
 

Abstract— K-Means (KM) is considered one of the 

major algorithms widely used in clustering. However, it 

still has some problems, and one of them is in its 

initialization step where it is normally done randomly. 

Another problem for KM is that it converges to local 

minima. Genetic algorithms are one of the evolutionary 

algorithms inspired from nature and utilized in the field of 

clustering. In this paper, we propose two algorithms to 

solve the initialization problem, Genetic Algorithm 

Initializes KM (GAIK) and KM Initializes Genetic 

Algorithm (KIGA). To show the effectiveness and 

efficiency of our algorithms, a comparative study was 

done among GAIK, KIGA, Genetic-based Clustering 

Algorithm (GCA), and FCM [19]. 
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I. INTRODUCTION 

lustering is the process of grouping data into 

clusters, where objects within each cluster have 

high similarity, but are dissimilar to the objects in 

other clusters [11]. Similarities are assessed based on 

the attribute value(s) that best describes the object. 

Often distance measures are used for the purpose. 

Clustering has its roots in many areas, including data 

mining, statistics, biology, and machine learning. 

Among the various clustering algorithms, 

K-Means (KM) is one of the most popular methods 

used in data analysis due to its good computational 

performance [20]. However, it is well known that 

KM might converge to a local optimum, and its result 

depends on the initialization process, which 

randomly generates the initial clustering. In other 

words, different runs of KM on the same input data 

might produce different results. 

Genetic Algorithms attempt to incorporate the 

ideas of natural evolution. In general they start with 

an initial population, and then a new population is 

created based on the notion of survival of the fittest. 

Typically fitness is the measure for how good this 
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population is and can be calculated depending on the 

nature of the application, where a distance measure is 

the most common [19]. Then a process called 

crossover is done over the new population where 

substrings from selected pairs are swapped. The 

selection depends on the fitness of both pairs where 

the fittest pairs have the highest priority to crossover 

together. After that mutation may occur, where 

randomly selected points of each cluster are assigned 

to another cluster. This process continues until a 

generation where its fitness evolves to a 

pre-specified threshold or after a specific number of 

generations. A number of researchers have proposed 

genetic algorithms for clustering [16, 17, 19]. The 

basic idea is to simulate the evolution process of 

nature and evolve solutions from one generation to 

the next. In contrast to KM, which might converge to 

a local optimum, these genetic algorithms are 

insensitive to the initialization process and always 

converge to the global optimum eventually. However, 

these algorithms are usually computationally 

expensive. 

The main contribution of this paper is to show the 

feasibility of applying genetic algorithms as an 

initialization method for the KM clustering technique, 

and build a new model that enhances the quality of 

the clustering (reduces the upcoming error). 

This paper is organized as follows. Clustering is 

surveyed in section 2. In section 3 genetic algorithms 

are explained. A description of our work is listed in 

section 4. Section 5 contains data description and 

result analysis. Finally, we conclude in Section 6. 

II. CLUSTERING 

One of the basic problems that arise in a variety of 

fields, including pattern recognition, machine 

learning and statistics, is clustering. The fundamental 

data clustering problem may be defined as 

discovering groups in data or grouping similar 

objects together. Each of these groups is called a 

cluster, a region in which density of objects is locally 

higher than in other regions [20, 13]. Each cluster is a 

collection of objects which are similar to each other 

and are dissimilar to the objects belonging to other 

clusters. The similarity mostly is measured with 

distance: two or more objects belong to the same 

cluster if they are close according to a given distance 
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[6]. Sometimes similarity is measured referring to a 

concept representing a cluster. Two or more objects 

belong to the same cluster if it defines a concept 

common to all these objects. In other words, objects 

are grouped according to their fit to a descriptive 

concept. 

The goal of clustering is to find groups of similar 

objects based on a similarity metric. However, a 

similarity metric is mainly defined by the user to 

ensure it suits his needs. Until now, there is still no 

absolute measure that always fit all applications. 

Some of the problems associated with current 

clustering algorithms are that they do not address all 

the requirements adequately, and need high time 

complexity when dealing with a large number of 

dimensions and large data sets. Effectiveness of a 

method depends on the definition of distance, 

meaning that if a distance measure is not defined we 

have to define it; even though it might be somehow 

impossible in high dimensional space. However, the 

result of the clustering algorithm can be interpreted 

in different ways [11]. 

