
An Architecture-Independent Software Development Approach for
Parallel Processing Systems*

Stephen S. Yau, Doc-Hwan Baet and Jun Wang

Department of Computer Science and Engineering
Arizona State University

Tempe, AZ 85287-5406, USA

'Information and Communication Engineering Department
Korea Advanced Institute of Science and Technology

Seoul, Korea

Abstract
In th is paper, a n architecture-independent software de-
velopment approach for parallel processing sy s t ems i s
presented. T h i s approach is based o n the parallel object-
oriented and func t ional computa t ion model PROOF and
separates the architecture dependent issues f r o m soft-
ware development. I t also facil i tates software develop-
m e n t for any parallel processing sys tems by relieving the
programmers f r o m the consideration of processor topol-
ogy and var ious parallelization aspects of the software.
O u r approach allows the exploitation. of parallelism at
both levels of granularity: object level and method level,
ihereby making our approach effective f o r software de-
velopment f o r various MIMD computers. Software de-
veloped using our approach will reflect the parallel struc-
ture of t he problem. space which will make the software
more understandable and modifiable. A f ramework con-
sisting of object-oriented analysis, object-design, coding
and t rans format ion phases i s presented f o r software de-
velopment f o r parallel processing sys tems . An example
is given t o i l lustrate th i s approach.
keywords: architecture-independent software develop-
ment, object-oriented paradigm, functional paradigm,
parallel processing.

1 Introduction
In spite of vast increase in speed of various par-

allel processing systems, the potential for high per-
formance computing systems for various applications
such as command, control, communication, and intel-
ligence systems, space exploration, weather prediction,
and telecommunication systems, where there are many
interacting components, shared resources, and compu-
tationally intensive tasks, cannot be realized without ef-
fective software development methods for such systems.
Unfortunately such methods are far from being mature
due to the complexity of concurrency and synchroniza-
tion issues. The lack of such methods is a major ob-
stacle for the effective use of parallel processing systems
in various application areas. The existing software de-
velopment approaches [l, 2, 3, 41 for parallel processing
systems focus on the exploitation of data parallelism in
numerical computation and do not address design steps
for developing parallel software. The well-known exist-
ing 0 0 A / O O D methods, such as CMT [5], Booch [6] ,

'This research was supported by Rome Laboratory, U.S. Air
Force Systems Command under contract numbers F30602-91-C.
0045 and F30602-93-0054.

0730-3157/95 $04.00 0 1995 IEEE
370

etc do not address software development issues for paral-
lel processing systems. Therefore, they are not suitable
to solve more general applications.

In this paper, we will present an architecture-
independent approach for software development for
parallel processing systems. It is based on the
parallel object-oriented functional computation model
(PROOF) 171 which incorporates the functional
paradigm in the object-oriented paradigm. The object-
oriented paradigm reflects the parallel object structure
for the problem space and is suitable for representing in-
herently concurrent behavior, which makes the software
more understandable and modifiable. The functional
paradigm facilitates us to exploit method level paral-
lelism. The main advantage of this approach is that
this methodology separates the architecture dependent
issues from software development. Hence, the program-
mer does not need to be concerned with the issues such
as synchronization, parallelization or the network topol-
ogy of parallel processing systems thereby making the
software development independent of the architectures
of parallel processing systems [SI. This approach will
allow the exploitation of parallelism at both levels of
granularity, coarse-grain at object level and fine-grain
at method level, and is suitable for MIMD machines.
An example will be given to illustrate our approach.

2 Overall Framework
Our approach to software development for parallel

processing system is based on the computation model
PROOF which incorporates the functional paradigm
into the object-oriented paradigm. In PROOF, each
object is an instance of a class, and can be either pas-
sive, active or pseudo-active. A passive object acts like
a service agent. I t waits passively until one of its meth-
ods is invoked by some other objects. An active object
is active initially, and it may remain active throughout
its execution, except for occasional suspensions for syn-
chronization with other objects. A pseudo-active object
is invoked by other objects, and in turn invokes methods
of other objects. A body will be attached to each active
and pseudo-active objects. Bodies of objects are func-
tions whose roles are to invoke the methods and mod-
ify the states of the objects. A class is defined by its
interface and definition. The class interface describes
the signatures of the methods provided by the class.
The class definit ion consists of the local data and the

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 22, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

the Petri-net model and many techniques are available
to analyze Petri-net models.

