
Applying Model Checking to Concurrent Object-Oriented Software �

Seung Mo Cho, Doo Hwan Bae, Sung Deok Cha, Young Gon Kim

Department of Computer Science, KAIST

373-1, Kusong-dong, Yusong-gu, Taejon, Korea

fseung,bae,cha,ygkimg@salmosa.kaist.ac.kr

Byung Kyu Yoo, Sang Taek Kim

Multimedia Research Lab

Korea Telecom

Abstract

Model checking is a formal veri�cation technique which

checks the consistency between a requirement speci�cation and

a behavior model of the system by explorating the state space

of the model. We apply model checking to formal veri�cation

of concurrent object-oriented systems, using an existing model

checker SPIN which has been successful in verifying parallel sys-

tems. First, we propose an Actor-based modeling language,

called APromela, by extending a modeling language Promela

which is a modeling language supported in SPIN. APromela sup-

ports not only all the primitives of Promela, but additional prim-

itives needed to model concurrent object-oriented systems, such

as class de�nition, object instantiation, message send, and syn-

chronization. Second, we provide translation rules for mapping

APromela's such modeling primitives to Promela's. By giving

an example of speci�cation, translation, and veri�cation, we also

demonstrate the applicability of our proposed approach, and dis-

cuss the limitations and further research issues.

1. Introduction

When building the concurrent object-oriented systems, we
must be able to verify or validate their correctness. Although
testing is still a major technique used to validate the software,
modeling and formal veri�cation has long been studied and
gained increasing popularity. The theoretical progress in the ver-
i�cation techniques and performance improvement in hardware
have made it a feasible solution.

Model checking[4, 5, 6] is one of such formal veri�cation tech-
niques. The designer of software or hardware system makes a
(generally abstract) model of the expected behavior of the sys-
tem. Then the veri�cation tool, a model checker, veri�es whether
the model satis�es the desired properties. Errors found can be
used as valuable information when debugging.

SPIN[8, 9] is a model checker whose main design goal is to
verify and validate asynchronous process protocols. It provides
a system modeling language, called Promela, a notation for ex-
pressing requirements, and a methodology for establishing the
consistency between them. It is one of the most studied and
used model checker that implements the enumerative state space
exploration.

Promela supports only the process abstraction for computa-
tion. The processes communicate via asynchronous channels or
shared variables. The process abstraction is a powerful tool to
model various systems, but is not su�cient to model concurrent

�This research was sponsored in part by the Multimedia Re-
search Lab., Korea Telecom.

object-oriented systems. When we need other abstractions such
as objects, there are two choices possible : to rebuild the model
using only the process abstraction, or to extend the modeling
language Promela to support such abstractions.

Our work is to modify Promela and to extend the tool with
the purpose of verifying concurrent object-oriented systems. The
concurrent object-oriented model of a system can be directly

speci�ed in this language, not indirectly with processes. We used
the Actor model[2, 3] as a basic computation model in design-
ing the extension. We chose the model because of its theoretical
elegance and popularity in concurrent object community.

We built a number of primitives to allow the designer to model
systems in object-oriented manner with Actor-based concurrency
model. The model can be constructed in several ways. Dur-
ing the development of a system, the modeling can be based
on the requirement analysis, or the behavior design. After the
development is completed, the model may be extracted from
the resulting source code of the system. The model, written in
APromela (Actor-based Promela), can be automatically trans-
lated to a Promela speci�cation, and simulated and veri�ed using
SPIN.

2. Research Background

2.1. Actor Model

Actors are autonomous components of a system which oper-
ate asynchronously. They encapsulate data, procedures to ma-
nipulate the data, and a reactive process which triggers local
procedures in response to messages received. Because actors are
conceptually concurrent and distributed, the simplest form of
message passing between them is asynchronous. In response to
a message, an actor may create new actors, send messages to
actors, and change its state with which it responds to the next
message.

2.2. Promela and SPIN

Promela is a language used to model communication proto-
cols, and other kinds of distributed systems, at an abstract level.
A program in Promela consists of processes that communicate
either asynchronously over FIFO channels or by binary rendez-
vous between processes.

Associated with the language is the tool called SPIN. It is
possible to perform an exhaustive simulation by generating the
complete state space of the system. Properties like deadlock and
livelock can be detected automatically by checking the generated
state-space. Even more interesting is that other more speci�c
properties can be expressed in linear time temporal logic, and be
veri�ed by exhaustive simulation.

3. APromela Language

APromela(Actor-based Promela), an extension of Promela, is
a speci�cation language based on Actor model. APromela allows
a designer to create directly a validation model of the concurrent
object-oriented system.

The basic syntax of Promela can be found in [8]. We extend it
with the primitives for actor creation and communication (Fig-
ure 1).

