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Abstract—Intelligent autonomous mobile robots must be able 
to sense and recognize 3D indoor space where they live or 
work. In this paper, we propose a new 3D sensing system 
using the laser structured lighting method, because of its 
robustness on the nature of the navigation environment and 
the easy extraction of feature information of interest. The 
proposed active trinocular vision system is composed of a 
flexible multi-stripe laser projector and two cameras 
arranged with a triangular shape. Based on the virtual 
camera concept and the trinocular epipolar constraints, the 
matching pairs of line features in two real camera images are 
established, and 3D information from one-shot image can be 
extracted on the patterned scene. Especially, for robust line 
feature matching, we propose a new correspondence 
matching algorithms based on line grouping and 
probabilistic voting. Finally, a series of experimental tests is 
performed to show its efficiency and accuracy. 
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I.  INTRODUCTION 
A major research issue for service robots is the creation 

of environment sensing and recognition system for mobile 
robot navigation and task execution, which is robust and 
efficient. A variety of machine vision techniques have been 
developed for the determination of 3D scene geometric 
information from 2D images. Especially, although the 
binocular vision sensors among them have been widely 
used as representative ones of passive visual sensors for 
mobile robots, they still suffer from image intensity 
variation due to the illumination noise, insufficient feature 
information on environment composed of plain surfaces, 
and correspondence problem between multiple images. 
These reasons have made most mobile robot researches on 
3D environment reconstruction using visual sensors to deal 
with just straight line edge and corner as interesting 
features [1]-[3], but these features are saliently observed in 
well arranged and structured environment with polygonal 
objects or polygon-textured surfaces. In addition, this 
information is not sufficient to describe the whole structure 
of 3D space. Therefore, robots frequently use active 
sensors for more reliable range sensing, and have become 
recognized as a hopeful alternative proposal, which include 
the infrared sensor, the ultrasonic sensor, and the laser 
sensor [4]. In many approaches to indoor robot applications, 
laser sensor has been used for detail sensing and modeling 
objects, which is commonly categorized to the laser visual 

sensor and the laser range finder measuring the time-of-
flight. Though the laser range finder has more advantages 
in views of measuring range and relative accuracy, it need 
still high cost with high power consumption and heavy 
weight. In addition, the latter needs more scanning 
procedure than the former. This scanning procedure is a 
time consuming task to limit the sensing time, and needs a 
precisely controlled scanning mechanism. In order to keep 
up the advantages of the sensor system using the laser-
structured light and to decrease the sensing time without 
degradation of the sensor resolution, it is necessary to 
develop a new visual sensor system different from the 
sensors mentioned above. In this work, we propose an 
active trinocular range sensor composed of a laser pattern 
projector and two cameras. As a general object-shape 
measuring device, not for mobile robots, Blake, et al. [5] 
developed a trinocular active range sensor with a similar 
configuration, which consists of two line pattern projectors 
and a camera for image acquisition. But, it employs careful 
alignment of two projector patterns with a camera to solve 
the ambiguity problem of node labels [6]. Without this 
alignment, our sensor system is just based on the trinocular 
epipolar constraints of the trinocular vision. The pattern 
projector is a flexible multi-stripe laser projector capable of 
varying the line-to-line spacing between stripes. Because 
the projector can be modeled as another virtual camera 
with previously known input image, this sensor system can 
be treated as a trinocular vision, and the acquired image 
can be analyzed using trinocular vision theory. For reliable 
correspondence matching between line features, we 
propose a special correspondence matching technique 
based on line grouping and probabilistic voting.  

II. NAVIGATION ENVIRONMENT 

A. Indoor navigation environment for mobile robots 
Navigation environments can be split into one of the 

following categories: 1)known, 2)unknown and 3)partially 
known environments. Especially, a partially known 
environment means that the environment information 
modelled to a certain extent is given to the robots, but 
insufficient to fully support task completion. Since most 
applications for indoor robot navigation are closely related 
to this situation, we will deal with this case, and assume 
that most objects composing navigation environments are 
unknown and cluttered on the space. There might be many 
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different types of objects that mobile robots encounter on 
navigation or task space. They are typically categorized 
according to their shapes and surface conditions, for 
example, texture and reflectance, as shown in Fig. 1. 
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Fig. 1  Examples of objects with variations of surface condition and shape 