In the coding phase, the design of the software system
is implemented in PROOF L. The coding in PROOF/L

per.
In the transformation phase, PROOF/L code is

translated to a target code to be executed on a parallel
processing system. The transformation of the program
in PROOF/L into a target language involves the five
major steps as shown in Figure 1: partitioning, front-
end translation, grain size analysis, back-end translation
and allocation. These steps can be divided into two
groups, one for front-end translation and partitioning
dealing with architecture independent issues, the other
for grain size determination, back-end translation and
allocation dealing with architecture dependent issues.
In the partitioning step, the objects in the software sys-
tem are partitioned into a set of clusters [9]. The ob-
jective of our partitioning approach is to iimprove the
performance of the software by reducing communica-
tion cost among processors while maintaining the par-
allelization among objects. During this phase, we are
only concerned with the object level parallelism. In the
front-end translation, PROOF/L code is translated into
IF1 (Intermediate Form l), a task precedence graph lo].

in PROOF/L code explicitly in IF1 code. Then, grain
size analysis is performed to determine the proper size
of tasks to be executed on different processors in order
to improve the performance of execution, and a modi-
fied IF1 code is generated. In the back-end itranslation,
the modified IF1 code is translated into the t8arget code.
Architecture-dependent issues, such as communication
overhead and processor load, are considered in the back-
end translation. Then, the target code is atllocated to
processors. The details of the grain size ainalysis and
transformation are given in [l l] .

is straightforward and wil { not be discussed in this pa-

The purpose of this phase is to express the paralle I ism

I

I
8

I Back-End
Translation

I :
1 , ' I

E3 Allocation

implmentation of methods of the class. The synchro-
nization among the objects is achieved by attaching an
optional precondition guard to the methods in a class.
Each guard is a predicate. The object which invokes the
method is suspended when the attached guard is evalu-
ated to be False, and it is resumed when the guard pred-
icate becomes True. The guard attached to a method is
defined in a way that it only depends on the status of
the local data, and does not depend on invocations of
any other methods. Methods are defined as purely ap-
plicative functions or functional forms, i.e., high-order
functions. Thus, i t is easy to detect and exploit massive
parallelism due to referential transparency.

Our framework consists of the following phases:
object-oriented analysis, object design, coding in
PROOF/L1, and transforming PROOF/L code to a tar-
get language of a parallel processing system. I t is shown
in Figure 1.

In the object-oriented analysis phase, the system is
represented by a set of objects and the interrelationship
among the objects.

In the object design phase, the objects identified in
the object-oriented analysis phase are designed using
the notations defined in PROOF. The class interface
definitions and information about the object behavior
are used to design the objects. The design of the objects
has to be analyzed and verified for various l iveness and
safeness properties. For this purpose, we transform our
design into Petri nets, which were used in our approach
mainly because our design can be easily represented in

'A C++-based programming language with additional con-
structs required by PROOF/L.

3 Object-Oriented Analysis
Our approach starts from the problem statements

given in a natural language. We assume that the prob-
lem statements are complete in the functionalities of
the problem without ambiguities. The approach given
in [12] may be used to clarity the problem statements.

The object-oriented analysis phase consists of the fol-
lowing steps.

1) Identify objects and classes.

2) Determine class interfaces.

3) Specify dependency and communicat ion relation-

4) Identify active, passive and pseudo-active objects.

5) Identify the shared objects.

6) Specify the behavior of each of the objects.

7) Identify bottleneck objects, if any.

8) Check the completeness and consistency.

ships among objects.

371

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 22, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

In Step l), objects are identified by analyzing the se-
mantic contents of the requirement specifications. All
physical and logical entities are recognized as object
candidates. Each object corresponds to a real-world en-
tity, such as sensors, control devices, data and actions.
Objects having common behavior can be grouped to-
gether to form classes. The nouns in the specification
can be the candidates for the objects and the verbs for
the operations [13]. The candidates for objects can also
be detected from the data flow diagram[l4].

