DESIGN AND IMPLEMENTATION OF
A HETEROGENEOUS DISTRIBUTED DATABASE MANAGEMENT SYSTEN

Chin-Wan Chung

Computer Science Department
General Motors Research Laboratories
Warren, Michigan 48090-9057

ABSTRACT

This paper presents the architectural design of
DATAPLEX, a heterogeneous distributed database
management system, and a prototype DATAPLEX. The
objective of DATAPLEX is to integrate existing
diverse databases as well as emerging new databases
within an organization for organization-wide data
sharing and data consistency. The architecture of
DATAPLEX is based on the relational data model as a
common data model and the structured query language
(SQL) as a standard query language. A method to
decompose distributed queries in this architecture
is developed. A prototype DATAPLEX is developed to
show the feasibility of the concepts underlying the
DATAPLEX approach. The prototype system interfaces
an IMS hierarchical database management system
(DBMS) on IBM/MVS and an INGRES relational DBMS on
DEC/VMS.

1. INTRODUCTION

In a typical data management environment of the
panufacturing industry, there are a number of
engineering, manufacturing, and business data
centers run by various geographically dispersed
units. The choices of DBMS’s by these data centers
are diverse. Currently, there is no effective
means to share these heterogeneous databases.

In light of diverse DBMS’s and the existence of
cooperating autonomous components in an
organization, the heterogeneous distributed
database system (DDS) is an effective means of
sharing data. The heterogeneous DDS can facilitate
each data center to select the best DBMS for its
environment, because the heterogeneous DDS allows
the co-existence of different DBMS’s. Although
there has been some work on the heterogeneous DDS
[3,4,12,13,14], this area is relatively new and
there is no proven solution for many technical
problenms.

DATAPLEX is a heterogeneous distributed database
panagement system (HDDBMS) under development which
will allow users and applications to retrieve and
update distributed data managed by diverse data
systems such that the location of data is
transparent to requestors. The key concept of our
approach is to use the relational model as a common
data model and SQL as a standard query language.
This allows us to take advantage of the merits and
wide-acceptance of SQL and the relational model and
to use results from the research on the homogeneous
relational DDS.

CH2702-9/89/0000/0356$01.00 © 1989 IEEE

In Section 2, we present the architecture of
DATAPLEX. This architecture is an open
architecture which provides a well-defined
interface that can be extended to any database
management system and file system. A method for
decomposition of distributed queries in this
architecture is developed in Section 3.

A prototype system has been developed which
interfaces a relational DBMS and a non-relational
DBMS using the DATAPLEX approach. The prototype
system is described in Section 4. The prototype
system processes all the test transactions
correctly. The performance of the system is
analyzed.

2. ARCHITECTURAL DESIGN

This section presents the architecture of DATAPLEX.

2.1. Heterogeneity Resolution

The architecture of DATAPLEX consists of fourteen
functionally independent modules. This
architecture is based on the relational model of
data [6].

Different data models used by unlike database
systems structure data differently. The data
definition used by each database system is called
the local schema. The data definition of all the
sharable databases in the heterogeneous DDS is
transformed to an equivalent relational data
definition. This common relational data definition
is called the conceptual schema. The conceptual
schema will include the relational data definition
of only the stored data and local views. Each
user’s view of data in the heterogeneous DDS is
called the external schema which consists of a part
of the conceptual schema and the views derived from
the conceptual schema.

The relational model has been selected for the
conceptual schema and the external schema because
the relational model provides well-defined query
languages and a relational query can be translated
to a program in a low-level non-relational data
manipulation language (DML) whereas the reverse
translation may not be possible.

Since we use a common data model for the external
schema, a uniform user interface can be provided.
Among several relational query languages, we have
chosen SQL as the uniform user interface because
SQL is widely used and there is a movement to make
SQL a standard relational query language.

