
 

1. Introduction 
 
The formation flying of satellites has been identified as an 

enabling technology for many future space missions. The 
application of Coulomb forces for formation flying of 
satellites is examined in the present paper. By accumulating or 
discharging electrons/ions, a positive or negative charge on the 
satellite is developed. With the variation of this charge, the 
Coulomb force between the two satellites can be varied and 
thereby, the relative distance between them can be 
controlled.[1] 

This paper explores a simple control law based on the 
relative position and velocity errors of the two Coulomb 
satellites. The stability of the control law is discussed using 
Lyapunov theorem.  
 

2. System Equations of Motion  
 

The system consists of a leader satellite and a follower 
satellite (Fig. 1).  
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Fig. 1 Geometry of orbit motion of leader and follower 

satellites 
 

Assume that the leader and follower satellites are point 
masses to derive the governing equations of motion. The 
orbital motion of the leader satellite is defined by a radial 
distance cr from the center of the Earth and a true anomaly θ.  

 

 

The orbital motion of the follower satellite is also defined 
by a radial distance r from the center of the Earth and a true  

anomaly. Then, the orbital motions of leader and follower 
satellite are described with respect to the Earth centered 
coordinate as  
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The motion of the follower satellite is described with 
respect to the motion of the leader satellite by a relative frame 
S-xyz fixed at the center of the leader satellite. The x-axis 
points along the local vertical, the z-axis is taken along normal 
to the orbital plane, and the y-axis represents the third axis of 
this right handed frame taken. The relative equations of 
motion of the follower satellite with respect to the leader 
satellite are as follows:  
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Referring to Eq. (2), if the orbit of the leader satellite is 
assumed to be circular, θ  is zero, θ  is a constant, and the 
relative equations of motion of the follower satellite with 
respect to the Leader satellite can be written as  
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Note that the above equations are nonlinear equations.  
Due to the gravitational force terms we cannot find a 
closed-form solution of differential equations. However, we 
can obtain a solution using numerical simulations applying six 
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initial conditions. With suitable approximations, we can derive 
linear equations of relative motion, which is called the Hill’s 
Equations [6]. The initial conditions for Hill’s equations for a 
circular formation are given by 
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3. Coulomb Force and Controller Design 
 

Let 1E be the electrostatic field experienced by a satellite, 
say satellite 1 and Q2 is the charge of satellite 2. Then we can 
write as [2] 
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where ρ is the relative distance between two satellites and 

cK  is the Coulomb’s constant, 9 2 28.99 10 /Nm C× and dλ  
is the Debye length which varies from 140 to 1400 m.  

If the satellite 1 has a charge 1Q , the electrostatic force 1F  
applied to the satellite 1 is given by 
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where 1m is the mass of the satellite 1 and 1a is its 
acceleration. The components of the Coulomb force along x , 
y , and z  directions can be written as  
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We establish a control law with relative distance errors 
( e ) and velocity errors ( e ) defined as  
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where e  is an error of the relative distance and the derivative 
of e  is an error of the relative velocity. µ  and ν  are 
control gains and the subscript ‘d’ represents the desired value. 
We consider dρ =0 and assume that each satellite can be 

charged to Qmax=
510 10−× .  For simplification, a new notation is 

defined as  
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where 1Q and 2Q are charges accumulated on the leader and 

follower satellites. Q̂  is a normalize value of the 1 2Q Q× .   

Finally, we can obtain Coulomb control force using 
equations (5)-(8) and (9).  
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Substituting these forces into equation (2), the both forces 
applied to satellite are same magnitude with opposite direction. 
Note that force sign is positive when the force applies to outer 
direction.  
 

4. Lyapunov Stability 
 
To prove the stability of the closed system applied the 

proposed control law, Let us consider a Lyapunov candidate 
function as 
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where [ ]TE e e=  is the state error vector and P  is a 
positive definite matrix. It is easily observed the stability of 
the closed-system by differentiating the Lyapunov candidate 
such that the time derivative of the function is given by 

2

2

2
2 2 2 2

2

2 2
2 1 1 2

4 2 2 4
4 2 2 4

4 2 2 ( 2 ) 4 ( 2 )

4 2 2 ( 2 ) 4 ( 2 )
(4 4 8 ) 4 (2 8 )

c c

V ee e ee ee
ee e e e

ee e e F e F
r r r r

ee e e F e F
ee k k k e e k

ρ ρ
µ µ µ µ

= + + +

= + + +

= + + − + − − + − + − −

+ + − + −

− − − + −

 

                                          (12) 
Note that that cr is much greater than ρ . Thus, it is 

assumed that the following terms can be negligible: 
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For achieving stable response, the gains k1 and k2 are taken 
such that V  is always negative. Thus, the conditions of 
stability are obtained as 
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By theorem of Lyapunov stability [3], we conclude that the 
closed-system is asymptotically stable at 0e e= = . 
 