In Step 2), object class interfaces are determined.
Because every object is considered as an instance of an
object class, instead of defining objects directly, the ob-
ject class to which they belong must be defined. The
interface of an object class consists of the signatures of
the methods provided by the class. For each method, its
signature consists of the input and output parameters
and their types.

In Step 3), the relationships among objects are spec-
ified using the object communication diagram, in which
the objects are represented as rectangles, the links be-
tween the objects indicate the communication between
objects, i.e., method invocations, the arrows on the links
indicate the directions of invocations, the methods de-
fined in an object as interface are written within the
object with the method names beginning with a period,
and the labels on the arrows show which methods are
being invoked by an object. An example of the object
communication diagram is shown in Figure 3.

In Step 4), the objects are classified to active, pas-
save or pseudo-actzve objects according to their invo-
cation properties. They can be easily identified from
the object-communication diagram. The active objects
have outgoing arrows with optional incoming arrows for
responses from other objects, the passive objects have
only incoming arrows, and the pseudo-active have both
incoming and outgoing arrows.

In Step 5), the shared objects are identified. An ob-
ject is a shared object if it has the local data which
can be accessed by a number of objects. There are
two kinds of shared objects: read-only and wrztable. A
read-only shared object has the local data which cannot
be modified by other objects. A wrztable shared ob-
ject has the local data which can be modified by other
objects. Read-only objects can be freely duplicated as
many times as desired. However, wrztable objects should
not be duplicated easily because maintaining the consis-
tency of the data will cause additional overhead. Shared
wrztable objects may be bottleneck objects as they may
have to be executed sequentially to maintain the con-
sistency of the states of the objects.

In Step 6), to specify the behavior of an object, we
use the notations similar to those in [15]:

SEQ(m1 , m2,. . . , m,): The methods ml , m2, . . .,
m, are executed sequentially in the order ml, m2,
. . ., m,.

CON(ml , m 2 , . . . , m,): The methods ml , m2, . . ,,
m, are executed concurrently.

WAIT(m, 0): An object is waiting for the invoca-
tion of its method m by another object 0 to pro-
ceed with its execution.

SEL(C; ml, . . . , m,): An object selects one of
the methods for execution from the methods
ml, ma,.. . . ,m, based on a condition C. It be-
haves similar to the CASE statement in ordinary
programming languages.

An object permits only one of its methods to be
invoked by other objects among the set of methods
ml , 1122, . . . , m, defined in the object. It is typically
used t o describe the behavior of shared writable ob-
jects, which can serialize method invocations from
other objects that arrive simultaneously. ONE-OF
will always be associated with a WAIT construct in
a shared writable object because the object 0 will
have to wait for other objects to invoke its methods.

ONE - OF(WAIT(m1, Oj) , . . . , WAIT(m,, Ok)):

In Step 7) , the bottleneck objects, which may degrade
the performance of the software system to be developed,
are usually shared writable objects and identified from
the description of the object behavior in the above step.
If such an object is found, then redo or refine the object-
oriented analysis to reduce the bottleneck if possible to
prevent these objects from limiting parallelism. This
step may increase the number of objects in the software
system. Repeat Steps 2) to 6) until the object-oriented
analysis is found satisfactory.

In Step 8), the result of the object-oriented analysis
is verified with the given user requirements from which
the possible threads of controls are identified, and each
of them is examined using the behavior of the objects
specified in Step 6). The verification can be done as fol-
lows [16]: First, the results of the object-oriented analy-
sis are transformed into the specfication using a formal
specfication language, which is converted into an infor-
mation tree. Then, the completeness and consistency
between the results of the object-oriented analysis and
the user requirements can be verified by comparing the
information tree with the user requirements.

4 Object Design
In our approach, the object design is specified using

the notations defined in PROOF[7]. The class interface,
definition, and information about the object behavior
are used to design the objects. Our approach to object
design involves three steps:

1) Establish the class hierarchy.

2) Design the class composition and the methods in

3) Design the bodies of the active and pseudo-active

each object.

objects.