The translation of data definition and DML is
necessary to provide the relational model as a
common data model and the SQL as a uniform user
interface. Our basic method for translating a non-
relational data definition to an equivalent
relational data definition is the use of the key in
the owner record as a foreign key in its member
records. This is intended to produce a simple and
normalized set of relations. If a record in an
access path does not have a key, the descendants of
the record do not use any field from the record.
This situation is illustrated in the following
example:

Example 1

The data structure diagram of a non-relational
database is shown in Figure 1, where kX denotes a
list of key fields of record X and fX denotes a
list of non-key fields of X.

(kA, fA)

I B (kB, £fB) c (£C)

(kD, £fD)

The Data Structure Diagram
of a Non-Relational Data Base

Figure 1

The equivalent relational data definition of the
above database is as follows:

RA (KA, fA)

£B)
RC (KA, £C)

RB (kA, kB

RD (KA KD, £D)
The underlined list of fields is the key of a
relation. In this case, kA in RC is not a key.
However, kA in RC can be used to reduce searching

in accessing C when a query referencing RC is
translated to a non-relational database program.s

The navigation through access paths in non-
relational databases can be accomplished by equi-
joining relations in an equivalent relational data
definition.

Once the common schema is set-up in relational data
definitions, users can formulate SQL transactions.
External schemas are created by deriving views from
the common schema. DATAPLEX must translate an SQL
transaction referencing relations in the common
schema to a transaction in another relational DML
or a non-relational DML. Since the translation
among different relational DML’s is
straightforward, we will only consider the
translation to non-relational DML’s.

The relational data model and the non-relational
data model represent the same information

differently. The DML used to formulate requests on
information is tightly coupled with the particular
representation of the information. Therefore, two
basic components for generating a transaction in a
particular DML are the semantics of the information
request and the data definition which results from
data modelling.

In order to translate an SQL transaction to a non-
relational database program, the semantics of the
information request and the non-relational data
definition of the data referenced by the
transaction must be obtained. The semantics of the
information request can be obtained from the SQL
transaction. The semantics include relation names,
attribute names, and conditions on attribute
values. In addition, access paths in the non-
relational data definition can be partially derived
from the SQL transaction. This can be achieved by
applying an inverse of the data definition
translation to the join terms of the SQL
transaction because the access path in the non-
relational data definition has been translated to
joining attributes in the relational data
definition.

However, some information about the non-relational
data definition is lost in the process of data
definition translation. For example, the join term
identifies the existence of an access path between
the two records, but cannot determine which one is
the owner record. Also, an attribute corresponding
to a foreign key in a relation may not exist in the
corresponding record. This misplaced attribute can
also hide an actual access path. Therefore, the
information that can be lost in data definition
translation must be stored in the translation table
and used in the transaction translation.

Transactions will be translated at the location of
the computer in which the data referenced by the
transaction is stored (data-location) rather than
the location of the computer from which the
transaction is originated (user-location). The
translation at the data-location makes it possible
to replicate only the crucial information such as
the common schema, security restriction, and the
location of data in the DATAPLEX dictionary at
every location. (We will not distinguish directory
and dictionary here.) The detailed information
necessary for transaction translation and query
optimization can be stored at the data-location.

2.2. Architecture

The above strategies establish the architecture of
DATAPLEX. In a heterogeneous DDS, DATAPLEX is
placed with local DBMS at each location. The
fourteen modules which constitute the architecture
are as follows:

- Controller

- User Interface

- Application Interface

- SQL Parser

- Data Dictionary Manager

~ Distributed Transaction Decomposer
- Distributed Database (DDB) Protocol
- Translator

- Local DBMS Interface

- Reformatter

- Distributed Query Optimizer

- Distributed Update Coordinator
- 8QL Processor

- Error Handler

The Controller sequences and invokes necessary
modules to process a transaction depending on the
type of the transaction. The Data Dictionary
Manager manages the conceptual schema and the
external schema, and finds the location of the data
referenced by a transaction. The Distributed
Transaction Decomposer decomposes the distributed
query into a set of local queries and a user-
location query which merges the results from other
locations. (A local query references data from a
single-location which may be a remote location.)
The DDB Protocol interfaces the underlying
communication protocol (or medium). It exchanges
commands and data with the DDB Protocol of remote
DATAPLEX using the file and message transfer
facilities of the underlying communication
protocol.

