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Abstract 
In th is  paper, a n  architecture-independent software de- 
velopment approach for parallel processing sy s t ems  i s  
presented. T h i s  approach is based o n  the parallel object- 
oriented and func t ional  computa t ion  model PROOF and 
separates the  architecture dependent issues f r o m  soft- 
ware development.  I t  also facil i tates software develop- 
m e n t  for any  parallel processing sys tems  by relieving the 
programmers  f r o m  the  consideration of processor topol- 
ogy and var ious  parallelization aspects of the  software. 
O u r  approach allows the  exploitation. of parallelism at 
both levels of granularity: object level and method level, 
ihereby making  our  approach effective f o r  software de- 
velopment f o r  various MIMD computers.  Software de- 
veloped using our  approach will  reflect the  parallel struc- 
ture of t he  problem. space which will make  the software 
more  understandable and modifiable. A f ramework  con- 
sisting of object-oriented analysis, object-design, coding 
and t rans format ion  phases i s  presented f o r  software de- 
velopment f o r  parallel processing sys tems .  An example 
is given t o  i l lustrate th i s  approach. 
keywords: architecture-independent software develop- 
ment, object-oriented paradigm, functional paradigm, 
parallel processing. 

1 Introduction 
In spite of vast increase in speed of various par- 

allel processing systems, the potential for high per- 
formance computing systems for various applications 
such as command, control, communication, and intel- 
ligence systems, space exploration, weather prediction, 
and telecommunication systems, where there are many 
interacting components, shared resources, and compu- 
tationally intensive tasks, cannot be realized without ef- 
fective software development methods for such systems. 
Unfortunately such methods are far from being mature 
due to the complexity of concurrency and synchroniza- 
tion issues. The lack of such methods is a major ob- 
stacle for the effective use of parallel processing systems 
in various application areas. The existing software de- 
velopment approaches [l, 2, 3,  41 for parallel processing 
systems focus on the exploitation of data parallelism in 
numerical computation and do not address design steps 
for developing parallel software. The well-known exist- 
ing 0 0 A / O O D  methods, such as CMT [5], Booch [ 6 ] ,  
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etc do not address software development issues for paral- 
lel processing systems. Therefore, they are not suitable 
to solve more general applications. 

In this paper, we will present an architecture- 
independent approach for software development for 
parallel processing systems. It is based on the 
parallel object-oriented functional computation model 
(PROOF) 171 which incorporates the functional 
paradigm in the object-oriented paradigm. The  object- 
oriented paradigm reflects the parallel object structure 
for the problem space and is suitable for representing in- 
herently concurrent behavior, which makes the software 
more understandable and modifiable. The functional 
paradigm facilitates us to  exploit method level paral- 
lelism. The main advantage of this approach is that 
this methodology separates the architecture dependent 
issues from software development. Hence, the program- 
mer does not need to  be concerned with the issues such 
as synchronization, parallelization or the network topol- 
ogy of parallel processing systems thereby making the 
software development independent of the architectures 
of parallel processing systems [SI. This approach will 
allow the exploitation of parallelism at both levels of 
granularity, coarse-grain at object level and fine-grain 
at method level, and is suitable for MIMD machines. 
An example will be given to illustrate our approach. 

2 Overall Framework 
Our approach to  software development for parallel 

processing system is based on the computation model 
PROOF which incorporates the functional paradigm 
into the object-oriented paradigm. In PROOF, each 
object is an instance of a class, and can be either pas- 
sive,  active or pseudo-active.  A passive object acts like 
a service agent. I t  waits passively until one of its meth- 
ods is invoked by some other objects. An active object 
is active initially, and it may remain active throughout 
its execution, except for occasional suspensions for syn- 
chronization with other objects. A pseudo-active object 
is invoked by other objects, and in turn invokes methods 
of other objects. A body will be attached to each active 
and pseudo-active objects. Bodies of objects are func- 
tions whose roles are to invoke the methods and mod- 
ify the states of the objects. A class is defined by its 
interface and definition. The class interface describes 
the signatures of the methods provided by the class. 
The class definit ion consists of the local data and the 
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the Petri-net model and many techniques are available 
to analyze Petri-net models. 