A. K-Means Clustering 

K-Means [18] is one of the algorithms that solve 

the well known clustering problem. The algorithm 

classifies objects to a pre-defined number of clusters, 

which is given by the user (assume k clusters). The 

idea is to choose random cluster centers, one for each 

cluster. These centers are preferred to be as far as 

possible from each other. Starting points affect the 

clustering process and results. After that, each point 

will be taken into consideration to calculate 

similarity with all cluster centers through a distance 

measure, and it will be assigned to the most similar 

cluster, the nearest cluster center. When this 

assignment process is over, a new center will be 

calculated for each cluster using the points in it. For 

each cluster, the mean value will be calculated for the 

coordinates of all the points in that cluster and set as 

the coordinates of the new center. Once we have 

these k new centroids or center points, the 

assignment process must start over. As a result of this 

loop we may notice that the k centroids change their 

locations step by step until no more changes are 

made. When the centroids do not move any more or 

no more errors exist in the clusters, we call the 

clustering has reached a minima. Finally, this 

algorithm aims at minimizing an objective function, 

which is in this case a squared error function. The 

algorithm is expressed in Figure 1. 

One drawback of KM is that it is sensitive to the 

initially selected points, and so it does not always 

produce the same output. Furthermore, this algorithm 

does not guarantee to find the global optimum, 

although it will always terminate. To reduce the 

effect of randomness, the user can run the algorithm 

many times before taking an average values for all 

runs, or at least take the median value. 

 

(1) Choose random k points and set as cluster centers. 

(2) Assign each object to the closest centroid's cluster. 

(3) When all objects have been assigned, recalculate 

the positions of the centroids. 

(4) go back to Steps 2 unless the centroids are not 

changing.  

Fig. 1 Pseudo-code for K-Means algorithm 

One popular way to start KM is to randomly 

choose k points from data. Initial starting points are 

important in the clustering process; however, the 

results mainly depend on the initial means. The 

standard solution is to try a number of different 

starting points. Moreover, the results also depend on 

the metric used to measure distance which is not 

always easy to implement especially in the 

high-dimensional space. Additionally, the results 

depend on the value of k, which in the real world are 

not always known or determined in advance [20]. 

Unfortunately, there is no general theoretical 

solution to find the optimal number of clusters for 

any given data set. A simple approach is to compare 

the results of multiple runs with different k clusters 

and choose the best one according to a given 

criterion. However, we need to be careful as 

increasing k results in smaller error-function values 

by definition, due to the few number of data points 

each center will represent, and thus it will lose its 

generalization ability, as well as increasing the risk of 

overfitting. 

B. Initialization for Clustering Techniques 

The main purpose of clustering algorithm 

modifications is to improve the performance of the 

underlying algorithms by fixing their weaknesses. 

And because randomness is one of the techniques 

used in initializing many of clustering techniques, 

and giving each point an equal opportunity to be an 

initial one, it is considered the main point of 

weakness that has to be solved. However, because of 

the sensitivity of K-Means to its initial points, which 

is considered very high, we have to make them as 

near to global minima as possible in order to improve 

the clustering performance. [3, 5] 

III. GENETIC ALGORITHMS 

Genetic algorithms were inspired from Darwin’s 

theory of evolution and were pioneered by John 

Holland [12]. A genetic algorithm can be defined as a 

search algorithm based on the mechanics of natural 

selection and natural genetics [7], or as software and 

procedures modeled after genetics and evolution [1]. 

Genetic algorithms have at least the following 

elements in common: Populations of chromosomes, 



selection according to fitness, crossover to produce 

offspring, and random mutation of a new offspring 

[2]. 

In further details, the algorithm starts with a 

population of “individuals”, each representing a 

possible solution to a given problem. Each possible 

solution within the population of a biological 

individual is coded in a so-called chromosome. Each 

chromosome (sequences of genes) is assigned a 

“fitness” according to how good a solution is to the 

problem based on a given fitness function. The 

solutions (individuals) are selected into the process 

according to their fitness, specifically those that 

follow the principles first laid down by Charles 

Darwin of the survival of the fittest for reproduction 

by “cross breeding” with other individuals in the 

population and used to construct new individuals as 

offspring with a hope that the offspring will be fit 

better than the old individuals and a generation is 

complete [12]. This process is repeated until certain 

criteria are met. Figure 2 shows the basic steps for 

GAs [7]. 