The Translator finds transaction translation
information from a translation table which records
differences of data names and data structures
between the conceptual schema and the local schema.
The Translator translates an SQL query to a query
(or program) in a local DML using the translation
information. The Local DBMS Interface sends the
translated query to the local DBMS and obtains the
local result. The Reformatter loads a file (e.g.,
local result) as a temporary relation and set up
necessary indices when further relational data
manipulations are necessary.

The Distributed Query Optimizer of the user-
location DATAPLEX (source DATAPLEX) schedules an
optimal data reduction plan using the statistical
information from the data-location DATAPLEX’s
(target DATAPLEX’s). Our data reduction plan [5]
is a sequence of semijoins which consists of local
data reduction operations and data moves among
computers. The Distributed Query Optimizer
executes the data reduction plan by sending
commands for data reduction operations and data
moves to target DATAPLEX’s. The Distributed Update
Coordinator performs distributed concurrency
control and distributed data recovery. The SQL
Processor is capable of processing SQL queries for
merging local results or further manipulating
intermediate results locally. The functions of
other modules are self-explanatory.

The way of packaging the above modules into
processes depends on the detailed design
consideration. In this section, we assume that
DATAPLEX is one process for simplicity. DATAPLEX's
at the user-location and the data-location(s)
communicate through the DDB protocol. The modules
Translator and Local DBMS Interface are not used at
the user-location unless the user-location is the
same as the data-location.

This architecture is independent of the local data
system except for the modules Translator and Local
DBMS Interface. Any data systems can be interfaced
to DATAPLEX by developing these two modules for
them. Also, different communication protocols can
be used by adapting the DDB Protocol to them.

358

3. DISTRIBUTED QUERY DECOMPOSITION

In this section, we present our distributed query
decomposition method and explain its relevance in a
heterogeneous DDS.

3.1. The Method

A distributed query cross-references data stored at
more than one location. The decomposition requires
information on the locations of referenced data.
This information will be stored in the DATAPLEX
dictionary. The result of our decomposition is a
set of local queries and a user-location query
which merges local results. Since the local
queries do not depend on each other, they can be
optimized and executed in parallel. If there are
multiple data systems in a computer, a local query
to this computer has to be further decomposed into
a set of queries each of which references data from
a data system. In this case, the location becomes
the system identification of a data system. Our
query decomposition method will also be used for
this case without any modification.

There are two types of relational query languages,
the relational algebra language and the relational
calculus language. The relational calculus
language is semantically higher than the relational
algebra language. Our query decomposition
generates local queries in a relational calculus
language, specifically in SQL, for the following
reasons:

- The relational calculus language is more widely
used among relational DBMS’s. Therefore,
generating local queries in SQL will
simplify the query translation.

- A typical sequence of relational operations
formulated to process a request cannot in
general be translated to a program in a
non-relational DML in this sequence. It is
necessary to send a query in a semantically
high language to a non-relational DBMS.

The subqueries are generated in a textual form
rather than other equivalent representations used
by some relational DDBMS’s. This is an important
consideration in a heterogeneous DDS because the
translation is basically the text manipulation and
also some of the major non-relational DBMS’s will
provide an SQL interface soon.

The predicate (WHERE clause) of an SQL query
contains Boolean operators AND, OR, and NOT. In
addition, parentheses can be used to specify the
precedence in the predicate. If the precedence of
Boolean operators is not correctly handled, an
erroneous result is produced. Since the precedence
is difficult to handle for distributed queries, we
decompose a query into conjunctive queries
containing only AND operators as follows:

1. NOT’s can be eliminated by using DeMorgan’s Law
and negating relational operators such as =,
A= and >.

2. OR’s and parentheses can be eliminated by
transforming the predicate into a disjunctive

normal form and processing each conjunctive
term as a separate query. The result of the
original query is the union of the results
produced by the conjunctive sub-queries.

SQL allows nesting of a query within another query.
A nested query can be processed as a sequence of
non-nested queries by processing the inner queries
in the nest first. Also, the nesting can be
eliminated by transforming a nested query to an
equivalent non-nested query [11].

