so on. Home security is a group for
detecting and managing criminals. Finally, power
management is for managing battery power of robots.
Robots can not keep connecting power line during
behaviors because line makes robots’ range short and
small.

Fig. 4. Mapping of Cells and Distributed

Repositories

Components and component repositories are

distributed physically, as Fig. 4 shows. We make
logical groups of components that are similar or related

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 09,2010 at 03:41:04 EST from IEEE Xplore. Restrictions apply.

to each other based on cell approach. Therefore, these
components can be contained into some groups. For
example, vision-based navigation components can be
grouped into sensing group and locomotion group. A
cell manager contains whole knowledge of a cell, and
has a role for searching ontologies of a cell. A central
manger contains information of cells and has a role for
providing a transparent access point. When new
repositories are inserted to cell-based repositories, they
are contained into one or some groups, so that
repositories can be extended easily. In addition, logical
groups provide alternative accessing point to acquire
components when an access point or a cell meets
problems.

4.2 Rationales of Cells

Cells provide units for accessing physically
distributed repositories transparently because cells
provide logical access point and logical search for
physically distributed repositories. Robots and
developers can access just logical units without
accessing physical repositories respectively.

Cells provide units for efficient search. In the last
experiment, robots have to search for whole
knowledge in a repository, and this makes a
performance of searching process low. Moreover,
reusability of similar and related components is higher
than other components for developers. Cells provide
partial search for components that are needed to robots
and developers because cells are made by similar and
related components.

Cells provide units for evolutionarily reflecting
changes of components in physically distributed
repositories. Changes of components are reflected to a
cell automatically, so that robots and developers can
use changed components immediately. Synthetically,
cells provide transparent access and transparent
sharing.

4.3 The Overall Repository Architecture
In this subsection, we describe an overall architecture

of the cell-based repositories.
As Fig. 5 shows, cell-based repositories consist of

two parts: internal repositories for robots and cell-
based external repositories. Internal repositories
consist of two parts: ontology repository and
component repository. External repository system has
a central manager, cell managers, cells, and
repositories for developers. Central manager have
connections with cells and contains hierarchy of cells.
Each cell makes a logical group of repositories those
are distributed physically. This distribution conforms
to component ontology, so repositories in architecture
are also logical. Some physical repositories can be

involved in several cells because repositories can have
various components those can be related to several
cells.
Even though we separate the central manager, the

cells, and the repositories, any distributed repositories
can have a role for the central manager and the cell
manager. When the fault occurs in designated central
or cell manager, neighbor of it has a role for it to
support reliability.

Fig. 5. A Cell-based Repositories Architecture

4.4 Accessing Internal Repositories

Robots have component broker for collecting
appropriate component descriptions [4, 17]. By
accessing internal repositories, the component broker
searches for the components that provide
functionalities to make complete the selected
architecture. It extracts a set of component candidates
by using a semantically-based interoperability
measurement, and sends them to a learning engine.
The leaning engine chooses the most appropriate
component based on the history of utilizing
components for a certain set of situations.

4.5 Accessing Cell-based Distributed Repositories

As Fig. 5 shows, if there is no available or suitable
component in the internal repository of a robot,
Step 1) The component broker send a request to
component acquisition engine.
Step 2) The component acquisition engine sends a
message that contains query to central manager.
Step 3) The central manager searches for appropriate
cell that contains needed component description by
using semantically-based searching in cell hierarchy.
Step 4) The cell manager of selected cell searches
component descriptions and extract sub-ontology from
a ontology of the cell. Sub-ontology means a part of
ontology that is semantically-matched with query. We

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 09,2010 at 03:41:04 EST from IEEE Xplore. Restrictions apply.

extract sub-ontology by using component schema and
properties (e.g. resources) from a ontology.
Step 5) Extracted sub-ontology is acquired by
component acquisition engine and it is updated in
internal ontology repository by using automated
classification.
Step 6) The brokers searches updated internal
ontology repository and makes appropriate candidates
of architecture or components.
Step 7, 8) For component files acquisition, component
acquisition engine downloads those files from external
component repositories and store them into the internal
component repository.

The reason why it acquires ontology first is to
increase performance of robots. If robots use physical
files for measuring appropriation of components, it is
overloaded to robots in that measuring time and
resource costs are high. By measuring appropriation of
components using component description level,
performance of component search and acquisition can
be improved [2].

4.6 Interaction within a Cell
As Fig. 6 shows, when the ontology repository for

developers is updated, ontologies in cell manager of
that group are also updated dynamically. After newly
edited ontologies are classified by the cell manager
automatically, cell manager notify that to human
manager and he (she) decides weather it is correct, or
modifies that classification by using UI of the
repository manager tool. Cell manager provides initial
common set of ontologies to developers, so that newly
updated ontologies can be merged into cell ontologies
easily.