5. Numerical Study 
 
In this paper, a numerical simulation is used to illustrate 

the performance of the proposed control law. A leader 
satellite is in a circular orbit of radius 42241 km. Initially the 
follower satellite is positioned at a radial distance of 70 m 
from the leader satellite, i.e., 0x = 70 m. Using equation (2), 

this case is simulated with no control force. As per the 
system response shown in Fig. 2, the relative distance 
increases until the true anomaly difference is 180 degree, 
because the leader satellite revolves the Earth faster than the 
follower satellite. If we do not control the position of two 
satellites, the relative distance could diverse with some 
velocity.  

 Referring to equation (1), even if we apply the corrected 



  
 

initial conditions, the relative distance between the two 
grows satellites is varies not only perturbed force but also 
nonlinearity and eccentricity perturbation [4]. 
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Fig. 2 Relative distance without control input. 
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Fig. 3 Relative velocity without control input. 

 
 Next applying the Coulomb control force into equations (1) 
and (2), we can find the system equations of motion to be 
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where ( , , )c c cX Y Z and ( , , )X Y Z  are position vectors of 
leader satellite and follower satellite with respect to Earth 
centered coordinate, respectively. ,x yF F and zF are 
magnitudes of component of the coulomb force, respectively. 
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We at first analyze the planar motion of the leader and 

follower satellites, i.e., along x and y directions, z=0, 
derivative of z =0. It is assumed that the two satellites have a 
mass of 20 kg and the Debye length is 1000 m. The gain k1 

and k2 are taken as 0.75 and 0.125, respectively. Fig. 4 shows 
the system response for the desired relative distance of 70 m. 
Comparing Fig. 2 with Fig. 4, we find that the proposed 
control law using Coulomb force results in the relative 
distance of 70m and the relative velocity converging to null. 

 Note that we consider the control gains as per equation (14). 
However, we find that some values of the control gains that do 
not satisfy the stability conditions (14) also result in stable 
system response. For example, taking control gains µ  = 500 
and ν  = 10, the system response converges faster and the 
error is small. Table 1 shows appropriate results of response 
with varying desire distance from 10 m to hundreds of meters. 
In Table 1 the mark ‘o’ represents that the response follows the 
desire distance successfully. The symbol ‘x’ represents the 
response does not follow and finally diverge since the 
magnitude of Coulomb force diminish with (1/r2) of relative 
distance. This is the clue the other reference content says 
“Coulomb force is effective for tight formation of 10~100 m” 
[5].  
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Fig. 4 Relative distance and velocity using control 

force.( ( 1max 2 maxQ Q  = 1010− ) 
 

Table 1. Effect of maxQ and ρ  on the system response. 
ρ  (m) 

1max 2 maxQ Q  10 40 70 100 200 500 

10-12 o x x x x x 
10-11 o o x x x x 
10-10 o o o o x x 
10-9 o o o o o x 



  
 

 
Next three-dimensional relative motion is studied using 

equation (16).  By applying the corrected initial conditions 
which make the orbit circle to Hill’s equations, then the desire 
distance is 70 meters, we examine the relative distance. In this   
simulation, the leader satellite is also at 42241km. we can see 
that the relative distance is controlled within the error bound 
of 0.0015m. This is very reasonable value for the formation 
flying of satellites. The applied initial conditions are as 
follows: 
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Fig. 5 Control relative distance using Coulomb force. 

( 1max 2 maxQ Q  = 910− ) 
 

Next we examine the effect of Debye length illustrated in 
Fig. 6. In the simulation, if we take Debye length be equally 
to 100 m, the system response takes about 0.5 orbit to reach 
steady-state, on the other hand when we assume Debye 
length of 1000 m, the steady-state is reached in about 0.25 
orbit. The smaller the value of Debye length is, the longer it 
takes the system response to reach a steady-state which is 
expected as the decrease in Debye length results in the 
decrease of Coulomb force. 
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(b)1000m  

Fig. 6 Various Debye length cases ( 1max 2 maxQ Q = 1010− ) 
 

6. Conclusions 
 
In this paper, a satellite formation flying using Coulomb 

forces has been examined. The proposed simple control law 
based on relative position and velocity errors has been 
developed and its stability has been examined through 
Lyapunov theorem. Numerical simulations show that this 
control law results in bounded relative motion between the 
two satellites. The effect of Debye length on the desired 
formation was also examined. In future work, the case of 
projected circular formation will be investigated. 
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