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Reduced-Complexity Vector Channel Estimation for Systems with
Receive Diversity

Joonhyuk KANG†, Member and Niko VLOEBERGHS†, Nonmember

SUMMARY We consider a blind estimation of the vector channel for
systems with receive diversity. The objective of this paper is to reduce the
complexity of the conventional subspace-based method in vector channel
estimation. A reduced-complexity estimation scheme is proposed, which
is based on selecting a column of the covariance matrix of the received
signal vectors. The complexity and performance of the proposed scheme is
investigated via computer simulations.
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1. Introduction

Systems with receive diversity, which employ an antenna ar-
ray for receiving signals, have been proven to increase sys-
tem capacity and cell coverage through diversity-combining
[1]. The systems acquire increased diversity gains from the
proper use of the spatial diversity. To achieve maximum di-
versity gains, the receiver should be capable of estimating a
vector channel which characterizes the unique propagation
pattern between mobile users and the antenna array.

In general, a pilot-aided channel estimation scheme,
based on the pre-known symbols at the receiver, is utilized
for channel estimation. However, when the pilot symbols
are costly or impracticable, blind estimation has to be em-
ployed. Among various blind estimation schemes, a sub-
space decomposition method used in multiple signal clas-
sification (MUSIC) [2] can be adopted in the blind vector
channel estimation. Based on the covariance matrix av-
eraged over the set of received signal vectors for certain
time duration, the subspace-based scheme is known to be
robust compared with the decision-directed blind schemes,
which depend on the instantaneous received symbol. The
subspace-based scheme, however, requires intensive com-
putations for the computation of a covariance matrix and of
its eigenvalue decomposition (EVD), which increase com-
plexity. This computational burden, together with the in-
crease of hardware components, can be one of the major
obstacles for systems with receive diversity to be adopted in
practice.

The complexity reduction can be attempted in the di-
versity reception technique as in [3]. This paper focuses
on reduction of the complexity in the vector channel estima-
tion in order to provide a possible solution to the complexity
problem.
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2. System Model

A receiver with an antenna array can be modelled as a
single-input-multiple-output(SIMO) system assuming the
user separation is completed through other multiplexing
schemes. The received signal vector at the k’th time instant,
x[k], which has the dimension of the number of antenna ele-
ments, M, consists of the transmitted signal, s[k], attenuated
by the vector channel, h, and the additive white Gaussian
noise vector, n[k]:

x[k] = hs[k] + n[k] (1)

It is assumed that the noise vector is white in time and space
and is independent of s[k]. It is also assumed that a nar-
row band signal is transmitted from the user’s terminal. The
vector channel h is expressed as a constant assuming the
terminal is stationary for the time duration, NTs, where N
is the number of observations for estimation and Ts denotes
the sampling interval.

3. Conventional Subspace-Based Estimation

In the subspace-based blind estimation scheme [4], the vec-
tor channel, h in (1), is estimated from a set of received
vectors, {x[k] ∈ CM : k = 1, · · · ,N} assuming the trans-
mitted signal is unavailable at the receiver, where CM is an
M dimensional complex vector space. The subspace-based
scheme is based on the covariance matrix of the received
signal vectors, defined and expressed as

R
�
= E{x[k]xH[k]} = σ2

shhH + σ2
nI, (2)

where (.)H denotes a Hermitian transpose, σ2
s is the signal

variance, and σ2
n is the noise variance. An eigenvalue de-

composition of R in (2) can be expressed as

R =
M∑

i=1

λieieH
i , (3)

where the eigenvalues are ordered in a descending manner
in magnitude as λ1 ≥ λ2 ≥ · · · ≥ λM. It can be read-
ily proved from (2) that the eigenvector associated with the
largest eigenvalue spans the signal subspace and the rest of
the eigenvectors span the noise subspace. Furthermore, all
the eigenvalues are equal to the noise variance, σ2

n, except
for the largest eigenvalue, λ1. Thus, the basis for the signal
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subspace, which is the eigenvector, e1, associated with λ1,
can be an estimate of the vector channel: ĥ = e1.