In Step l), a set of operations and/or attributes that
are common to more than one class can be abstracted
and implemented in a common class called the super-
class. The subclasses then have only the specialized fea-
tures. Many human decisions are involved in building
the class hierarchy. However, the similar method/data
pattens presented in different class interfaces can pro-
vide hints for the developers to effectively derive super-
classes/subclasses relations. In some cases, a superclass

372

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 22, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

can be extracted from a single subclass and put in the
class library if needed. Establishing a class hierarchy
in the form of superclasses and subclnsses increases the
reusability in the application. Class hierarchy also en-
hances the modularity and the extensibility of the soft-
ware system.

In Step 2), the composition of the local data and the
methods for each object class are designed. The com-
position defines the internal data structure of the class.
Various constructors, such as list and Cartesian prod-
uct, are provided. A typical functional style is adopted
in the method definition. In the method design, the in-
ternal state of the object to which the method belongs
is included as both the input and output parameters so
that side-effects can be avoided. A method of an object
consists of an optional guard and an expressaon. The
synchronization among concurrent objects is achieved
by the guards attached to the methods. The guard at-
tached to a method is defined in a way that it only
depends on the status of the local data, but does not
depend on the definition of other methods. Therefore,
the guards are directly inheritable with the methods.
Due to the referential transparency of applicative func-
tions, fine-grain parallelism can be exploited.

Selection of algorithm and data structure is an im-
portant part of the method design. The selection of al-
gorithms to accomplish a specific task should be based
on certain criteria which satisfy the required constraints
such as accuracy, timing requirements, use of common
utili ties across the design, reuse of previously developed
software, computational complexity, flexibility, ease of
implementation, understandability, etc.

In Step 3), a body is associated with each active
and pseudo-active object. There is no body associated
with a passive object as it does not invoke any meth-
ods. The role of a body is to invoke a method and to
modify the state of the objects represented by their lo-
cal data. The body in each object is expressed in the
form e l / / e a f / . . . / l e k where each e; is an expression
representing method invocations and expressions sepa-
rated by / f are evaluated simultaneously. // is a parallel
construct indicating parallel execution. ei can be recur-
sively defined and can be diverse. Thus, the evaluation
process may be infinite. In e i , methods of objects can
be invoked, and the states of objects may be modified.
The modification of an object is expressed by the re-
ceptzon construct which has the form R[lOl]e, where 0
called a reczpient object is an object name and e is an
expression with applications of purely applicative func-
tions. The reception construct can occur only in the
bodies of active and pseudo-active objects. The recep-
tion construct indicates that the object 0 will receive
the value returned by evaluating the expression e .

5 Transformation
Tbe transformation of PROOF/L code to a target

code involves two steps as shown in Figure 2: The first
step is called front-end transformation, which makes the
implicit parallelism present in PROOF/L code explicit.
This step is a semantics-oriented transformation, and
architecture dependent issues are not involved. The sec-
ond step is called the back-end transformation. This
step is performance-oriented, and architecture depen-
dent parameters, such as communication types, num-

ber of links and number of processors, are used to per-
form various analysis. We have developed the front-
end translator from PROOF/L to IF1 and two back-end
translators from IF1 to nCube C and KSR C, respec-
tively.

6 An Example
In this section, we use an example of a warehouse

management system to illustrate our approach. A sim-
plified version of the requirements specification of the
warehouse management system is given as folllows: The
warehouse management system interacts with manu-
facturers and customers, and manages the warehouse.
Manufacturers generate goods upon request from the
warehouse manager, and send them t o the warehouse
manager. The warehouse manager store the goods in the
warehouse racks, and retrieves them t o the customers
upon customer’s request. The capacity of this warehouse
is fixed. Reports of transaction information are gener-
ated periodically.

