
 
1. INTRODUCTION 

 
Many kinds of lunar exploration missions are accomplished 

in the 60s and 70s in the last century by the United States and 
Soviet Union. However, these lunar exploration missions are 
discontinued during several decades. Recently, these lunar 
exploration missions are restarted by various space agencies 
with the revival of interest in the scientific exploration of the 
Moon. Especially, the discovery of the tritium of Moon is very 
interested. So, the lunar landing missions are also being 
considered. 

Generally, the lunar landing stage is divided into two 
distinct phases: de-orbit and descent, and this descent phase is 
usually divided into two sub-phases: braking and approach. 
And the optimization problem of minimal energy is usually 
focused on descent phases. To find this optimal solution, the 2 
dimensional approach is already studied by Ramanan[2] and 
Liu[3]. And same approach is studied by Shan[4] under the 
variable thrust level. Using these optimal lunar landing 
trajectory, Liu also studied the landing guidance control.[5]  

However, in these approaches, the energy of de-orbit 
burning is not considered. Therefore, as low as possible 
perilune altitude can be chosen to save the fuel for the descent 
phase. Usually, the perilune altitude is chosen between 10 to 
15 km because of the mountainous lunar terrain and possible 
guidance errors. However, it is required more de-orbit burning 
energy for the lower perilune altitude. In the Fig. 1, the cost 
values history is plotted as changing the perilune altitude 
conditions. Therefore, in this paper, the perilune altitude of the 
intermediate orbit is also considered with optimal thrust 
programming for minimal energy. Furthermore, these perilune  
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Fig. 1 Cost function values history for the perilune altitude 

 
 
altitude and optimal thrust programming can be expressed by a 
function of the radius of a parking orbit by using continuation 
method and co-state estimator. 
 

2. SOLUTION PROCESS 
 
2.1 Problem description 

In this paper, the minimum energy trajectory for lunar 
landing will be discussed. And the energy for the de-orbit 
phase can be describe as function of 0r  (perilune radius) as 
follows. 
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where, pr  represents the radius of lunar parking orbit and is 
given. 

Therefore, the cost function for minimum energy landing 
can be written as follows. 
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where, 0t  represents the initiated time of descent phase. 

 
2.2 Assumptions 

In this paper, following assumptions are used. 
 
i) The lunar gravity field is uniform and lunar is entirely 

sphere body. And, the lunar rotates on its own axis with 
constant angular velocity. 

ii) The lunar parking orbit (circular orbit) and the lunar 
equator are placed in same plane, and each rotation direction is 
same. 

iii) The orbit transfer strategy at the de-orbit phase is 
Hofmann method. 

iv) The thrust level of the lunar lander is constant for 
descent phase. 
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2.3 Governing Equations 
 

 
Fig. 2 Polar coordinate of lunar landing 

 
The planar motion of the lunar lander is described in Fig. 1. 

In this figure, r  and θ  represent radial distance and 
position angle, u and v  represent transverse and radial 
velocity, ω  represents the lunar rotation velocity, T  
represents a thrust vector of lunar lander and β  represents a 
thrust vector angle which is control command, respectively. 
Using these parameters, the governing equations of motion 
can be obtained as follows. 
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where, spI  and g  represent a specific impulse and 
gravitational acceleration on the Earth, respectively. These 
parameters are constant values. 

 
2.4 Optimal control Problem 

In order to find the control variable profile for the minimum 
energy lunar landing trajectory, the calculus of variation will 
be used. Therefore, the Hamiltonian is formed as follows from 
cost function and governing equations. 
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where, 
T

r u v mφλ λ λ λ λ λ⎡ ⎤= ⎣ ⎦ are co-state variables. 

And the time derivative of these costate variables can be 
written as follow using optimal control theory. ( /H xλ = −∂ ∂ ) 
 

2

2 2 2 32r u v
u uv u
r r r rφ

μλ λ λ λ
⎛ ⎞

= − + −⎜ ⎟
⎝ ⎠

    (9) 

0φλ =             (10) 

2
u u v

v u
r r r
φλλ λ λ= − + −        (11) 

v r u
u
r

λ λ λ= − +          (12) 

2 cos sinm u v
T T
m m

λ λ β λ β⎛ ⎞= + +⎜ ⎟
⎝ ⎠

    (13) 

 
The optimal control variable profile can be also obtained by 

optimal control theory. Therefore, the following two equations 
are satisfied. 
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Therefore, the optimal control variable profile is obtained 

as follows. 
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2.5 Two-Point Boundary Value Problem (TPBVP) 

 
For the lunar landing mission the following terminal 

constraints have to be satisfied. 
 