However, the real covariance matrix is not generally
available and is approximated by a sample covariance ma-
trix:

R̂
�
=

1
N

N∑

k=1

x[k]xH[k], (4)

where N is the number of observations. It is readily de-
rived that the construction of R̂, requires O(NM2) multipli-
cations. Recall that M denotes the number of antenna ele-
ments. Adding the computation of EVD for M × M matrix,
O(M3), the total computations reaches O(NM2 + M3).

4. Reduced-Complexity Estimation

4.1 Algebraic Solution

The following proposition can be formulated assuming that
the variance of the noise is known to the receiver.

Proposition 1: The scaled vector channel is expressed as
the l’th column of the covariance matrix minus the variance
of the noise in the l’th element, where l ∈ {1, · · · ,M}.
Proof: Let us rewrite the expression for the covariance ma-
trix in (2).

R = [r1, · · · , rM] = σ2
shhH + σ2

nI (5)

From (5), the expression for h is given by

σ2
sh[h∗1, · · · , h∗M] = [r1 − σ2

nu1, · · · , rM − σ2
nuM], (6)

where hi is the i’th element of h, ri is the i’th column of R,
and ui denotes the M × 1 unit vector with one in the i’th
position.

If we take the l’th column of the matrix in (6), we get

σ2
sh∗l h = rl − σ2

nul (7)

for any l ∈ {1, 2, · · · ,M}. �
Proposition 1 and its straightforward proof show that

the vector channel can be estimated from a column of the
covariance matrix, R, ifσ2

n is available. As we will see in the
next section, the variance of the noise can also be estimated
from the received signals. Thus, we propose new estimates:

ĥprop = r̂l − σ̂2
nul, (8)

where r̂l is the l’th column of the sample covariance matrix
in (4), σ̂2

n is an estimate of the variance of the noise, and
l ∈ {1, 2, · · · ,M}. Note that the scale of the channel esti-
mate is not of interest here as in other subspace-based blind
methods. The scale is sometimes not required as in differ-
entially modulated systems, or it is acquired from a further
estimation step.

The proposed estimate in (8) does not require the cal-
culation of the entire covariance matrix, which can result in
a drastic reduction of computations: O(NM). There arise,
however, issues on how to estimate the noise variance with-
out intensive calculations and how to select the column, l, in
an optimal way.

4.2 Noise Variance Estimation

The first method we propose is the estimation by projection.
This approach is based on the observation that the selected
column in (7) equals the scaled vector channel except l’th
element, that is, h̆ = αr̆l, where each vector is formed from
h and rl, respectively, by skipping the l’th element. Let us
define a (M−1)×1 vector, x̆[k], in the same way and consider
a projection onto the orthogonal complement of the space
spanned by h̆:

P⊥
h̆
= I − Ph̆ = I − h̆[h̆H h̆]−1h̆H = I − r̆l[r̆H

l r̆l]
−1r̆H

l .

(9)

If we project the received signal, x̆[k], onto the orthogonal
complement of the signal space, given in (9), the noise vari-
ance can be approximated by

σ̂2
n =

1
N(M − 2)

N∑

k=1

‖P⊥
h̆

x̆[k]‖2. (10)

As shown in [5], σ̂2
n converges to the actual variance of the

noise, σ2
n, as N goes to infinity. Thus, the estimated value

can be used for the estimation of the vector channel as pro-
posed in (8). It can be calculated that implementation of the
algorithm requires O(3N(M−1)) computations by appropri-
ately ordering the calculation.

The subspace decomposition discussed in the previous
section is another approach for the estimation of the variance
of the noise. Here, we propose to take signals from only
two antenna elements to estimate the variance of the noise
to avoid the increase of computations associated with the
formation of the whole covariance matrix. The proposed
scheme is based on the assumption that the variance of the
noise of each antenna is identical.