The syntax of the following parts are equal to the original one
: lexical conventions, comments, identi�ers, constants.

program ::= f actor-def g * MAIN sequence

actor-def ::= ACTORTYPE NAME
'f' [acq_vars] [init] f method g * 'g'

acq_vars ::= VAR decl_lst

decl_lst ::= one_decl f ';' one_decl g *

one_decl ::= [TYPE ivar f ',' ivar g *]

ivar ::= var_dcl | var_dcl ASGN expr

var_dcl ::= NAME ['[' CONST ']']

var_ref ::= NAME ['[' expr ']']

init ::= INIT '(' [decl_lst] ')' sequence

method :: = METHOD NAME '(' [decl_lst] ')'
[RESTRAIN syn_cond] sequence

syn_cond :: = '(' syn_cond ')'

| syn_cond binop syn_cond
| unop syn_cond
| var_ref
| CONST

sequence ::= step f ';' step g *

step ::= [decl_lst] stmnt

stmnt ::= var_ref ASGN expr
| PRINT '(' STRING f ',' expr g * ')'
| ASSERT expr
| GOTO NAME
| NAME ':' stmnt
| IF options FI
| DO options OD
| BREAK
| var_ref '<-' NAME '(' [arg_lst] ')'

options ::= f SEP sequence g +

binop ::= '+' | '-' | ...

unop ::= '~' | '-' | SND

expr ::= '(' expr ')'
| expr binop expr
| unop expr
| CREATE NAME '(' [arg_lst] ')'

| var_ref
| CONST
| var_ref '.' var_ref
| var_ref ':' NAME

arg_lst ::= expr f ',' expr g *

Figure 1. Syntax of the APromela Language

3.1. Overview of APromela

An APromela speci�cation consists of a main program and
a number of actor type de�nitions. The main program creates
some initial actors and initiates the execution. The actor type
de�nition corresponds to the class de�nition in ordinary object-
oriented languages.

Actor type de�nition

An actor type de�nition is composed of acquaintance (or in-
stance) variables and a set of method de�nitions. The values
assigned to the acquaintance variables comprise an actor's state.
A de�nition may have an optional initmethod. An initmethod
is hidden from outside and executed exactly once when an actor
is created.

Actor creation

Actors are created and initialized dynamically using the create

primitive operator. The operator takes an actortype name and
a set of arguments to the init method. It allocates a unique mail
address to the newly created actor and returns this address.

Message send

The asynchronous message send, which is the basic communica-
tion mechanism in Actor model, is represented as <- operator.
The method name accompanies the parameters. The mail ad-
dress of the current actor is referenced as this in a method body.

Local Synchronization Constraints

The method bodies may contain a restrain part. It indicates
when the method can be invoked. If the condition is not true, the
message execution is deferred and the next message is processed
�rst.

3.2. Example

We present an example speci�cation written in APromela lan-
guage. It is a classical producer-consumer example. The system
consists of three actors : a producer, a consumer, and a bounded
bu�er. The synchronization is done by the local synchronization
constraints of the bu�er.

#define SIZE 3

actortype buffer {
var

bit data[SIZE]; byte count = 0; byte front = 0

method put (bit a) restrain (count < SIZE)
data[(front + count) % SIZE] = a; count ++

method get (actor ret) restrain (count > 0)
ret <- retrieved (data[front]);
front = (front + 1) % SIZE; count --;

}

actortype producer {
var

bit next; actor buf

init (actor a)
buf = a; this <- putting ()

method putting ()
buf <- put (next); next = ! next; this <- putting ()

}

actortype consumer {
var

actor buf;

init (actor a)
buf = a; this <- getting ()

method getting ()
buf <- get (this)

method retrieved (bit b)
printf("read num = %d\n", b); this <- getting ()

}

main {
actor buf;
actor proc;
actor cons;

buf = create buffer ();
proc = create producer (buf);
cons = create consumer (buf);

}

4. Translation from APromela to

Promela

Instead of designing a simulator/veri�er from scratch we pro-
pose to perform a mapping of APromela constructs into corre-
sponding ones in Promela. The basic idea of translation is to use
processes and channels in Promela for actors and mail queues in
APromela, respectively.

4.1. Mail queue

A natural idea for implementing the mail queue is to use a
channel for each mail queue of an actor. The channel must trans-
fer all kinds of the messages to the actor to which the channel
belongs. Thus the type of a channel should be a union of the
parameters of the methods of an actor.

For the actor de�nition template in Figure 2, the channel
de�nition should be as follows.

chan this = [LENGTH] of f byte, method1 parameters,
method2 parameters, : : : g

in which LENGTH is the size of channel which is a user-de�ned
constant. The �rst �eld of type byte holds the method name.

actortype actor name f
var

var declarations
init (init parameters)

init method body
method method1 name (method1 parameters)

method1 body
method method2 name (method2 parameters)

method2 body
...

g

Figure 2. Template for actor type definition

Once we determined the representation of the mail queues
of actors, the message send is easily implemented using send-
statements to the channels. The �elds of the message that are
irrelevant of the method are �lled with dummy values.

