
Forward Secure ID-based Group Key Agreement Protocol with Anonymity

Hyewon Park, Zeen Kim, and Kwangjo Kim
Department of Information and Communications Engineering,
Korea Advanced Institute of Science and Technology (KAIST),

119 Munjiro, Yuseong-gu, Daejeon, 305-732 Korea.
{inde1776, zeenkim, kimkj}@kaist.ac.kr

Abstract

ID-based group key agreement (GKA) has been increas-
ingly researched with the advantage of simple public key
management. However, identities of group members can be
exposed in the ID-based GKA protocol, so eavesdroppers
can easily learn who belongs to the specific group. Recently,
Wan et al. [7] proposed a solution for this problem, an
anonymous ID-based GKA protocol, which can keep group
members’ anonymity to outside eavesdroppers; nevertheless,
the protocol has some security flaws.

This paper shows that Wan et al.’s GKA is insecure
against colluding attack and their joining/leaving proto-
cols do not guarantee forward and backward secrecy. We
also propose a new forward secure ID-based GKA with
anonymity from enhancing Wan et al.’s joining/leaving pro-
tocols. Our scheme provides forward and backward secrecy
and is essentially just efficient as Wan et al.’s scheme.

1. Introduction

In modern society, many group-oriented applications ex-
ist, such as Internet conferencing, chatting, or collaborative
workspace. These applications usually require privacy for
communication messages; that is, all the messages ex-
changed during communication should be protected from
eavesdroppers. Therefore, the group members need a com-
mon secret key to encrypt their communication messages.
Group key agreement (GKA) is the process that the legit-
imated group members share a group key; no users can
predetermine the final group key.

Recently, ID-based GKA has been increasingly proposed
with the advantage of an ID-based cryptosystem [1]. In ID-
based cryptosystem, user’s identity information, e.g. email
adderess or PIN number, is used as public keys, and a key
generation center (KGC) generates the corresponding private
keys; therefore, no certificate is needed to bind user names
with their public keys. Though ID-based GKA protocols([3],
[5], [8], [6]) have the advantage in simple key management,
it has one serious problem that cannot provide privacy of
group members. In other words, the identities of group
members are exposed to eavesdroppers during the protocol
execution.

In 2008, Wan et al.[7] proposed an anonymous ID-
based GKA protocol. Their protocol keeps the advantage of
the ID-based cryptosystem and provides anonymity of the
identities from outsiders. The authors also proposed joining
and leaving protocols for dynamic operation of a single user.

In this paper, we show that Wan et al.’s GKA protocol
is insecure in the presence of malicious participants. Two
malicious neighbors of a specific user who can collude
with the group initiator can impersonate the user during the
group execution. In addition, their joining protocol cannot
provide group backward secrecy, so joining members can
get the group key of the previous session; similarly, the
leaving protocol cannot provide group forward secrecy so
that leaving members can get the next session key. We
present the security flaws of these protocols and propose
our new joining/leaving protocols to guarantee group for-
ward/backward secrecy.

Our paper is organized as follows: The preliminaries are
given in section II, and the review on Wan et al.’s protocols
is described in section III. In section IV, we show the security
weaknesses of Wan et al.’s protocols. Then we present
our joining/leaving protocols in section V and analyze our
scheme in section VI. We finally conclude our paper in
section VII.

2. Preliminaries

2.1. Security Requirements

Because GKA protocols can suffer from passive or ac-
tive adversaries, we have to consider the requirements for
designing GKA protocols to protect the identities or the
communication of group members from those adversaries.
In case of anonymous ID-based GKA protocol, it becomes
more complicated that anonymity and unlinkability should
be provided. Wan et al. already defined the requirements
for their anonymous ID-based GKA protocol; additionally,
we consider one more requirement, entity authentication,
because each legitimate group member should have confi-
dence that the other members are really participating in the
protocol while the protocol provides anonymity. The security
requirements for the GKA protocols are as follows:
• Anonymity : The communication messages do not carry

any information about group members’ identities for
protecting the identities from the outside eavesdropper.