6.1 Object-Oriented Analysis
1) From the requirements specification, the following
objects are identified: manager, producer, consumer, re-
porter and rack.
2) As an example, the interface of rack is shown as fol-
lows:

c l a s s rack;
method put :: rack -> itemtype -> rack:
method get :: rack -> rack X itemtype;

end c l a s s

The method put has rack and itemtype as its input pa-
rameters and rack as its output parameter. The method
get has rack as its input parameter and rack and item-
type as its output parameters.
3) Dependency and communication relationships among
objects are identified and described in an object com-
munication diagram shown in Figure 3 (a).
4) consumer is an active object, manager and producer
are pseudo-active objects, and rack and repori!er are pas-
sive objects.
5) rack and reporter are shared objects. For example,
the methods defined in rack - put and get - update the
local data in rack, so rack is a writable shared object.
6) The behavior of each object is specified. For example,
rack has two methods put and g e t , which are invoked by
manager. The behavior of rack is specified
ONEOF(WAIT(put, manager), WAIT(get, manager)).
7) In manager, two control threads can be found: one is
initiated by manager to receive items from producer and
the other by consumer to retrieve items. Thu!j, manager
can be split into two objects as shown in Figure 3 (b).
8) Control threads are verified by starting from the ac-
tive objects, such as consumer, and tracing the methods
invocations based on the object behavior.

follows:

6.2 Object Design
1) In this example, each object is an instance of a differ-
ent class, except p-manager c-manager. We can define a
class called manager-class having the common method
transaction-in, that can be inherited to its subclasses,
p-manager and c-manager.

373

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 22, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

PROOFL -

I I

Scheme or Tgnffion
Detecting $atterns

IF1 Target Code
First Phase z- Second Phase z-

Figure 2: Major steps in transformation of PROOF/L code to a target code.

deliver-to-manager deliver-to-consumer
.transaction-in
. d i s p 1 ay

reporter

t t

1 1
(b)

Figure 3: (a) An object communication diagram for the
warehouse management system, and (b) modified object
manager .

[Beta[tail,decl buf, head(buf .r)]
end class

in the above buf is an instance of rack, and Beta,
appendiight, tail, head, inc and dec are defined
as follows:

Beta [f i , fz, ..., fn 1 [ti, 22, . . -) ZC,] E [f 1 (~ 1) ,
f Z (4 , . . .> f n (x n) 3 1

0 appendiight z y = y o [x]
0 tail [el, e 2 . . .e,] E [ez, e3 . . .e,]

0 head [el, e2 . . .e,] E el

inc n E n + 1; dec n E n - 1.

3) An important aspect of the design here is indicat-
ing the modification of the objects. For this we attach
R a t the method put since this method modified the
p-manager. Thus, R[lrackI] put is substituted in place
of put . This modification of body will be implemented
at the coding stage. The design of other constructs is
similar and will not be discussed here.

The perspective version of pseudo code for the nCube
parallel machine for the get method generated through
the front-end and back-end transformation is shown as
follows:

2 In the following we only give the definition of the
c 1 ass rack shown as an example:

class definition rack(size,itemtype)
composition

r:list(itemtype) X count:int
method

method

put buf x
guard(count < size)
expression
BetaC(append-right XI, incl buf

get r
guard(count > 0)
expression

void rack-get(rack *buf, rack *return-rack,
itemtype *return-itemtype) {

/* self- loop f o r passing the guard */

/* parallel dispatch the tasks */
dispatch (tail(buf->r) ->

dispatch (dec(buf->count) ->

dispatch (head(buf->r) ->

while (buf->count <= 0);

return-rack->r) ;

return-rack->count) ;

*return-itemtype) ;

wait for results;
1

374

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 22, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

Garbage collection for any unreferenced objects will be
performed along the execution.

7 Discussion
In this paper, we have presented an architecture-

independent approach to software development for
pardlel processing systems based on the computa-
tion model PROOF, which incorporates the functional
paradigm into the object-oriented paradigm. The soft-
ware will be developed in PROOF/L, which is a C++-
based langauge with addtional constructs required by
PROOF. Then, PROQF/L code is translated to a tar-
get language of the given parallel processing system for
execution. Our approach relieves the programmers from
the consideration of processor topology and various par-
allelization aspects of the software development, and
facilitates the exploitation of parallelism at both lev-
els of granularity - object level and method level. The
software developed using our approach will be easy to
understand and modify since the structure of the soft-
ware reflects the structure of the problem. Functional
paradigm used in the method design also permit the
expression of massive and implicit parallelism.