 

t = 0; 

Initialize P(t);  

Evaluate P(t); 

While not (termination condition) 

begin 

t=t+1; 

Select P(t) from P(t - 1); 

Recombine pairs in P(t); 

Mutate P(t); 

Evaluate P(t); 

End 
Fig. 2 Goldberg's Pseudo-code of Genetic Algorithms 

 

In Figure 2, t represents the generation number, 

and P stands for population. The first population is 

initialized by coding it into a specific type of 

representation (i.e. binary, decimal, float, etc) then 

assigned to a cluster. Fitness is calculated in the 

evaluation step. While the termination condition is 

not met, which might be number of generations or a 

specific fitness threshold, the processes of selection, 

recombination, mutations and fitness calculations are 

done. Selection process chooses individuals from 

population for the process of crossover. 

Recombination (or crossover) is done by exchanging 

a part (or some parts) between the chosen individuals, 

which is dependent on the type of crossover (Single 

point, Two points, Uniform, etc). Mutation is done 

after that by replacing few points among randomly 

chosen individuals. Then fitness has to be 

recalculated to be the basis for the next cycle. This is 

the general form for GAs.  

Utilizing GAs into clustering, an initial population 

of random clusters is set or accepted. At each 

generation, each individual is evaluated and 

recombined with others on the basis of its fitness. 

The expected number of times an individual is 

selected for recombination is proportional to its 

fitness relative to the rest of the population. New 

individuals are created using two main genetic 

recombination operators known as crossover and 

mutation. Crossover operates by selecting a random 

location in the genetic string of the parents 

(crossover point) and concatenating the initial part of 

one parent with the final part of the second parent to 

create a new child. A second child is simultaneously 

generated using the remaining parts of the two 

parents. Mutation is provided to occasional 

disturbances in the crossover operation by inverting 

one or more genetic elements during the 

reproduction process. This operation insures 

diversity in the genetic strings over long periods of 

time and prevents stagnation in the convergence of 

the optimization technique. In addition to fitness, 

generation crossover rate (or percentage) and 

mutation rate (or percentage) issues such as the size 

of the population (defines the crossover and mutation 

rates), coding and selection strategy (defines the 

fitness measure and type) are called configuration 

parameters [7]. 

Before a GA is run, a suitable encoding (or 

representation) for the problem must be devised. The 

coding is a population of strings, each of which 

represents a solution to the problem. GAs operate on 

a number of potential solutions, called a population, 

consisting of some encoding of the parameter, set 

simultaneously. Coding is the first step in GAs that 

translates the real problem into biological terms and 

describes it in a manner which is suitable for GAs. 

The format of a chromosome is called encoding. 

The population size is specified by the number of 

chromosomes in the population, where the best 

population size depends on both the application and 

the length of the chromosome. Longer chromosomes 

allow for larger population sizes and increased 

variety for the initial population and would result in 

better exploration of the search space at the expense 

of requiring more fitness evaluations. If there are too 

many chromosomes, GAs slow down. If there are too 

few chromosomes, however, GAs has only few 

possibilities to perform the crossover operation and 

only a small part of search space is explored. If the 

population loses diversity, it is said to have a 

premature convergence and little exploration is being 

done [14]. 

Next step is Crossover. Crossover or 

recombination is done independently without respect 

to the problem of encoding or the fitness scores. It 



takes two individuals and cuts their chromosome 

strings at some chosen position to produce two 

“head” segments and two “tail” segments. The tail 

segments are then swapped over to produce two new 

full length chromosomes. Each of the two offspring 

inherits some genes from each parent. Crossover is 

made with the hope that new chromosomes will 

contain good parts of old chromosomes. As a result, 

the new chromosomes are expected to be better. If 

crossover is performed, the genes between the 

parents are swapped, and the offspring is made from 

parts of both parents' chromosomes. If no crossover 

is performed, the offspring is an exact copy of its 

parents.  

The most common recombination is the uniform 

crossover method. In this method, a crossover point 

is selected along the chromosome, and the genes up 

to that point are swapped between the two parents. 

Mutation is applied to each child individually after 

the crossover that alters each gene with a low 

probability, typically in the range 0.001 and 0.01, 

and modifies elements in the chromosomes [8]. 