4.2. Actor Definition

An actor in APromela can be represented as a process in
Promela. The process consists of a set of methods that the actor
services. Considering the semantics of methods invocation in Ac-
tor model, we can make a translation algorithm of incorporating
all the methods in do ... od construct with appropriate condi-
tions. It translates the actortype de�nition template in Figure 2
into the process de�nition of Promela as shown in Figure 3.

proctype actor name (chan temp chan, init parameters) f
var declarations
parameter declarations /* all parameters for methods */
initializing

do
:: atomic f

this ? method1 name, parameters
-> method1 body
g

:: atomic f
this ? method2 name, parameters
-> method2 body
g

...
do

g

Figure 3. Process definition translated from Figure 2

4.3. Creating Actors

Creating an actor is to instantiate a process representing the
actor, and then to setup the mail queue (channel). It requires
subtle interaction between the creating actor and the created
one.

Actor creation expression statement takes the form of Fig-
ure 4.

actor a;
..
.
a = create actor name (init parameters) ;

Figure 4. The general form of actor creation

Type actor is implemented with type chan. When creating
an actor, one must instantiate two objects : a process and a
channel. The only object dynamically instantiatable in Promela
is the process. So the newly created channel should be de�ned in
the initializing part of the actor de�nition. It is then returned
back to the creating actor for further communication with the
created actor. Therefore the creating actor waits for the newly
created actor to return the mail address of its own through a
temporary channel, temp chan.

chan a;
chan temp chan = [0] of f chan g ;
...
atomic f

run actor name (temp chan , init parameters) ;
temp chan ? a ;

g

Figure 5. Process initiation translated from Figure. 4

Using this scheme, the above APromela template for actor
creation can be translated into the corresponding Promela con-
struct in Figure 5.

And the initializing part in Figure 3 becomes as in Figure 6.

chan this = [LENGTH] of f byte, method1 parameters,
method2 parameters, : : : g

init method body
temp chan ! this;

Figure 6. Code for initializing part

4.4. Local Synchronization Constraints

The local synchronization constraints can be easily imple-
mented by wrapping the method bodies with if construct. When
a method is invoked, the if condition is evaluated using the cur-
rent state and the passed parameters. If the condition is false,
the message is put back into the channel, and processed later.

:: atomic f this ? method name, parameters ->
if

:: condition -> method body
:: ! condition -> this ! method name, parameters;

fi g

Figure 7. Promela code for local synchronization

4.5. Example

Using the rules, we can translate an APromela speci�cation
into a Promela speci�cation. We translated the example given
in the Section 3.2 and veri�ed it with SPIN. SPIN was able to
verify the deadlock freedom of this model with a few seconds of
computation when the value of LENGTH is set to 3.

5. Conclusion

We designed a new modeling language which is an extension
of Promela based on Actor model. This can be used as a model-
ing tool for concurrent object-oriented systems. The veri�cation
of the speci�cation written in the language is possible using the
model checker SPIN.

The feasibility of applying model checking to software is of
course controversial. However, we want to emphasize that the
veri�ed objects are always the model, not the reality, whatever

the target system is. Our contribution is to help the designer
build the model in an object-oriented fashion. The feasibility
depends on the abstraction which the designer uses in modeling.
Moreover, the complexity inherent in software can be managed
more easily when the system is modeled in an object-oriented
way. Some recent researches also show the applicability of model
checking to real software[1, 7].

Besides modeling by hand, APromela can also be an interme-
diate language for model checking of source codes. There are var-
ious concurrent object-oriented programming languages based on
Actor model. The concurrency semantics of the languages are
very similar. Therefore, verifying the concurrency features of the
programs written in these languages may be performed by de-
signing a preprocessor which extracts the concurrency features
from the programs and translates them to APromela programs.
The resulting programs can be used as an input to the translator
we suggested, and then undergo the model checking.

References

[1] R. J. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno,
D. Notkin, and J. D. Reese, \Model Checking Large Soft-
ware Speci�cations," in Proc. the Forth ACM SIGSOFT

Symposium on the Foundation of SE, p. 156-166, 1996.

[2] G. Agha, S. Frolund, W. Kim, R. Panwar, A. Patterson,
and D. Sturman, \Abstraction and Modularity Mechanisms
for Concurrent Computing," in IEEE Parallel and Dis-

tributed Technology: Systems and Applications, 1(2):3-14,
May 1993.

[3] G. Agha, \Actors: A Model of Concurrent Computation in
Distributed Systems, " MIT Press, 1986.

[4] R. Alur, T.H. Henzinger, and P.H. Ho, \Automatic Sym-
bolic Veri�cation of Embedded Systems," IEEE Transac-

tions of Software Engineering, 22(3):181-201, 1996.

[5] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang, \Symbolic model checking : 1020 states and be-
yond," Information and Computation, 98(2):142-171, 1992.

[6] E.M. Clarke, E.A. Emerson, and A.P. Sisla, \Automatic
Veri�cation of Finite-State Concurrent Systems Using Tem-
poral Logic Speci�cations," ACM Transactions on Pro-

gramming Languages and Systems, 8(2):244-263, 1986.

[7] G. Duval, \Speci�cation and Veri�cation of an Object Re-
quest Broker," in Proc. ICSE 98, 1998.

[8] G. Holzmann, \Design and Validation of Computer Proto-
cols," New Jersey, 1991, Prentice Hall.

[9] G. Holzmann, \The Model Checker SPIN," IEEE Transac-

tions on Software Engineering, Vol. 23, No. 5, pp. 279-295,
May 1997.