From the above discussion, the basic part of a
distributed query is a conjunctive query in the
following form:

SELECT list of target attributes and functions
FROM 1list of relationms

WHERE qualification

aggregate clause;

where functions are expressions and set
functions COUNT, SUM, AVERAGE, MAX, and MIN;
qualification contains selection terms and

join terms; and aggregate clause contains GROUP
BY, HAVING, and ORDER BY.

The following variables are defined to explain our
algorithm:

the ith relation referenced by a query
the set of all the attributes of the
relation R(i)
A(Ri): a subset of ATR(Ri)
T: the set of target attributes of a query
G: the set of attributes in the aggregate
clause and functions. If a query
-contains COUNT (%), G includes all the
attributes in R(i)’s which are not in
selection terms or in join terms
A(LJ): the set of local joining attributes
A(GJ): the set of global joining attributes

R(i):
ATR(Ri):

Our distributed query decomposition algorithm,
QUERY DECOMP, is as follows:

ALGORITHM QUERY DECOMP

A distributed conjunctive SQL query and
the locations of referenced relations

Input:

Dutput: A set of local SQL queries and a user-
location SQL query

Step 1. Initialize R(i), ATR(Ri), T, and G.

Step 2. Assign the SELECT list and the aggregate
clause of the input query to those of the
user-location query.

Step 3. Transform the input query to a query graph
Q with relations as nodes and
qualification terms as edges.

Step 4. For each node R(i), associate an attribute
set A(Ri) such that A(Ri) « ATR(Ri) N(T U
G), where N is the set intersection and
U is the set union.

Step 5. Using the location information,

(1) Delete the edges corresponding to
global join terms from Q. @ is
decomposed into connected sub-graphs
Q(i)’s.

(2) Assign global join terms to the

qualification of the user-location

query.

(3) Determine A(LJ) and A(GJ).

(4) A(Ri) « A(Ri) U {ATR(Ri) NA(GI)}

Step 6. Transform each Q(j) to an SQL query as
follows:
(1) target attribute set ¢« U over i A(Ri)
for R(i)’s in Q(j)
(2) FROM list « R(i)’s in Q(j)
(3) qualification + selection terms and
join terms corresponding to edges in

Qi)
Let L(j) be the result relation of the
local query transformed from Q(j).

Step 7. Assign L(j)’s to the FROM list of the
user-location query. For each R(i) in the
user-location query, replace R(i) with
L(j) corresponding to §(j) which contains
R(i).

Local queries are generated in step 6 and the user-
location query is formed in steps 2, 5 and 7. The
following theorem provides the correctness of the
algorithm.

Theorem 1: The queries generated in step 6 of
QUERY DECOMP are local and contain all necessary
target attributes. The execution of the local
queries and the user-location query produces the
correct result for the original distributed query.

Proof: The target attributes of the local query
corresponding to §(j) should be the attributes of
R(i)’s in Q(j) which are also in T U G U A(GJ),
that is {U over i ATR(Ri) for R(i)’s in Q(j)} N{T
UGUA(GH}. Let X=TUGUA(J). Since {U
over i ATR(Ri)} NX = U over i {ATR(Ri) N X}, which
can be proved by mathematical induction, step 6.

(1) generates correct target attributes. A query g
can be processed by a sequence of relational
operations. One correct sequence ¢l is 8, J, P,
where S is a sequence of all necessary selections,
J is a sequence of all necessary joins, and P is a
sequence of all necessary projections. Functions
and the aggregate clause are locally processed for
both local queries and distributed queries. If g
is distributed, the decomposition of q by

QUERY DECOMP corresponds to a particular sequence
02 for processing q. QUERY DECOMP partitions J
into local joins J(L) and global joins J(G). In
addition, QUERY DECOMP schedules intermediate
projections P(I) between J(L) and J(G). In other
words, 02 = S, J(L), P(I), J(G), P. However, all
the joining attributes for J(G) are retained after
P(I). Therefore, P(I) and J(G) commute. P(I), P
= P because the attributes used for P are contained
in those for P(I). Consequently, 02 =8, J(L),
P(I), J(G), P =8, JL), J(@), P(I), P=8, J, P =
ol. .