We have developed the front-end and back-end trans-
lators for the nCube and KSR-1 parallel processing
systems and a number of examples have been exper-
imented. We are incorporating the optimization teeh-
niques, such as function call in-lining, useless expression
removal and common subexpression extraction, as well
as are implementing the grain size determination algo-
rithrn in order to improve the performance of the target
codes. CASE tools need to be developed to aid the soft-
ware developer in various stages in our approach, such
as checking the consistency in the decomposition stage,
design process and transformation of the design into the
corresponding Petri-Net models.

Acknowledgement
We would like to acknowledge the paxticipation of M.
Chidambaram, G . Pour, V. Satish, W, Sung, M. Wells,
and K. Yeom in this project, especially their implemen-
tation of this approach.

References
R. Jagannathan, A. R. Downing, W. T. Zaumen,
and R. K. S. Lee, “Dataflow-based Methodology
for Coarse-Grain Multiprocessing on a Network of
Workstations,” Proc. Ini! ’1 Conf. on Parallel Pro-
cesszng Systems, Vol. 11, 1989, pp. 209-216.

J . C. Browne, et al., “The Computation-Oriented
Display Environment (CODE) -- A Unified Ap-
proach to Parallel Programming,” IEEE Software,

A. S. Grimshaw, “Easy-to-Use Object-Oriented
Parallel Processing with Mentat,” IEEE Computer,

N. J . Carriero, D. Gelernter, T. G. Mattson, and
A. H. Sherman, “The Linda alternative to message-
passingfg systems,” Parallel Computzng, Vol. 20,
No. 4, April 1994, pp. 633-655.

Vol. 6, 1989, pp. 10-17.

Vol. 26, NO. 5, 1993, pp. 39-51.

J . Rumbaugh, M. Blaha, W. Premerlani, F. Eddy
and W. Lorenson, Objecl-Orienied Modeling and
Design, Prentice Hall, 1991.

G. Booch, Object-Oriented Design wii!h Applica-
iions, Benjamin Cummings, 1991.

S. S. Yau, X. Jia, and D.-H. Bae, “PROOF: A
Parallel Object-Oriented Functional Computation
Model,” Jour. Parallel and Distributed Computing,

S. S. Yau, D.-H. Bae, and M. Chidambaram,
“Object-Oriented Development of Architecture
Transparent Software for Distributed Parallel Sys-
tems,” Computer Communications, Vol.. 16, No. 5,

S. S. Yau, D.-H. Bae, and Gilda Pour, “A Parti-
tioning Approach for Object-Oriented Software De-
velopment for Parallel Processing Systems,” Proc.
16th Annual 4nt’l Computer Software & Applica-
tions Conf. (COMPSAC92), 1992, pp. ;!51-256.

Livermore National Laboratory, An Intermediate
Form Language IF1 Reference Manual, 1985.

S. S. Yau, D.-H. Bae, M. Chidambaram, G. Pour,
V. R. Satish, W.-K. Sung, and I<. Yeom, “Soft-
ware Engineering for Effective Utilization of Par-
allel Processing Computing System,” Rome Lab-
oratory, Griffiss Air Force Base, New York, Tech.
Rept. RL-TR-93-113, June 1993.

K. S. Rubin and A. Goldberg, “Object Behavior
Analysis,” Comm. ACM, Vol. 35, No. 9, September

G. Booch, “Object-Oriented Development,’’ IEEE
Trans. on Software Engineering, Vol. SE-12, No. 2,
Feb. 1986, pp. 211-221.

S. C. Bailin, “An Object-Oriented Requirements
Specification Method,” Comm. ACM, Vol. 32, No.
5, May 1989, pp. 608-623.

S. S. Yau, C.-C. Yang, and S. M. Shatz, “An Ap-
proach to Distributed Computing System Software
Design ,” IEEE Trans . on Software Engineering,

S. S. Yau, D-H Bae and K. Yeom, “An Ajpproach to
Object-Orietned Requirements Verification in Soft-
ware Development for Distributed Computing Sys-
tems,” Proc. 18th Annual In2 ’I Computer Software
& Applications Conf. (COMPSAC94), 1994, pp.

Vol. 12, No.3, July 1991, pp. 202-212.

1993, pp. 317--327.

1992, pp. 48-62.

Vol. S E 7 , NO. 4, July 1981, pp, 427-436.

96-102.

375

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 22, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