In the coding phase, the design of the software system 
is implemented in PROOF L. The coding in PROOF/L 

per. 
In the transformation phase, PROOF/L code is 

translated to  a target code to be executed on a parallel 
processing system. The transformation of the program 
in PROOF/L into a target language involves the five 
major steps as shown in Figure 1: partitioning, front- 
end translation, grain size analysis, back-end translation 
and allocation. These steps can be divided into two 
groups, one for front-end translation and partitioning 
dealing with architecture independent issues, the other 
for grain size determination, back-end translation and 
allocation dealing with architecture dependent issues. 
In the partitioning step, the objects in the software sys- 
tem are partitioned into a set of clusters [9]. The ob- 
jective of our partitioning approach is to  iimprove the 
performance of the software by reducing communica- 
tion cost among processors while maintaining the par- 
allelization among objects. During this phase, we are 
only concerned with the object level parallelism. In the 
front-end translation, PROOF/L code is translated into 
IF1 (Intermediate Form l), a task precedence graph lo]. 

in PROOF/L code explicitly in IF1 code. Then, grain 
size analysis is performed to determine the proper size 
of tasks to be executed on different processors in order 
to  improve the performance of execution, and a modi- 
fied IF1 code is generated. In the back-end itranslation, 
the modified IF1 code is translated into the t8arget code. 
Architecture-dependent issues, such as communication 
overhead and processor load, are considered in the back- 
end translation. Then, the target code is atllocated to 
processors. The details of the grain size ainalysis and 
transformation are given in [ l l ] .  

is straightforward and wil { not be discussed in this pa- 

The purpose of this phase is to express the paralle I ism 

I 

I 
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E3 Allocation 

implmentation of methods of the class. The synchro- 
nization among the objects is achieved by attaching an 
optional precondition guard to the methods in a class. 
Each guard is a predicate. The object which invokes the 
method is suspended when the attached guard is evalu- 
ated to  be False, and it is resumed when the guard pred- 
icate becomes True. The guard attached to  a method is 
defined in a way that it only depends on the status of 
the local data,  and does not depend on invocations of 
any other methods. Methods are defined as purely ap- 
plicative functions or functional forms, i.e., high-order 
functions. Thus, i t  is easy to detect and exploit massive 
parallelism due to  referential transparency. 

Our framework consists of the following phases: 
object-oriented analysis, object design, coding in 
PROOF/L1, and transforming PROOF/L code to  a tar- 
get language of a parallel processing system. I t  is shown 
in Figure 1. 

In the object-oriented analysis phase, the system is 
represented by a set of objects and the interrelationship 
among the objects. 

In the object design phase, the objects identified in 
the object-oriented analysis phase are designed using 
the notations defined in PROOF. The class interface 
definitions and information about the object behavior 
are used to  design the objects. The design of the objects 
has to be analyzed and verified for various l iveness and 
safeness properties. For this purpose, we transform our 
design into Petri nets, which were used in our approach 
mainly because our design can be easily represented in 

'A C++-based programming language with additional con- 
structs required by PROOF/L. 

3 Object-Oriented Analysis 
Our approach starts from the problem statements 

given in a natural language. We assume that the prob- 
lem statements are complete in the functionalities of 
the problem without ambiguities. The approach given 
in [12] may be used to  clarity the problem statements. 

The object-oriented analysis phase consists of the fol- 
lowing steps. 

1) Identify objects and classes. 

2) Determine class interfaces.  

3) Specify dependency and communicat ion  relation- 

4) Identify active, passive and pseudo-active objects. 

5) Identify the shared objects. 

6) Specify the behavior of each of the objects. 

7) Identify bottleneck objects, if any. 

8) Check the completeness and consistency. 

ships among objects. 
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In Step l), objects are identified by analyzing the se- 
mantic contents of the requirement specifications. All 
physical and logical entities are recognized as object 
candidates. Each object corresponds to a real-world en- 
tity, such as sensors, control devices, data and actions. 
Objects having common behavior can be grouped to- 
gether to  form classes. The nouns in the specification 
can be the candidates for the objects and the verbs for 
the operations [13]. The candidates for objects can also 
be detected from the data flow diagram[l4]. 

In Step 2), object class interfaces are determined. 
Because every object is considered as an instance of an 
object class, instead of defining objects directly, the ob- 
ject class to  which they belong must be defined. The 
interface of an object class consists of the signatures of 
the methods provided by the class. For each method, its 
signature consists of the input and output parameters 
and their types. 