3.2. An Example

The following example illustrates the steps in
QUERY DECOMP. The distribution of relations and a

distributed query are as follows:

Relations (and their attributes) and locations:

SUPPLIER (S#, SNAME, STATE)......... L0C1
PART (P#, PNAME, MTRL).......... LoC2
SUPPLY (S#, P#, QTY).............. Loc2

A distributed query:

SELECT SNAME, SUM (QTY)

FROM SUPPLIER, SUPPLY, PART
WHERE STATE = ’Michigan’

AND SUPPLIER.S# = SUPPLY.S#
AND SUPPLY.P# = PART.P#

AND MTRL = ’plastic’

GROUP BY SNAME

HAVING COUNT (*) > 5;

The verbal description of the query is "for
suppliers in Michigan which supply more than five
different plastic parts, find the names of the
suppliers and the total quantity of plastic parts
supplied by each supplier". The execution steps of
QUERY DECOMP are as follows:

1. Let S be the relation SUPPLIER, P the relation
PART, and Y the relation SUPPLY. Then
ATR(S) = {S.S#, S.SNAME, S.STATE},
ATR(P) = {P.P#, P.PNAME, P.MTRL},
ATR(Y) = {Y.S#, Y.P#, Y.QTY}.
From the input query,
T = {S.SNAME},
¢ = {Y.QTY, S.SNAME, P.PNAME}.

2. Construct an intermediate form of the user-
location query as follows:
SELECT SNAME, SUM (QTY)
GROUP BY SNAME
HAVING COUNT (*) > 5;

3. A query graph corresponding to the relations

S, P, Y and the qualification terms of the
input query is shown in Figure 2.

A(S) = {S.SNAME} A(P) = {P.PNAME}

= 'Mi
STATE Michigan' MIRL = 'plastic’

S.S# = Y.S# Y.P# = P.P#

A(Y) = {v.QrY}

The Query Graph @
with Initial Attribute Sets

Figure 2

4. TUG = {Y.QTY, S.SNAME, P.PNAME}. For each
node in §, an attribute set is defined as
follows:

360

STATE = 'Michigan’

A(S) = ATR(S) N(T U @)

{S.S§, S.SNAME, S.STATE} N{Y.QTY,
S.SNAME, P.PNAME}

{S.SNAME}

ATR(P) N(T U G)
P.PNAME}

ATR(Y) A (T U G)
{Y.qTY}

(1) Since S is at LOC1 while P and Y are at
LOC2, the edge S.S# = Y.S# is deleted from

nou

A(P)
AQY)

{1 L [T

(2) An intermediate form of the user-location
query becomes
SELECT SNAME, SUM (QTY)
WHERE S.S# = Y.S§
GROUP BY SNAME
HAVING COUNT (+) > 5;
(3) Since S.S# = Y.S# is a global join term,
A(GJ) = {S.S#, Y.S#} and

A(LJ) = {Y.P#, P.Pi}.
(4) A(S) « A(S) U {ATR(S) N A(C])}

= {S.SNAME} U {S.S#}
- {S.SNAME, S.S#}

A(P) + {P.PNAME} U Null-set
= {P.PNAME}

A(Y) « {Y.QTY} U {Y.S§}
= {Y.QTY, Y.S#}

The decomposed query graph Q(j)’s and an
updated attribute set for each relation are
shown in Figure 3.

A(S) = {S.S#, S.SNAME} A(P) = {P.PNAME}

.