• Unlinkability : The group members’ activities in two
different sessions must be independent; in other words,
all the sessions are unlinkable to each other.

• Group Key Secrecy : Any adversary cannot compute
the session group key.

• Group Forward Secrecy : Any adversary (especially the
leaving member) who knows the previous group key
cannot obtain the subsequent group key and communi-
cation messages.

• Group Backward Secrecy : Any adversary (especially
the joining member) who knows the current group key
cannot obtain the preceding group key and communi-
cation messages.

• Perfect Forward Secrecy : Revealing the long-term
secret key does not affect the secrecy of the established
session keys from previous protocol sessions.

• Entity Authentication : Each group member should have
confidence that the other members are actually involved
in the protocol.

2.2. Bilinear Pairing

Let G1 and G2 be cyclic additive and multiplicative
groups of prime order q, respectively. A mapping e :
G1 × G1 → G2 which satisfies the following properties
is called bilinear pairing:

1) Bilinearity : e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1

and a, b ∈ Z∗q .
2) Non-degeneracy : If a generator P belongs to G1, then

e(P, P) is a generator of G2; in other words, e(P, P) 6=
1.

3) Computable : An efficient algorithm to compute
e(P,Q) exists for any P,Q ∈ G1.

2.3. Adversarial Model

There are two types of adversaries: passive and active
adversaries. The ability of a passive adversary is restricted to
eavesdropping communications only, but an active adversary
additionally can replace, modify, or intercept messages. The
goals of adversaries in GKA protocols are computing the
subset of group keys or impersonation of the legitimate
group member.

To provide computational security, we introduce two com-
putationally infeasible problems, Bilinear Diffie-Hellman
(BDH) and Elliptic Curve Diffie-Hellman (ECDH) prob-
lems.
• BDH Problem: Given P, aP, bP , and cP , compute

e(P, P)abc where P ∈ G1, a, b, c ∈ Z∗q , and e is a
bilinear pairing.

• ECDH Problem: Given P, aP , and bP , compute abP
where P is an element of an elliptic curve and a, b ∈ Z∗q

BDH/ECDH assumptions state that BDH/ECDH problems
are hard to solve.

3. Review on Wan et al.’s Anonymous GKA
Protocol

In this section, we review Wan et al.’s anonymous ID-
based GKA protocol and joining/leaving protocols for single
user operation in a specific group.

3.1. Setup

Wan et al.’s protocol is based on Boneh and Franklin’s
ID-based cryptosystem setup [2] using bilinear pairing. To
start setup phase, a trusted KGC chooses a random s ∈ Z∗q as
the secret master key, and generates the system parameters:

param = < G1, G2, q, e, P, Ppub, H1 >,
where P is an arbitrary generator of G1, and H1 is a hash
function, H1 : {0, 1}∗ → Z∗q .

Then KGC produces the public key QID = H1(ID) and
the private key SID = sQID using the a user’s identity ID.
For instance, a user with identity Ui has the static key pair
< Qi, Si >.

The notations used in Wan et al.’s protocol are as follows:

Ei(∗) ID-based encryption using Ui

EK(∗) Symmetric encryption using K
Nymi Pseudonym for Ui

ri Random number selected by Ui

SIGi Ui’s signature
h A hash function h : G2 ×G1 → {0, 1}k

with a security parameter k

3.2. GKA Protocol

There are n entities in Wan et al.’s GKA protocol: a
group initiator U1 and the other group members U2, ..., Un.
The initiator U1, who knows all the identities of the other
members, initiates a new session for starting the GKA
protocol. The other members do not know the identities of
the group members before the session starts. The protocol
uses the public system parameter set param.