B. Sensing system for mobile robots 
Most robots for robustly sensing the environments are 

equipped with various sensors. Among them, laser range 
sensor and stereovision sensor are representatives 
commonly used for 3D perception. In case of stereovision, 
its performance is seriously influenced by surface 
characteristics and shape of the target object and the 
illumination condition on the scene. If the target object 
does not have sufficient texture information or the periodic 
pattern is printed on its surface, this sensor is impossible to 
acquire the whole 3D information of the object, but can 
deal with edges and corners of polygonal objects. For the 
curved object with plain surface, this sensor cannot 
reconstruct even boundary information accurately [7]. 
Similar to stereovision, laser range sensors except time-of-
flight laser range finder are based on the optical 
triangulation principle. Since the laser used as the light 
source has more attractive features than other light sources, 
this sensor gives more reliable and accurate results than 
other optical sensors. If an object is not mirrorlike, it works 
successfully, and gives best results among four sensors for 
various objects with lambertian surface. Although the laser 
sensors are relatively attractive, they always need the 
scanning procedure for 3D scene perception. Development 
of faster and more flexible laser sensors has been for 
mobile robots [8][9] and robot manipulator [10][11]. 

III. MEASUREMENT OF 3D SURFACE 

A. Sensing principle of the proposed sensor system 
In general stereovision, correspondence problem has 

been the major research issue in stereovision, and studied 
until now since its birth. For easy handling of this difficulty, 
some researchers frequently have used the structured light 
method replacing one camera with a pattern projector [12]. 
The main stream of the related researches is the technique 
known as coded structured light with two categories: 1) 
temporal codes, and 2) spatial codes. Morano, et al. [13] 
proposed a vision system using structured light with 
pseudorandom codes. But, it has some disadvantages that 
the used color pattern projector is not compact, and the 
reflected pattern color may be different from the projected 

pattern color due to different reflection properties on the 
object surface, which often result in incorrect 
correspondence matching. Chen, et al. [14] adopted a 
vision system using a color structured lighting and two 
cameras for easy correspondence matching of the projected 
multi-line color stripe pattern. With one more camera, they 
replaced the lighting-to-image correspondence problem by 
an easier problem of image-to-image correspondence. This 
system is more robust than former to color distortion 
problem, however, approaches using color pattern projector 
have size, heat, and cost problem. Therefore, its application 
to mobile robots is still beyond, and we propose a novel 3D 
measurement system that utilizes a flexible multi-stripe 
laser pattern generator. Fig. 2 shows the basic concept of 
the proposed sensor system, which is composed of a multi-
stripe laser generator and two cameras.  
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Fig. 2  Concept of a three-dimensional surface profile sensing system 
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Fig. 3   View analysis in each image for finding the correspondence point 

Since the pattern projector can be modeled as another 
camera from which we know the input image [5], the 
whole system can be treated as a trinocular vision system. 
To see how this sensor system works, we analyze the view 
of each image device as shown in Fig. 3, and imagine a 
point P on the object. OXYZ denotes the world coordinates 
system, and the coordinates of a point on this frame are 
represented as (xp, yp, zp). O1, O2 and O3 represent the 
optical centers of two cameras and the projector. Assume 
that the object point P on the projected pattern is 
observable as the image point p1 on the image of camera 1 
and the matching point p2 on the image of camera 2. Based 
on epipolar constraint, the latter must lie on the epipolar 
line l2 that is the projection of the line O1p1 onto the image 
plane of camera 2 [1]. Let T1, T2, and T3 be the perspective 
transform matrix of three cameras. (u1, v1) and (u2, v2) 
denote the image coordinates of p1 and p2. Relations 



between each perspective transform matrix and image 
coordinates (ui, vi) are given by 
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where (Ui, Vi, si ) denotes the projective coordinates of an 
image point on ith camera, and i indicates ith camera. The 
parametric equation of the line O1p1 in 3D space is defined 
by [ ] 1 1