, , 0f moon f moon fr r u r vω= = =    (17) 
 

where, moonr  is the radius of moon, and the subscript f  
means the values at the final time. For the inertia frame, 
horizontal velocity is not zero at the lunar surface.  

Besides these final constraints, there are some initial 
constraints because the initial state is not fixed. As previously 
mentioned, the Hofmann transfer strategy is used at the 
de-orbit burn phase, and the start point of optimal control 
problem is the perilune of this orbit. Therefore, these initial 
states and constraints can be written as follows. 
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where, M  is the total mass of the lunar lander, and the 
subscript 0  means the values at the initial time. 

Therefore, the augmented constraints function can be 
written as follows. 
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where, ν and ξ  are Lagrange multipliers, and θ and ψ  
are the initial and final state constraints, respectively, and 
these constraints can be expressed as follows. 
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Usually, the augmented constraints function involves the 

final state in the optimal control problem. However, we want 
to also find the perilune altitude to minimize total lunar 
landing energy. So, the cost function dependent the initial state, 
and the augmented constraints function also dependent the 
initial state. Therefore, the following boundary conditions can 
be derived from the optimal control theory.[3]  
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From these equations, the boundary conditions for co-state 

variables can be written as follows. 
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Therefore, the optimal energy lunar landing problem can be 

solved by finding the initial state and co-state values to satisfy 
these boundary conditions. 

 
2.6 Solution of TPBVP – Shooting Method 

In the previous section, the optimal control problem can be 
solved by appropriate values for the initial state and co-state 
variables. This approach is usually solved by using some 
parameter optimization methods. There are many kind of the 
parameter optimization techniques like SQP, Evolutionary 
algorithm, Genetic algorithm, CEALM, PSO, etc.. Among 
them, the Shooting method is used in this paper, because the 
simplicity for programming and fast convergence. Actually, 
the results for the co-state initial values are very small values. 
So, choosing the boundary range for these parameters is very 
difficult for stochastic processes. 

For the shooting method, the constraints matrix( h ) is the 
function of the initial and final state variables and final time. 
So, the differential of this constraints matrix can be written as 
follows. 

 

0 0 . .
ff f z z fdh h dt h z h z H OTδ δ= + + +    (28) 

 

where, the 
TTTz x λ⎡ ⎤= ⎣ ⎦  represents augmented state 

matrix and ft represents final time. And the subscript 0  

and f  mean the values at the initial and final time. For 
simplicity the high order term is neglected in this paper. This 
equitation can be rewritten for only initial augmented state 
matrix and final time by using the state transition matrix Φ . 
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To reduce these constraints, we want to satisfy the 

following equation. 
 

, 0 1dh hα α= − < ≤      (29) 
 

Table. 1 Simulation results for the optimal lunar landing 

Optimal 
Perilune 
altitude 

(km) 

Optimal 
Terminal 

time for the 
descent phase 

(sec) 

Initial Co-state variables for 
the descent phase 

61.0147 1019.7998 

(0) 0.00238096568550
(0) 0
(0) 1.09106631082654
(0) 0.06977679327318
(0) 3.64929196248789
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Therefore, we can obtain the update law of the augmented 

state variables at the initial time as follows. 
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Using this update law, the optimal solution to satisfy the 

TPVBP can be obtained by iterative process. 
 

2.7 Continuation Method 
In the previous section, we can find the solution for the 

optimal lunar landing trajectory. However, this optimal 
solution can be changed as changing the lunar parking orbit 
altitude. Therefore, we can obtain the optimal solutions as 
function of the lunar parking orbit altitude. For this process, 
the initial condition estimation is mostly important because we 
want to use the shooting method. However, these dynamics is 
not very fast system. So, the state and co-state variables are 
not suddenly changed. Therefore, the optimal solution is very 
smooth function for the lunar parking orbit altitude. For this 
reason, we can easily find the solutions by choosing the initial 
state and co-state variables from the solutions which is already 
obtained. 
 