Let us form a 2 × 2 matrix which we call a sub-
covariance matrix as

R̃
�
= E{x̃[k]x̃H[k]} = σ2

s h̃h̃H + σ2
nĨ, (11)

where x̃ is 2 × 1 vector formed by any two elements of the
original vector of received signals. As shown in the previ-
ous section, the smallest eigenvalue of the sub-covariance
matrix equals the variance of the noise:

σ̂2
n = λ2, (12)

where λ2 is the smallest eigenvalue of R̃. It can be calculated
that this method requires O(N×4+8) calculations regardless
of the number of antenna elements.

4.3 Column Selection

In Sect. 4.1, we have seen that any column of the covariance
matrix, R, compensated by the noise variance can be an es-
timate of the vector channel if the noise variance is perfectly
known. In this section, we propose that there is an optimal
way of selecting a column in R to minimize the estimation
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errors when errors exist in the estimate of the noise variance,
which is the more realistic situation.

First, let us define a measure called the normalized or-
thogonal distance (ND) of two vectors, x1 and x2, which is
given by

d(x1, x2)
�
=

1
‖x2‖
∥∥∥∥∥∥

xH
1 x2

xH
1 x1

x1 − x2

∥∥∥∥∥∥ , (13)

where ‖x‖ = √xHx. The ND has the maximum value, which
is unity, when two vectors are orthogonal to each other and
the minimum value, which is zero, when they are parallel to
each other regardless of their magnitude.

The following proposition shows that the selection of a
specific column yields the minimal estimation errors when
the estimate of the noise variance includes estimation errors.

Proposition 2: Let ¯̂h(l)
�
= E{ĥ(l)} and ∆d

�
= σ2

n − E{σ̂2
n}.

Then, ¯̂h(l) has the minimal ND from the actual vec-
tor channel, h, over the M column indices, if (i) l =

arg max1≤i≤M |uT
i ri|2 and (ii) | ∆d | ≤ hHhσ4

s

2 .

Proof: Let xl and hl be the l’th elements of the column
vectors, x and h respectively. Then, it can be readily seen
that |uT

l rl|2 = E{xlx∗l } and |uT
l h|2 = hlh∗l . From (5), E{xlx∗l }

can be expressed in terms of hlh∗l .

E{xlx
∗
l } = σ2

shlh
∗
l + σ

2
n (14)

Equation (14) shows that |uT
l rl|2 is maximum when |uT

l h|2 is
maximum.

Let us consider the squared normalized orthogonal dis-
tance of ¯̂h(i) and h.

d2(h, ¯̂h(i)) =
1

‖ ¯̂h(i) ‖2

∥∥∥∥∥∥∥
hH ¯̂h(i)
hHh

h − ¯̂h(i)

∥∥∥∥∥∥∥

2

(15)

Let us derive the numerator and the denominator of
d2(h, ¯̂h(i)) using the following relationship from (7).

¯̂h(i) = h∗iσ
2
sh + ∆dui, (16)

where hi is the i’th element of the h vector and σ2
s is the

signal power. It can be derived that the numerator part is
expressed as

‖ hH ¯̂h(i)h − hHh ¯̂h(i) ‖2
(hHh)2

=
∆2

d(hHh − |hi|2)

hHh
(17)

Similarly, the denominator part is expressed as

¯̂h(i)H ¯̂h(i) = ∆2
d + |hi|2(hHhσ4

s + 2∆d) (18)

If the column index l is chosen to satisfy condition
(i), it is shown that |hl|2 is the maximum over |hi|2 for
i ∈ {1, · · · ,M} in the first part of this proof. From this, it can
be readily verified from (17) and (18) that the numerator of
d2(h, ¯̂h(l)) is minimum and the denominator of it is maxi-
mum under the condition (ii). This proves that d(h, ¯̂h(l))2 is
minimum. �

This proposition illustrates an important characteristic
of the proposed estimation scheme to provide a way to select
the optimal estimate over M candidates. Condition (i) is
equivalent to finding a channel with the maximum power.
Condition (ii) can only be violated when the average error
in the noise variance estimation is greater than M times the
signal power, which is an unrealistic case in practice.