Mutation is often seen as providing a guarantee that 

the probability of searching any given string will 

never be zero, it acts as a safety net to recover the 

good genetic material that may be lost through the 

action of selection and crossover. Mutation prevents 

the GA from falling into local extremes and provides 

a small amount of random search that helps ensure 

that no point in the search space has a zero 

probability of being examined. If mutation is 

performed, one or more parts of a chromosome are 

changed, and if there is no mutation, the offspring is 

generated immediately after the crossover (or 

directly copied) without any change [8]. 

For every solution to our population, it is 

necessary to be able to judge the quality of that 

solution. This is referred to as measuring the fitness 

of the solution. The fitness function is the most 

crucial aspect of GAs that returns a single numerical 

“fitness”, which is supposed to be the proportional 

ability of the individual which that chromosome 

represents. Ideally, we want the fitness function to be 

smooth and regular, so that chromosomes with a 

reasonable fitness are close to chromosomes with 

slightly better fitness. [4] 

The general rule in constructing a fitness function 

is that it should reflect the value of the chromosome 

in some real way. If the fitness function is 

excessively slow or complex to evaluate, an 

approximate function evaluation can sometimes be 

used. If a much faster function can be devised (which 

approximately gives the value of the true fitness 

function) the GA may find a better chromosome in a 

given amount of CPU time than when using the true 

fitness function. 

At the beginning of a run, the values of each gene 

for different members of the population are randomly 

distributed. Consequently, there is a wide spread of 

individual fitness. As the run progresses, particular 

values for each gene begin to predominate. As the 

population converges, the range of fitness in the 

population reduces. This variation in fitness range 

throughout a run often leads to the problems of 

premature convergence and slow finishing. 

Premature convergence is a classical problem with 

GAs is that the genes from a few comparatively 

highly fit (but not optimal) individual may rapidly 

come to dominate the population causing it to 

converge on a local maximum, and thus the ability of 

the GA to continue to search for better solutions is 

effectively eliminated. Mutation may be a factor that 

helps to explore new offspring, but still have a small 

effect, which makes the process of exploration 

slower. Another problem is Slow Finishing that is 

when termination is a matter of fitness not the 

number of generations and in a certain point in time 

where fitness for all individuals are almost the same, 

average fitness moves slowly to the maxima, but still 

very slow [4]. A common practice is to terminate the 

GA after a pre-specified number of generations and 

then test the quality of the best members of the 

population against the problem definition. If no 

acceptable solutions are found, the GA may be 

restarted, or a fresh search initiated [12]. 

IV. PROPOSED TECHNIQUES 

The proposed techniques considered in this paper 

are Genetic Algorithm Initializes K-means (GAIK) 

and K-means Initializes Genetic Algorithm (KIGA). 

GAIK is a combination of K-means and GKA, where 

GKA is executed first to give initial values to 

K-means to start with, rather than choosing random 

ones. This hybrid system is expected to minimize the 

number of iterations that K-means needs in order to 

converge to local minima. Besides, it solves the 

problem of blind search for this algorithm. However, 

it will increase the time needed for calculations 

because GA algorithm will need more time for 

distance calculations and crossovers in each 

generation than K-means needs in one iteration. On 

the other hand, another technique was experimented, 

KIGA, where K-means is used first to initialize the 

GA clustering technique. Two experiments were 

done in this part to show the effect of changing the 

number of K-means iterations in addition to the 

number of generations on the clustering efficiency. 

Good results are expected to be gained to solve the 

problem of blind search. However, the time of 

processing is also expected to increase. Testing 

parameters for selections, crossovers and mutations 

were considered the same as in [19]. 



V. DATE DESCRIPTION AND RESULT ANALYSIS 

Data files used in these experiments are chosen 

among a huge variety given by MATLAB
©
. 

Experiments were done over eight different datasets, 

however; we will present here the results of four of 

them as each has different characteristics over the 

others. We chose to do the tests over a 

mathematically generated 2D datasets. Figure 3 

shows the datasets’ distribution. Dataset 2, 3 and 4, 

shown in Figure 3-a, 3-b and 3-c respectively are 

made based on a mathematical model to form their 

clusters with small amount of points interleaving. On 

the contrary, Dataset 5 shown in Figure 3-d is a 

random dataset with no clear topology and a uniform 

distribution. 