Tx y z O nλ= + ⋅  in which λ, 1n , and 1O  are 
arbitrary scaling factor, the directional vector of the line, 
and the camera origin, respectively. The epipolar line l2 for 
the point p1 can be obtained by 
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where 1n  denotes the direction vector of the line O1p1. This 
epipolar line constraint reduces the search for a 
corresponding image point from two-dimension to one-
dimension. Additionally, in our system, the solution of the 
correspondence problem can be supported by another third 
image. In Fig. 3, the epipolar line m3 is another constraint 
that the relation of the projector and camera 2 makes on 
virtual image plane for image point p2, and the epipolar line 
l3 is the other constraint that the relation of the projector 
and camera1 make for image point p1. Similar to Eq.(2), 
the epipolar lines, m3 and l3, are defined as follows:  
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where 2n  denotes the direction vector of the line O2p2. If 
the image points p1 and p2 are a corresponding pair, these 
epipolar lines must intersect at a point p3 on the projected 
line feature of the virtual multi-stripe laser image. Using 
this characteristic, correspondence candidate points can be 
checked one by one. When the object point P on the pattern 
is visible at two cameras, these constraints are always 
effective. After correspondence matching, 3D coordinates 
of an object point P are easily computed [2]. Using a pair 
of correspondence points, p1(u1, v1), p2(u2, v2), and p3(u3, 
v3), and Eq.(1), a linear equation for 3D coordinates a=(xp, 
yp, zp) of the object point P is constructed as follows:  

Aa b=               (4) 
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Using a least square error method, the solution of this 
equation is derived by 

( ) 1T Ta A A A b
−
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For the proposed sensor system, the procedure of 
extracting the 3D information is represented in Fig. 4. For 
the robust correspondence matching between line features, 
we propose a novel correspondence matching algorithms. 

B. Correspondence matching between line features 
The correspondence matching between line features is 

based on the point-to-point correspondence check 
algorithms. Each line feature is composed of a set of 
connected points. In order that a line feature of the left 
image becomes matched with one of the right image, all 
correspondences between points consisting of two line 
features must be theoretically established. However, a line 
feature in one image is often broken into a few ones or 
disappeared in the other image due to own viewing pose 
and different optoelectronic characteristics of each camera. 
Since it makes correspondence problem more difficult, we 
develop a probabilistic voting method with two phases: 1) 
voting phase 2) ballot counting phase. In voting phase, a 
set of points on each line feature attends the voting. Fig. 5 
shows the three-dimensional polls for correspondence 
voting between line features, which is composed of so-
called accumulator array with l x m x n size. Here, m and n 
denote a number of line feature labels observed in left and 
right image, respectively, and l denotes a number of the 
laser lines projected on a target scene. In Fig. 5, each 2D 
slice of the whole 3D accumulator array represents the 
polls for a certain laser line. For multiple laser lines, a set 
of 2D accumulator array constructs the 3D polls. These 
cells clearly play a role to depict the correspondence 
relationship between line features and the corresponding 
laser stripe among the projected stripes. For example, a cell, 
A(i, j, k), denotes the probabilistic confidence level for 
correspondence-matching between a line feature with ith 
label in left image, a line feature with jth label in right 
image and a laser stripe with kth label in the pattern image. 
In the voting phase, after initialization of the accumulator 
array, for all pixels consisting of line features in one image, 
the trinocular epipolar constraint is checked. Whenever a 
pair of pixel points that pass successfully the 
correspondence check algorithm is found, the confidence 
value of the related accumulator cell is iteratively increased. 
The corresponding accumulator cell, A(i, j, k), is updated as 
follows:  

 ( , , ) ( , , ) 1A i j k A i j k= + .        (6) 

However, if there are N candidate points passing 
through the check algorithms simultaneously, the amount 
of change of probabilistic confidence value is decreased as 
1/N, and all of the matching candidate pairs share the 
correspondence probability. A set of corresponding 
accumulator cell is updated as follows: 

1( , , ) ( , , )A i j k A i j k N= +   .                (7) 

After the correspondence voting for all pixels 
consisting of line features is executed, the acquired 
accumulator array represents a list that can describe the 
matching situation between line features at a glance. The 
value of the cell, A(i, j, k), depends on a number of the 
matched image points between ith line in left image, jth line 
in right image, and kth laser stripe. Therefore, real 



correspondences existing in three images will produce 
large values of the related cells. This results in local 
maxima along the vertical columns in the 3D accumulator 
space. In the ballot counting phase, Non-Maxima 
Suppression is performed for finding the global maximum 
along each vertical column of the 3D accumulator array. 
The results are stored at the essential accumulator array, C, 
in a following form: 