In Step 3), the relationships among objects are spec- 
ified using the object communication diagram, in which 
the objects are represented as rectangles, the links be- 
tween the objects indicate the communication between 
objects, i.e., method invocations, the arrows on the links 
indicate the directions of invocations, the methods de- 
fined in an object as interface are written within the 
object with the method names beginning with a period, 
and the labels on the arrows show which methods are 
being invoked by an object. An example of the object 
communication diagram is shown in Figure 3.  

In Step 4), the objects are classified to active,  pas-  
save or pseudo-actzve objects according to their invo- 
cation properties. They can be easily identified from 
the object-communication diagram. The active objects 
have outgoing arrows with optional incoming arrows for 
responses from other objects, the passive objects have 
only incoming arrows, and the pseudo-active have both 
incoming and outgoing arrows. 

In Step 5), the shared objects are identified. An ob- 
ject is a shared object if it has the local data which 
can be accessed by a number of objects. There are 
two kinds of shared objects: read-only and wrztable. A 
read-only shared object has the local data which cannot 
be modified by other objects. A wrztable shared ob- 
ject has the local data which can be modified by other 
objects. Read-only objects can be freely duplicated as 
many times as desired. However, wrztable objects should 
not be duplicated easily because maintaining the consis- 
tency of the data will cause additional overhead. Shared 
wrztable objects may be bottleneck objects as they may 
have to  be executed sequentially to  maintain the con- 
sistency of the states of the objects. 

In Step 6), to specify the behavior of an object, we 
use the notations similar to those in [15]: 

SEQ(m1 , m2,. . . , m,): The methods ml , m2, . . ., 
m, are executed sequentially in the order ml, m2, 
. . ., m,. 

CON(ml , m 2 , .  . . , m,): The methods ml , m2, . . ,, 
m, are executed concurrently. 

WAIT(m, 0):  An object is waiting for the invoca- 
tion of its method m by another object 0 to pro- 
ceed with its execution. 

SEL(C; ml, . . . , m,): An object selects one of 
the methods for execution from the methods 
ml, ma,.. . . ,m,  based on a condition C. It be- 
haves similar to the CASE statement in ordinary 
programming languages. 

An object permits only one of its methods to  be 
invoked by other objects among the set of methods 
ml , 1122, . . . , m, defined in the object. It is typically 
used t o  describe the behavior of shared writable ob- 
jects, which can serialize method invocations from 
other objects that arrive simultaneously. ONE-OF 
will always be associated with a WAIT construct in 
a shared writable object because the object 0 will 
have to wait for other objects to  invoke its methods. 

ONE - OF(WAIT(m1, Oj) ,  . . . , WAIT(m,, Ok)): 

In Step 7) ,  the bottleneck objects, which may degrade 
the performance of the software system to be developed, 
are usually shared writable objects and identified from 
the description of the object behavior in the above step. 
If such an object is found, then redo or refine the object- 
oriented analysis to reduce the bottleneck if possible to  
prevent these objects from limiting parallelism. This 
step may increase the number of objects in the software 
system. Repeat Steps 2) to 6 )  until the object-oriented 
analysis is found satisfactory. 

In Step 8), the result of the object-oriented analysis 
is verified with the given user requirements from which 
the possible threads of controls are identified, and each 
of them is examined using the behavior of the objects 
specified in Step 6). The verification can be done as fol- 
lows [16]: First, the results of the object-oriented analy- 
sis are transformed into the specfication using a formal 
specfication language, which is converted into an infor- 
mation tree. Then, the completeness and consistency 
between the results of the object-oriented analysis and 
the user requirements can be verified by comparing the 
information tree with the user requirements. 

4 Object Design 
In our approach, the object design is specified using 

the notations defined in PROOF[7]. The class interface, 
definition, and information about the object behavior 
are used to  design the objects. Our approach to  object 
design involves three steps: 

1) Establish the class hierarchy. 

2) Design the class composition and the methods in 

3) Design the bodies of the active and pseudo-active 

each object. 

objects. 

In Step l),  a set of operations and/or attributes that 
are common to more than one class can be abstracted 
and implemented in a common class called the super- 
class. The subclasses then have only the specialized fea- 
tures. Many human decisions are involved in building 
the class hierarchy. However, the similar method/data 
pattens presented in different class interfaces can pro- 
vide hints for the developers to effectively derive super- 
classes/subclasses relations. In some cases, a superclass 
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can be extracted from a single subclass and put in the 
class library if needed. Establishing a class hierarchy 
in the form of superclasses and subclnsses increases the 
reusability in the application. Class hierarchy also en- 
hances the modularity and the extensibility of the soft- 
ware system. 