1) Initiator U1 chooses pseudonyms for each user Ui.
U1 → Ui : Ei(U1||...||Un||Nym1||...||Nymn||SIG1),

r1P
2) Ui(6=1) sends a message to Ui−1 and Ui+1.

Ui → Ui+1, Ui−1 : Nymi, riP
3) Ui verifies the pseudonyms, and computes

ki = h(e(Qi+1, Si)||riri+1P)
ki−1 = h(e(Qi−1, Si)||riri−1P).

Ui → ∗ : Nymi, Xi = ki/ki−1

4) Ui verifies all the pseudonyms, and computes
ki+1 = kiXi+1, ki+2 = ki+1Xi+2,

... , ki+n−1 = ki+n−1Xi+n−1.
Session Key : K = H(k1||k2||..||kn)

After computing the session group key K, Ui(6=1) sends
H(K||U1||U2||...||Un) to U1. Then U1 verifies whether all
the other group members computed the same key or not.

3.3. Joining Protocol

In the joining protocol, U1 firstly informs Un+1’s joining.
Then only U1 and Un, who become Un+1’s neighbors,
compute X ′1 and X ′n to generate a new session group key.
The protocol description is as follows:

1) U1 informs Un and Un+1 about joining information.
U1 → Un : En(Un+1||Nymn+1||SIG1)
U1 → Un+1 : En+1(U1||Nym1||r1P ||Un

||Nymn||rnP ||Un+1||Nymn+1||SIG1)
2) Un+1 computes

kn+1 = h(e(Q1, Sn+1)||r1rn+1P)
k′n = h(e(Qn, Sn+1)||rnrn+1P).
Xn+1 = kn+1/k′n

Un+1 → U1, Un : Nymn+1, rn+1P , Xn+1

3) U1 and Un compute
U1 : kn+1 = h(e(Qn+1, S1)||r1rn+1P),

X ′1 = k1/kn+1

Un : k′n = h(e(Qn+1, Sn)||rnrn+1P),
X ′n = kn/kn−1.

Un → U1 : X ′n
4) U1 informs all the members about changed information.

U1 → Un+1 : En+1(X ′1||X2||...||Xn−1||X ′n)
U1 → ∗ : EK(X ′1||Xn+1||X ′n||SIG1)
Session Key : K ′ = H(k1||k2||..||k′n||kn+1)

The group members, except U1 and Un, do not need to
compute Xi again during the joining protocol.

3.4. Leaving Protocol

In the leaving protocol, U1 informs Ul’s leaving. Then
Ul−1 and Ul+1, who were Ul’s neighbors in the previous
session, compute X ′l−1 and X ′l+1 to generate a new session
group key without Ul. The protocol description is as follows:

1) U1 informs Ul−1 and Ul+1 about leaving information.
U1 → Ul−1, Ul+1 : EK(Ul||Nyml||Ul−1||

Nym′l−1||Ul+1||Nym′l+1||SIG1)
2) Ul−1 and Ul+1 exchange their new random values.

Ul−1 → Ul+1 : Nym′l−1, rl−1P
Ul+1 → Ul−1 : Nym′l+1, rl+1P

3) Ul−1 and Ul+1 compute
Ul−1 : k′l−1 = h(e(Ql+1, Sl−1)||r′l−1r

′
l+1P),

X ′l−1 = k′l−1/kl−2

Ul+1 : k′l = h(e(Ql−1, Sl+1)||r′l−1r
′
l+1P),

X ′l+1 = kl+1/k′l−1.
Ul−1 → U1 : X ′l−1

Ul+1 → U1 : X ′l+1

4) U1 informs all the members about changed information.
U1 → ∗ : EK(Ul||Ul−1||Ul+1||X ′l−1||X ′l+1||SIG1)
Session Key : K ′ = H(k1||...||k′l−1||kl+1||...||kn)

4. Cryptanalysis on Wan et al.’s Protocols

Wan et al.’s GKA protocol is insecure in the presence
of malicious group participants. Moreover, their joining and

leaving protocols also have security weaknesses. In this
section, we show these weaknesses of the protocols.