{ }( , ) ( ( , , ), ) | ( ( , , )) 1, ,C i j A i j k k Max A i j k for k l= =  (8) 

where Max(·) is a maximum selection function. To get rid 
of the mismatched correspondence candidates due to noise, 
the essential accumulator array cells to have less 
confidence level than a predefined threshold value, Tsub, are 
cleared out. Finally, the uniqueness constraint is applied on 
the filtered essential accumulator array. This constraint 
denotes that each line feature in a pair of stereo images 
should be matched to only one laser stripe in the pattern 
image. This constraint can be implemented on the essential 
accumulator array as follows: 1) Search essential 
accumulator cells with the identical line label in the left 
image and the different laser stripe label in the pattern 
image, 2) Group them into subgroups with an identical 
laser stripe label, and Sum up the confidence of each 
matching candidate in a subgroup for evaluating total 
confidence that this line feature corresponds to the laser 
stripe, 3) Compare the integrated confidence of each 
subgroup with each other, and determine a candidate with 
the highest value as the correct matching one, and 4) the 
above procedure (1)~(3) is repeated for line features in 
right image. The main advantage of using 3D 
correspondence voting method lies in the fact that it is 
insensitive to missing parts of line features, image noise 
and other line features that sometimes disturb unique 
correspondence matching.  For example, a noisy or rough 
line feature will not yield a cell with large value in the 
accumulator array but result in a cell with low value.  
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Fig. 4  Algorithmic flowchart for the correspondence matching 
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Fig. 5  Accumulator array used for correspondence matching between line 
features, with l x m x n size 

IV. SENSOR SYSTEM AND ITS CALIBRATION 
Fig. 6 shows the experimental setup for evaluating the 

proposed sensing system and calibrating this sensor system. 
Through the lower circular window of the pattern generator, 
a laser pattern is projected on the scene, and the upper 
window is reserved for other purpose. The pattern 
generator consists of a rotating polygon mirror which 
makes a laser slit beam sweep on the scene, an assembly of 
a laser diode and a cylindrical lens that make a laser stripe, 
a photo diode for synchronous signal generation, and 
micro-processor for the speed control of polygon mirror 
and the on/off time of the laser diode. The whole 
dimension of the pattern generator is 150x170x60mm. Each 
camera has 640x480 pixels, and the focal length of the 
camera lens is 16mm. To increase the signal-to-noise ratio, 
a band-pass filter is attached in front of each camera. The 
length of the base line between two cameras is about 
100mm. For calibration of each camera, a method proposed 
by Tsai is adopted. The world coordinate frame is fixed at a 
position with about 1,235mm distance from sensor. 
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Fig. 6 Sensor system and camera calibration setup 
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V. EXPERIMENTS FOR SENSING ENVIRONMENTS 

A. Image processing for line feature extraction 
To implement the proposed sensing principle, first it is 

necessary to robustly find the line feature information from 
the acquired images. The line feature extraction process in 
each input image is a combination of several image 
processing algorithms, which are summarized as follows: 
1) For image noise rejection, noise filtering is applied to 
each image. 2) For each column, a thickness of line 
features is predicted using derivative of gaussian filter. 3) 
For each column, a line mask with a form of laplacian of 
gaussian filter is generated according to the estimated laser 
line thickness, and the line pattern is enhanced using this 
filter. 4) For local line center detection, non-maxima 
suppression along normal direction of the curved line is 
applied to the local area corresponding to the line mask 
size. 5) After acquiring the essential line image with 
thinned laser line, line blobbing is performed for grouping 
the connected line features and segmenting the 
disconnected line features with the rejection process of 
short line features due to image noise. 