In Step 2), the composition of the local data and the 
methods for each object class are designed. The com- 
position defines the internal data structure of the class. 
Various constructors, such as list and Cartesian prod- 
uct, are provided. A typical functional style is adopted 
in the method definition. In the method design, the in- 
ternal state of the object to  which the method belongs 
is included as both the input and output parameters so 
that side-effects can be avoided. A method of an object 
consists of an optional guard and an expressaon. The 
synchronization among concurrent objects is achieved 
by the guards attached to the methods. The guard at- 
tached to a method is defined in a way that it only 
depends on the status of the local data, but does not 
depend on the definition of other methods. Therefore, 
the guards are directly inheritable with the methods. 
Due to  the referential transparency of applicative func- 
tions, fine-grain parallelism can be exploited. 

Selection of algorithm and data structure is an im- 
portant part of the method design. The selection of al- 
gorithms to accomplish a specific task should be based 
on certain criteria which satisfy the required constraints 
such as accuracy, timing requirements, use of common 
utili ties across the design, reuse of previously developed 
software, computational complexity, flexibility, ease of 
implementation, understandability, etc. 

In Step 3), a body is associated with each active 
and pseudo-active object. There is no body associated 
with a passive object as it does not invoke any meth- 
ods. The role of a body is to invoke a method and to 
modify the state of the objects represented by their lo- 
cal data. The body in each object is expressed in the 
form e l / / e a  f /  . . . / l e k  where each e; is an expression 
representing method invocations and expressions sepa- 
rated by / f are evaluated simultaneously. // is a parallel 
construct indicating parallel execution. ei can be recur- 
sively defined and can be diverse. Thus, the evaluation 
process may be infinite. In e i ,  methods of objects can 
be invoked, and the states of objects may be modified. 
The modification of an object is expressed by the re- 
ceptzon construct which has the form R[lOl]e, where 0 
called a reczpient object is an object name and e is an 
expression with applications of purely applicative func- 
tions. The reception construct can occur only in the 
bodies of active and pseudo-active objects. The recep- 
tion construct indicates that the object 0 will receive 
the value returned by evaluating the expression e .  

5 Transformation 
Tbe transformation of PROOF/L code to a target 

code involves two steps as shown in Figure 2: The first 
step is called front-end transformation, which makes the 
implicit parallelism present in PROOF/L code explicit. 
This step is a semantics-oriented transformation, and 
architecture dependent issues are not involved. The sec- 
ond step is called the back-end transformation. This 
step is performance-oriented, and architecture depen- 
dent parameters, such as communication types, num- 

ber of links and number of processors, are used to  per- 
form various analysis. We have developed the front- 
end translator from PROOF/L to IF1 and two back-end 
translators from IF1 to nCube C and KSR C, respec- 
tively. 

6 An Example 
In this section, we use an example of a warehouse 

management system to illustrate our approach. A sim- 
plified version of the requirements specification of the 
warehouse management system is given as folllows: The 
warehouse management system interacts with manu- 
facturers and customers, and manages the warehouse. 
Manufacturers generate goods upon request from the 
warehouse manager, and send them t o  the warehouse 
manager. The warehouse manager store the goods in the 
warehouse racks, and retrieves them t o  the customers 
upon customer’s request. The capacity of this warehouse 
is fixed. Reports of transaction information are gener- 
ated periodically. 

6.1 Object-Oriented Analysis 
1) From the requirements specification, the following 
objects are identified: manager, producer, consumer, re- 
porter and rack. 
2) As an example, the interface of rack is shown as fol- 
lows: 

c l a s s  rack; 
method put :: rack -> itemtype -> rack: 
method get  :: rack -> rack X itemtype; 

end c l a s s  

The method put has rack and itemtype as its input pa- 
rameters and rack as its output parameter. The method 
get  has rack as its input parameter and rack and item- 
type  as its output parameters. 
3) Dependency and communication relationships among 
objects are identified and described in an object com- 
munication diagram shown in Figure 3 (a). 
4) consumer is an active object, manager and producer 
are pseudo-active objects, and rack and repori!er are pas- 
sive objects. 
5) rack and reporter are shared objects. For example, 
the methods defined in rack - put and get - update the 
local data in rack, so rack is a writable shared object. 
6) The behavior of each object is specified. For example, 
rack has two methods put and g e t ,  which are invoked by 
manager. The behavior of rack is specified 
ONEOF(  WAIT(put, manager), WAIT( get,  manager)). 
7) In manager, two control threads can be found: one is 
initiated by manager to  receive items from producer and 
the other by consumer to retrieve items. Thu!j, manager 
can be split into two objects as shown in Figure 3 (b). 
8) Control threads are verified by starting from the ac- 
tive objects, such as consumer, and tracing the methods 
invocations based on the object behavior. 