‘plastic’

Y.P# = P.P#

Q(1) (2)

A(Y) = {y.s#, Y.QTY}

The Decomposed Query Graph
with Updated Attribute Sets

Figure 3

For each §(j), construct a local query and
assign the name of the local result relation
L(j) as follows:
L(1) = SELECT S#, SNAME

FROM S

WHERE STATE = ’Michigan’;
L(2) = SELECT PNAME, S#, QTY

FRO P

)

WHERE MTRL
AND Y.P#

’plastic’

P.P#;

Since S is at LOC1 and P and Y are at LOC2, the
user-location query becomes as follows:

SELECT SNAME, SUM (QTY)
FROM L(1), L(2)

WHERE L(1).S# = L(2).Sh
GROUP BY SNAME

HAVING COUNT (+) > 5;

4. PROTOTYPE IMPLEMENTATION

In this section, we present the implementation of a
prototype DATAPLEX and our experience with the
prototype system.

The prototype system interfaces IMS hierarchical
DBMS on IBM/MVS and INGRES relational DBMS on
DEC/VMS. The prototype system allows users to
retrieve data from IMS and/or INGRES with a single
SQL query from DEC/VMS such that the location of
data is transparent to requestors. The unique
features that the prototype system provides to
users are as follows:

(1) SQL queries to IMS

(2) Distributed SQL queries to IMS and INGRES

(3) Distributed SQL queries embedded in a C
language program

The data types supported between IBM and DEC
computers are: characters, text (variable length
fields), integers, floating point numbers, and
packed decimal numbers. The prototype system
checks whether a user is authorized to access IMS
data at a segment level using the userid.

However, since rapid prototyping was required to
show the feasibility before developing a full-
function DATAPLEX, the update of IMS data and the
full query optimization were not implemented in the
prototype system. In addition, the system supports
a subset of SQL defined to have the following
syntax:

SELECT 1list of target attributes and set
functions

FROM list of relations

WHERE qualification

ORDER BY attributes

ux] I DQM ‘ | INGRES

DDB Protocol

DECnet

Where set functions are MAX, MIN, SUM, COUNT,
AVERAGE, and the qualification contains >, >=, (,
<=, =, 7=, AND, OR, NOT and parentheses.

The core of the prototype system was structured in
four processes as follows:

(1) User Interface (UI)

This process corresponds to the DATAPLEX
modules: User Interface and Application

Interface.
(2) Distributed Query Manager (DQM)
This process corresponds to the DATAPLEX
modules: SQL Parser, Data Dictionary Manager,
Distributed Transaction Decomposer, and a part
of Distributed Query Optimizer.
(3) IMS Interface
This process corresponds to the DATAPLEX
modules: Translator and Local DBMS Interface.
(4) DDB Protocol

Since IMS runs on IBM/MVS and INGRES runs on
DEC/VMS, communication between MVS and VMS must be
provided. A DECnet/SNA GATEWAY [8] from DEC was
used to connect IBM’s Systems Network Architecture
(SNA) network and DEC’s DECnet. DDB Protocol
supports the program to program communication
between D@M and IMS Interface by using the
functions provided by DECnet and SNA network.

The overall architecture of the prototype system is
shown in Figure 4. On a DEC computer, DDB Protocol
provides communication among the processes of UI,
DGM, and INGRES. DDB protocol alsc provides the
interface via DECnet and the DECnet/SNA GATEWAY to
the DDB Protocol rumning on the IBM side. Some
modules on IBM/MVS were implemented in IBM
assembler. C language was used to implement all
other modules.

IMS

IMS Interface

DDB protocol

SNA (VTAM)

DECnet/SNA
Gateway

|

The Architecture of DATAPLEX Prototype

Figure 4

361

A test bed has been established at General Motors REFERENCES
Research Laboratories. IMS is installed on an IBM

4381 MODEL 14. INGRES is installed on a DEC VAX [1] Apres, P. M., Hevner, A. R., and B. Yao,
11/785. Users run'the.prototype system through the "Optimization algorithms for distributed
VAX/VIS.. A test distributed database and test queries," IEEE TSE, Vol. SE-9, January 1983,
transactions were created. Users formulate pp. 57-68.

requests based on the relational view of the 2] Bernstein, P. A. and D. M. Chiu, "Using semi-

distributed database. The location and the type of joins to solve relational queries," the

the actual database are transparent to users. The Journal of ACM, January 1981, pp. 25-40.

prototype system processes all the test [3] Breitbart, Y. J. and L. R. Hartweg, "RIM as

transactions correctly. an implementation tool for a distributed
. A heterogeneous database," Proc. of IPAD II

Production IMS data is used to test the effect of Symposium on Advances in Distributed Data

the size of the database on efficiency. The data Base Management for CAD/CAM, April 1984,

is from the Maintenance Management Information pp. 155-164.