B. Experiments on objects with various shapes 
To evaluate the performance of the sensor system, it is 

necessary to examine a simple object first. For this purpose, 
a flat plane is placed in front of the sensor system instead 
of the calibration target shown in Fig.6, and a laser line 
pattern is projected on it. With variations of the distance 
from the sensor to this plane, d, the measurement tests were 
performed, and the experimental results are summarized in 
Fig. 7. The drift error is mainly dependent on the sensor 
calibration, and the error standard deviation, σe, results 
from the image processing and quantization error. The 
error standard deviation tends to increase with the object 
distance. At d=1,250mm, the average error and the error 
standard deviation in direction of z axis are 0.467mm and 
2.79mm. Secondly, we performed measurement tests on 
four objects composed of polygons and curved ones. 
Polygonal objects are a tetrahedron and a pentagonal 
cylinder, and curved object are a cylinder and a cylindrical 
object with curved surface as shown in Fig. 8. In Fig. 9, the 
acquired 3D point data on each object is represented with 
the same order. In each case, a pattern with 32 lines is 
projected on the scenes. The experimental results show that 
the proposed sensor system can measure the objects with 
plain surface, without depending on variations of their 
shapes. The broken line on the results is caused by the 
incomplete line extraction on each input image, and the 
ambiguity of the correspondence between these incomplete 
line features. Shape measurement results on the objects 
were acquired through a surface fitting method based on 
the least square error minimization. First, a contained angle 
of two planes of tetrahedron after the plane fitting process 
was measured as 71.4° comparing with the ground truth, 
70.5°. Second, in case of a cylindrical pentagon, a 
contained angle of its two planes was measured as 107.2° 
comparing with the ground truth, 108°. The angle 
measurement error of two polygonal objects shows less 
than 0.9°. Next, after cylinder fitting, the radius of cylinder 
was estimated as 105.3mm with 5.3mm error to the real 

value. In this case, the cylinder fitting method using just 
measurements of a front side of the object is a major reason 
to lead this error. If we use more information acquired at 
different views, it will be decreased. Fig. 10 represents the 
results of the wireframe modeling on four target scenes: 1) 
first scene with a cup, a box and a plane, 2) second scene 
with a flowerpot, two small boxes, a large box and a plane, 
and 3) third scene with a cup, a small box, a large box and 
a plane. The 3D point cloud data was acquired through a 
scanning of a projected laser pattern. For the scanning, the 
laser pattern composed of 16 lines is shifted 5 times with 
stepwise increment of a projection angle, about 0.4°. The 
acquired 3D point cloud data was input to a commercial 
software for the wireframe modeling. The result shows the 
proposed sensor is robust to variations of object shapes and 
surface conditions. Especially, these scenes include 
combinations of objects painted with a figure, objects with 
plain surface, objects with a periodic texture, and objects 
printed with commercial logos. The modeling results 
shown in Fig. 10 represent well the scene composed of 
cluttered objects with various shapes and surface 
conditions.  
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Fig. 8  Target objects for experiments 

Fig. 9  Three-dimensional point data obtained for each target object       
(32 laser line projection) 



VI. CONCLUSIONS 
A major research issue associated with mobile service 

robots is the creation of environment sensing and 
recognition system for navigation and task execution that is 
robust and efficient. The widely used laser sensing 
technique needs the scanning procedure for acquiring the 
3D information on the entire scene. In this paper, we 
proposed a novel three dimensional sensor system for 
environment perception needed for mobile robots with less 
scanning time by using multi-laser stripe pattern projection, 
composed of the laser pattern projector of generating 
multiple line stripes and two cameras with laser filters. The 
system can extract 3D information on the scene without 
sequential image acquisition and complex spatial pattern 
coding. Though the performed experiments are not quite 
general, the experimental results show the feasibility of 
applying this sensor system to sensing mobile robot 
navigation environment. In addition, because this sensor 
system use a laser as the light source, and the CCD camera 
tends to become miniaturized, the sensor size and power 
consumption do not make troubles for robot operation 
when it is implemented on the mobile robots.  
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a) a wireframe model of first scene  

Xw
Yw

Zw

Viewing direction

small boxes

box

flowerpot

plane

box

small boxes

flowerpot

plane

 
b) a wireframe model of second scene  
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c) a wireframe model of third scene 

Fig. 10  wireframe modeling results using the measured data                  
( for a scanning, the laser pattern is shifted 5 times with data acquisition)
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