Finally, the proposed estimation scheme is summarized
as follows:

Step 1: Given a set of received signal vectors, {x[k] ∈
C

M : k = 1, · · · ,N}, find the index, l, satisfying
l = arg max1≤i≤M

∑N
k=1 xi[k]x∗i [k].

Step 2: Calculate the column of covariance matrix by r̂l =
1
N

∑N
k=1 x[k]xl[k]∗.

Step 3: Calculate the variance of the noise, σ̂2
n, using one

of methods given in Sect. 4.2.
Step 4: The estimate is given by ĥprop = r̂l − σ̂2

nul.

5. Simulations and Discussion

To evaluate the performance of the proposed scheme, we
investigate four cases: (i) the conventional subspace-based
method, (ii) the proposed method with column selection -
using the projection and (iii) the EVD for noise variance
estimation, and (iv) the proposed method without column
selection. For the proposed method without selection, we
choose the EVD method for the noise variance estimation
which is derived to be less complex than the projection
method. The computations required for each estimation
method are listed in Table 1. As we expect, the proposed
schemes are much less complicated than the conventional
scheme. Among the proposed schemes, the method without
selection (Case(iv)) requires the least computations since the
calculation for the average power is unnecessary.

Numerical results are displayed in Fig. 1. We fix the
number of antenna elements M to 8 and plot the floating
point operations (FLOPS) versus the number of samples N.
Note that for a give N, the number of FLOPS is smaller for

Table 1 Complexity for each estimation method.

Methods Complexity

Conventional Subspace O(M2N + M3)
Proposed - Projection with Selection O((5M − 3)N)

Proposed - EVD with Selection O(2(M + 2)N + 8)
Proposed - EVD without Selection O((M + 4)N + 8)

Fig. 1 Floating point operations.
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Fig. 2 Mean ND with SNR = 5 [dB].

Fig. 3 Bit error rate vs. SNR with N=150.

proposed methods (Case (ii),(iii), and (iv)) compared to the
conventional method (Case (i)). Furthermore, the rate of
increase of FLOPS vs. N is also smaller. These two obser-
vations are consistent with complexity estimates in Table 1.

The estimation performance of each method is inves-
tigated for an SNR = 5 [dB]. The SNR is defined to each
branch. As a performance measure, the mean of ND defined
in (13) is used. In Fig. 2, the mean ND is displayed versus
the number of data samples. The performance of the pro-
posed estimation methods with column selection exhibits
slightly larger error (i.e., larger mean ND) than those of
the conventional subspace-based method, while those of the
proposed method without selection yields relatively larger
errors. Among the proposed methods, the two methods with
selection have smaller error than those of the method with-
out selection. This implies that the selection methods results
in a decrease of error in the proposed methods.

The bit error rate (BER) versus SNR is presented in
Fig. 3 with a fixed number of data samples, N = 150. The
quadrature phase shift keying (QPSK) modulation is uti-
lized and the uncorrelated flat-fading channel is assumed.
The conventional method performs better than the proposed

methods especially for low SNR. However, as the SNR in-
creases, the BER performance of the proposed methods with
selection approach that of the conventional method. Hence,
the proposed methods with selection can achieve the BER
performance of the conventional method with significantly
less computations under reasonably high SNR.

6. Conclusion

A reduced-complexity blind estimation scheme for the vec-
tor channel of systems with receive diversity is presented.
The proposed scheme is based on an algebraic solution of
the statistical system model equation. The reduction in com-
putations results from the use of one column of the covari-
ance matrix while the conventional subspace-based method
requires the calculation of the whole covariance matrix. An
optimal selection scheme is also proposed to improve the
estimation performance in the proposed scheme. Computer
simulations show that the proposed scheme yields an esti-
mation performance close to that of the conventional sub-
space method with significantly less computations.

The proposed estimation scheme can be applied for
systems with an antenna array combined with any multi-
plexing method. However, orthogonal frequency division
multiplexing (OFDM) will be especially suitable for the ap-
plication due to the narrow-band channel assumption, re-
quired for the subspace-based estimation schemes consid-
ered in this paper.
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