Dataset 2 consists of 100 points gathered around 3 

clusters. The points are scattered with a radius of 0.2 

around 3 specific points (0.2 ,0.6) , (0.6,0.2) and 

(0.8,0.8). The first two points’ clusters have some 

interleaving in their boundary points. This dataset is 

to be clustered into 3 clusters. 

Dataset 3 Consists of 100 points scattered around 

4 specific points with a radius of 0.2. points are 

(0.125,0.25) , (0.625,0.25) , (0.375,0.75) , 

(0.875,0.75). The first two points’ clusters have 

horizontal interleaving on the boundary. In addition, 

points two and three have the same thing in common. 

This dataset is to be clustered into 4 clusters. 

Dataset 4 Consists of 100 points scattered around 

4 points with a radius of 0.3 for the first 3 centers and 

radius 0.4 for the last center. Points are (0.2,0.2) , 

(0.2,0.5) , (0.2,0.8) , (0.8,0.5). The last point’s 

cluster seems to be clearly isolated except for the 

points between the cluster center and the other three; 

however, the first three clusters have common 

boundary points. This dataset is to be clustered into 4 

clusters. 

Dataset 5 consists of 300 points chosen randomly 

with uniform distribution over the surface, no clear 

topology or clusters. This dataset is to be tested for 

two clusters. For each of the previously mentioned 

datasets the number of clusters is chosen based on 

our choice; moreover, choosing the number of 

clusters is still a wide research area that we are not 

going to discuss in our work. In addition, for each 

dataset we tested running K-means for 5 or 10 

iterations only in addition to running it until it 

satisfies its original termination condition. Also, we 

fixed number of GA generations for testing to 1000 

generations at most, and then we considered the 

fittest generation as the error rate. Each dataset was 

tested for each algorithm for 20 times and then we 

calculated the average time and error as listed in 

Table 1. 

    

(a) (b) (c) (d) 
Fig. 3 Datasets distribution (a) dataset 2 (b) dataset 3 (c) dataset 4 (d) dataset 5 

 
Table 1 Results comparison between the different approaches 

 KM KM (5) KM (10) GAIK KM (5) + GA KM (10) + GA GA 

Dataset2 (4) 
Avg Error 36.389 38.491 36.660 40.257 35.848 34.891 48.485 

Avg Time 0.015 0.011 0.013 10.216 18.977 18.647 9.966 

Dataset3 (4) 
Avg Error 44.128 44.635 44.554 62.328 43.646 43.047 76.352 

Avg Time 0.012 0.010 0.014 9.180 14.842 16.203 6.608 

Dataset4 (3) 
Avg Error 35.094 35.588 35.554 62.848 33.606 33.769 70.711 

Avg Time 0.013 0.007 0.009 8.158 12.057 11.326 8.2729 

Dataset5 (2) 
Avg Error 20.069 20.541 20.329 20.315 18.877 18.491 21.207 

Avg Time 0.004 0.004 0.008 3.728 4.186 4.326 3.865 

 



 

 

As explained earlier and shown in Table 1, for each dataset 

we considered specific number of clusters shown beside the 

dataset name between brackets. Moreover, Average Error and 

Average Time is listed to show the trade-off between them. For 

K-Means, we tried to test the effect of number of iterations in 

the clustering process and on the initialization process as well. 

The table above shows the following: KM was always the fastest, 

but not the most accurate. In addition, initializing KM using GA 

will definitely lead it to fall early into a local minima. GA was 

not a good approach to solve the clustering problem due to its 

probabilistic nature. Even though mutations help not to fall into 

local minimas, it still needs a lot of time and computations to 

find the global one. Finally, running KM as an initializer to GA 

definitely guides to the best solution among the group, this 

appears clearly from the results obtained after running it for 5 or 

10 iterations before GA starts. 

VI. CONCLUSION 

Our experimental evaluation scheme was used to provide a 

common base of performance assessment and comparison with 

other methods. From the experiments on the eight data sets, we 

find that pre-initialized algorithms work well and yield 

meaningful and useful results in terms of finding good 

clustering configurations which contain interdependence 

information within clusters and discriminative information for 

clustering. In addition, it is more meaningful in selecting, from 

each cluster, significant centers, with high multiple 

interdependence with other points within each cluster. 

Finally, when comparing the experimental results of 

K-Means, GKA, GAIK and KIGA we find that KIGA is better 

than the others. As shown by the results on all datasets KIGA is 

ready to achieve high clustering accuracy if compared to other 

algorithms. 
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