follows: 

6.2 Object Design 
1) In this example, each object is an instance of a differ- 
ent class, except p-manager c-manager. We can define a 
class called manager-class having the common method 
transaction-in, that can be inherited to its subclasses, 
p-manager and c-manager. 
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IF1 Target Code 
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Figure 2: Major steps in transformation of PROOF/L code to  a target code. 

deliver-to-manager deliver-to-consumer 
.transaction-in 
. d i s p 1 ay 

reporter 

t t 

1 1 
(b) 

Figure 3: (a) An object communication diagram for the 
warehouse management system, and (b) modified object 
manager .  

[Beta[tail,decl buf, head(buf .r)] 
end class 

in the above buf is an instance of rack, and Beta, 
appendiight, tail, head, inc and dec are defined 
as follows: 

Beta [ f i ,  fz, ..., fn 1 [ti, 22, . . - )  ZC,] E [ f 1 ( ~ 1 ) ,  
f Z ( 4 ,  . . .> f n ( x n )  3 1  

0 appendiight z y = y o  [x] 
0 tail [el, e 2 . .  .e,] E [ez, e3 . . .e,] 

0 head [el, e2 . . .e,] E el 

inc n E n + 1; dec n E n - 1. 

3) An important aspect of the design here is indicat- 
ing the modification of the objects. For this we attach 
R a t  the method put since this method modified the 
p-manager. Thus, R[lrackI] put is substituted in place 
of put .  This modification of body will be implemented 
at the coding stage. The design of other constructs is 
similar and will not be discussed here. 

The perspective version of pseudo code for the nCube 
parallel machine for the get method generated through 
the front-end and back-end transformation is shown as 
follows: 

2 In the following we only give the definition of the 
c 1 ass rack shown as an example: 

class definition rack(size,itemtype) 
composition 

r:list(itemtype) X count:int 
method 

method 

put buf x 
guard(count < size) 
expression 
BetaC(append-right XI, incl buf 

get r 
guard(count > 0) 
expression 

void rack-get(rack *buf, rack *return-rack, 
itemtype *return-itemtype) { 

/* self- loop f o r  passing the guard */ 

/* parallel dispatch the tasks */ 
dispatch ( tail(buf->r) -> 

dispatch ( dec(buf->count) -> 

dispatch ( head(buf->r) -> 

while (buf->count <= 0); 

return-rack->r ) ;  

return-rack->count ) ; 

*return-itemtype ) ; 

wait for results; 
1 
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Garbage collection for any unreferenced objects will be 
performed along the execution. 

7 Discussion 
In this paper, we have presented an architecture- 

independent approach to software development for 
pardlel processing systems based on the computa- 
tion model PROOF, which incorporates the functional 
paradigm into the object-oriented paradigm. The soft- 
ware will be developed in PROOF/L, which is a C++- 
based langauge with addtional constructs required by 
PROOF. Then, PROQF/L code is translated to a tar- 
get language of the given parallel processing system for 
execution. Our approach relieves the programmers from 
the consideration of processor topology and various par- 
allelization aspects of the software development, and 
facilitates the exploitation of parallelism at both lev- 
els of granularity - object level and method level. The 
software developed using our approach will be easy to 
understand and modify since the structure of the soft- 
ware reflects the structure of the problem. Functional 
paradigm used in the method design also permit the 
expression of massive and implicit parallelism. 

We have developed the front-end and back-end trans- 
lators for the nCube and KSR-1 parallel processing 
systems and a number of examples have been exper- 
imented. We are incorporating the optimization teeh- 
niques, such as function call in-lining, useless expression 
removal and common subexpression extraction, as well 
as are implementing the grain size determination algo- 
rithrn in order to improve the performance of the target 
codes. CASE tools need to  be developed to aid the soft- 
ware developer in various stages in our approach, such 
as checking the consistency in the decomposition stage, 
design process and transformation of the design into the 
corresponding Petri-Net models. 
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