3. RESULTS AND DISCUSSION 
 
For the numerical simulation, we use the same conditions 

from Ref.[2]. So, the initial parking orbit altitude is 100km 
from the lunar surface and the initial mass of the lunar lander 
at the starting point of the descent phase is 300kg. And the 
constant thrust level is 440N, the specific impulse of the 
thruster is 310sec. 

The simulation results are described in the Table 1. In this 
simulation, the perilune altitude is 61.0147km. This perilune 
altitude is very higher than 15 km which is used in the 
previous researches. So, the terminal time is increase and the 
final landing mass is decrease. This means the cost values for 
the descent phase is increase. However, the cost values for the 
Hofmann transfer is more decrease than this increment. 
Therefore, the total cost value is decrease. And the initial 
co-state values for the descent phase are described in the same 
table. In this result, the initial co-state values are very small, 
especially, co-state for the radial distance. So, choosing the 
boundary range for these parameters is very difficult for 
stochastic processes. 

The descent phase profiles are shown in the Fig. 3 to Fig. 6. 
In the trajectory figure, Fig. 3, there is not altitude increment 
which is obtained in the Ref.[2]. In the Ref.[2], there is 
altitude increment to maximize horizontal braking that 
minimized the gravity loss. However, in this simulation result,  
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Fig. 3 Trajectory of the lunar lander 
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Fig. 4 Control command profile for the optimal lunar landing 
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Fig. 5 Velocity history for the optimal lunar landing 

0 200 400 600 800 1000 1200
-4

-3

-2

-1

0

1

2

co
-s

ta
te

s

Time for Descent Phase (sec)

 λr

 λu

 λv

 λm

λr

λv

λu

λm

 
Fig. 6 Co-state profile for the optimal lunar landing 
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Fig. 7 Optimal perilune altitude for the various lunar parking 

orbit altitude 
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Fig. 8 Initial co-state values at the descent phase for the 

various lunar parking orbit altitude 
 

this altitude increment does not exist. Therefore, the cost value 
is decrease. In the Fig. 4, the control input angle is displayed. 
In this figure, the control input is very smooth function, so, 
this control input can be apply to the lunar lander. Finally, the 
radial and tangential velocity history during the descent phase 
with this control input profile are displayed in the Fig. 5, and 
the co-state variables history also be plotted in the Fig. 6. In 
the Fig. 5, the two kind of velocity have some different 
velocity range. So, the range is divided in the left and right 
side. Therefore, the magnitude of the radial velocity history, 
red line, is indicated in the right side. 

In the previous simulation, the optimal solution is easily 
obtained for the 100km lunar parking orbit. However, this 
parking orbit altitude can be changed as changing the mission 
requirements. So, the optimal perilune altitude must be 
changed as changing the lunar parking orbit altitude. In this 
reason, it is useful that the optimal perilune altitude is 
described as a function of the lunar parking orbit. So, same 
simulations are done with various lunar parking orbit altitude 
conditions. The simulation results are plotted in Fig. 7 and Fig. 
8. In the Fig. 7, the optimal perilune altitude is similar to linear 
function of the lunar parking orbits. So, the curve fitting for 
the first order is accomplished and the result is obtained as 
follows. 

 
(0) 0.79547498416898 18.69375349429545pr r= −  (31) 

 
In the Fig. 8, the initial co-state values are plotted at the 

descent phase as changing the lunar parking orbit altitude.  
These results are dependent on the simulation conditions as 

thrust level, specific impulse and the lunar lander initial mass. 



  
 

However, the optimal perilune altitude can always be obtained 
using this process.  

 
4. CONCLUSION 

 
In this paper, we can find the optimal lunar landing 

trajectory. For this optimal control problem, the perilune 
altitude is important to reduce the total energy for the lunar 
landing. Therefore, the initial state is free in this optimal 
control problem, and we can solve this problem using optimal 
control theory. For the simulation, we use shooting method. 
Using this method and the continuation method, we can easily 
find the optimal solution under various parking orbit 
conditions, and we can describe this result as a function of 
parking orbit altitude. However, these results are dependent on 
the thruster on the lunar lander. 
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