Systen (MMIS) running at a car assembly plant. The [4] Cardenas, A. F. and M. . Pirahesh, "Database

s1ze of the MMIS database is about 1,000 times communication in a heterogeneous database

bigger than that of the test IMS database. SQL management system network," Inform Systems,

queries are executed against the MMIS database and Vol. 5, 1980, pp. 55-79.

the requests formulated as the SQL queries were 5] Chung, C. W. and K. B. Irani, "An

also programmed in PL/I. The result shows that the optimization of queries in distributed

prototype sys?em incurs some overhead compared with database systems," the Journal of Parallel

tbe access using PL/I‘programs. As the database and Distributed Computing, Vol. 3, No. 2,

size grows, tbe fraction of the overhead to the June 1986, pp. 137-157.

total processing time decreases: 'In retrieving (6] Codd, E. F., "A relational model of data for

data from an IMS database containing 87,000 records large shared data banks," Communications of

which is a part of the MMI$ database, the average the ACM, Vol. 13, June 1970, pp. 377-387.

response time (the clock time) of an SQL query is [7] Dayal, U. and N. Goodman, "Query optimization

368 seconds whereas the corresponding PL/I program for CODASYL database systems," Proc. of the

takes 306 seconds. ACM SIGMOD Conference, June 1982, pp. 138-

150.
[8] Digital Equipment Corporation, Networks and
5. SUMMARY Communications Buyers Guide, 1986.
. . X [9] Elmagarmid, A. K., "A survey of distributed

The architecture of DATAPLEX is modular and is an deadlock detection algorithms,"” ACM SIGMOD

open architecture which provides facilities for Record, September 1986, pp. 37-45.

easy interfaces to additional data systems. [10] Eswaran, K. P. et al., "The notions of

. . L. . consistency and predicate locks in a database

A distributed query decomposition method suitable system," Communications of the ACM, Vol. 19,

for a heterogeneous distributed database_system is November 1976, pp. 624-633.

developed. ‘Three of the important technical [11] Kim, W., "0n optimizing an SQL-like nested

problems which need more research are: query," ACM TODS, Vol. 7, No. 3,

. . September 1982, pp- 443-469.

(1) D}str}buted concurrency CO?tTOI and [12] Landers, T. and R. L. Rosenberg, "An overview
distributed data recovery in a heterogeneous of Multibase," Distributed Data Bases, North-
distributed database system. Holland, 1982, pp. 153-184.

(2) Efficient translation of an SQL query to an [13] Su, S. Y. W. et al., "The architecture and
optimal program to access non-relational prototype implementation of an Integrated
dgtab;ses. Manufacturing Database Administration

3) p1str1buted data dictionary management System," Spring COMPCON, 1986.
including global naming procedures and [14] Takizawa, M., "Heterogeneous distributed
interfaces to local data dictionaries. database system: JDDBS," Database

. Engineering, Vol. 6, No. 1, March 1983,

A DATAPLEX prototype has been developed which pp. 58-62.

interfaces an IMS hierarchical DBMS on IBM/MVS and [15] Yu, C. T. et al., "Query processing in a

an INGR@S relational DBMS on DEC/VMS. The fragmented relational distributed system:

capability of the prototype system proves the Mermaid," IEEE TSE, Vol. SE-11, August 1985,

feasibility of the concepts underlying the DATAPLEX pp. 795-810.

approach to solving the problem of transparently {16] Zaniolo, C., "Design of relational views over

sharing data in a diverse database environment. network schemas," Proc. of the ACM SIGMOD

Conference, May 1979, pp. 179-190.
ACKNOWLEDGMENT

The prototype system was jointly developed with
Relational Technology, Inc.

362