Fig. 6. Interaction within a Cell

4.8 Mapping of Ontology and Component
Repository
As Fig. 7 shows, URIs (Uniform Resource

Identifiers) of component instances in ontology
repositories point at RDB of component repositories.
In RDB of component repositories, component tables

contain URIs, URLs, specifications, used count, and
updated date. URLs point at locations of components
within physical file system. Specifications point at
documents and diagrams that are needed to understand
components. Specifications consist of diagrams: UML
diagrams, background Diagram (Conceptual),
architecture (Inside of a component), and documents:
interfaces (APIs), requirements specifications, design
specifications, data for retirement (used count, updated
date).

Fig. 7. Connection of Ontology and Component
Repository

5. Implemented Prototype
Fig. 8 shows monitors for internal / external

repositories. Left three elements of internal monitor
show internal ontologies. Right monitor is for external
repositories. Above part of the monitor shows
component ontology and below part of the monitor
shows component files those are stored in the external
component repository. We will install these monitors
into cells for showing acquisition process and
evolution of the cell-based repositories. These
monitors shows searching and acquisition process for
Vision-based path planner.

Fig. 8. Internal/Cell-based external Repositories
Monitors

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 09,2010 at 03:41:04 EST from IEEE Xplore. Restrictions apply.

6. Conclusion and Future Work
A repository system is one of the essential elements

to support self-growing robot software, in that it
provides an opportunity for sharing components and
experiences between robots, and it provides a
management mechanism for component/application
developers. In this paper, we described a cell-based
approach for evolutionary component repositories for
intelligent service robots. This cell-based approach
was used to support evolutionary repositories. In this
approach, we invented the concept of a cell that is a
logical grouping of distributed repositories based on an
ontology hierarchy. To accomplish evolutionary cells,
we used a cell manager that integrated updated
ontologies of distributed repositories, and branched
cells dynamically. We also used a central manager to
manage the hierarchy of cells. In addition, we
described requirements, elements, an architecture, and
a prototype for cell-based repositories.

Through this cell-based approach, we provide a
framework of component repositories that can support
self-growing robot software. A cell-based approach
supports robots to keep necessary and essential
components for robots in an evolutionary manner, and
supports the evolution of functionalities from external
distributed repositories for robots. A cell-based
approach will improve the performance of searching
and acquisition for developers and for self-growing
action of robots. We will also achieve transparent
sharing of components for robots and developers
We are currently researching the development of self-

evolutionary cell-based repositories that can branch
and regroup their cells automatically. We are also
developing a web-portal based repository manager tool
that supports registering, modifying and searching
components for developers. In addition, we are
developing an automatic classification mechanism for
legacy components that are developed by other
communities. Finally, we are doing an experiment for
applying our cell-based repositories to the
Infotainment Robot platform, then we will compare the
cell-based approach with the previous experiment.

7. References
[1] P. Lars and et al., “Towards an Intelligent Service

Robot System”, Proceedings of International
Conference on Intelligent Autonomous Systems,
2000.

[2] Hyung-Min Koo and In-Young Ko, “A Repository
Framework for Self-Growing Robot Software”,
Proceedings of 12th Asia-Pacific Software
Engineering Conference (APSEC’2005), Taiwan,
December 2005.

[3] Robert Harrison and Christine W. Chan,
“Distributed Ontology Management System”,
CCECE/CCGEI, Saskatoon, IEEE, 2005.

[4] Mario Cannataro and et al., “Distributed
Management of Ontologies on the Grid”,
Proceedings of the 14th IEEE International
Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprise
(WETICE’ 05), IEEE, 2005.

[5] Gergely Adamku and Heiner Stuckenschmidt,
“Implementation and Evaluation of a Distributed
RDF Storage and Retrieval System”, Proceedings
of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence (WI’05), IEEE,
2005.

[6] Min Cai and Martin Frank, “RDFPeers: A Scalable
Distributed RDF Repository based on A Structured
Peer-to-Peer Network”, WWW2004, ACM, 2004.

[7] Scott Henninger, “Supporting the Construction and
Evolution of Component Repositories”,
Proceedings of ICSE, IEEE, 1996.

[8] Seong-Jae Won and et al., “A Search Agent System
for Distributed Component Repository”,
Proceedings of the 32nd KISS Fall Conference,
Seoul, November 2005.

[9] Padmal Vitharana et al., “Knowledge-Based
Repository Scheme for Storing and Retrieving
Business Components: A Theoretical Design and
an Empirical Analysis”, IEEE transactions on
Software Engineering, Vol. 29, NO. 7, July 2003.

[10] Regina M. M. Braga et al., “The Use of
Mediation and Ontology Technologies for
Software Component Information Retrieval”,
ACM, 2001.

[11] James X. Ci and Wei-Tek Tsai, “Distributed
Component Hub for Reusable Software
Components Management”, Computer Software
and Application Conference, COMSAC 2000,
IEEE, 2000.

[12] Dong-Keun Lee and Eun-Man Choi, “A Study on
Integrating UDDI Registry and Web-Based
Component Repository”, Proceedings of the 31st
KISS Fall Conference, Vol. 31, No. 2, 2004.

[13] Vijayan S. and et al., “A Semantic-Based
Approach to Component Retrieval”, ACM,
SIGMIS Database, Vol. 34. No. 3, 2003.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 09,2010 at 03:41:04 EST from IEEE Xplore. Restrictions apply.