4.1. Impersonation by Colluding Attack in GKA
Protocol

To show an attack on Wan et al.’s GKA protocol, we
assume that the malicious users Um−1 and Um+1 can collude
with the group initiator U1 and want to impersonate the
group member Um. When starting the GKA protocol, U1

sends group information to the other group members except
Um, and sends one additional random value to Um−1 and
Um+1, who are two neighbors of Um. Using this informa-
tion, Um−1 and Um+1 can easily impersonate Um without
any private information of Um. A detailed description of the
attack is as follows:

1) U1 chooses pseudonyms for each user Ui.
U1 → Ui(6=m) : Ei(U1||...||Un||

Nym1||...||Nymn||SIG1), r1P
U1 → Um−1, Um+1 : rmP

2) Um−1 and Um+1 get pseudonyms and send the random
value only to Um−2 and Um+2, while the other mem-
bers send their random values to their two neighbors.
Ui → Ui−1, Ui+1 : Nymi, riP
Um+1 → Um+2, (not Um) : Nymm+1, rm+1P
Um−1 → Um−2, (not Um) : Nymm−1, rm−1P

3) Um−1 and Um+1 can compute km and km−1 which are
originally generated by Um.

Um+1 : km = h(e(Qm, Sm+1)||rmrm+1P)
Um−1 : km−1 = h(e(Qm, Sm−1)||rmrm−1P).

Um+1 or Um−1 → ∗ : Nymm, Xm = km/km−1

4) If each Ui succeeds in verifying all the pseudonyms,
then computes

ki+1 = kiXi+1, ki+2 = ki+1Xi+2,
... , ki+n−1 = ki+n−1Xi+n−1.

Session Key : K = H(k1||k2||..||kn)

Through this attack, the other group members cannot
recognize Um’s missing and just generate a session group
key without Um. This attack is possible because the security
of messages depends on that of pseudonyms, and group
members do not authenticate whether the message is actually
generated by the specific member or not. Note that the
computation of Xm can be computed not only by the
Um but also by Um−1 and Um+1. Therefore, malicious
users Um−1 and Um+1 can impersonate the user Um. To
prevent this attack, each member should contain a signature
while broadcasting Xi. If the members verify all the other
members’ signatures, they easily know Um’s missing and
stop the protocol. We recommend using Cheon et al.’s ID-
based signature [4], which provides batch verification. With
this scheme, users can reduce the authentication cost by
verifying several signatures at once.

4.2. Weakness on Backward Secrecy in the Joining
Protocol

We also prove that Wan et al.’s joining protocol cannot
provide backward secrecy. In their joining protocol, we
assume that joining member Un+1 can obtain previous
transcripts; then Un+1 can compute not only a new group
key K ′ but also the previous group key K, which is used
before Un+1 joins the group.

During the joining protocol execution, Un+1 computes a
new session key K ′. Equations for key generation in the
GKA and joining protocols are as follows:

Previous key: K = H(k1||k2||..||kn)
New key: K ′ = H(k1||k2||..||kn−1||k′n||kn+1)

In the new session group key, only kn is changed from
the previous session key, so Un+1 has all information
about K, except kn. If Un+1 can obtain kn, then he
also can compute the previous group key K. Here, Un+1

can extract kn = kn−1Xn using the previous transcript
< Nymn, Xn > because it was broadcasted in the previous
session. Therefore, Un+1 can compute the previous group
key, K = H(k1||k2||..||kn).

Through this procedure, a joining member can compute
the previous group key, using the previous transcript and
the current session group key. That is, we can prove that the
joining protocol cannot guarantee backward secrecy.

4.3. Weakness on Forward Secrecy in the Leaving
Protocol

Here we show that Wan et al.’s leaving protocol cannot
provide forward secrecy. When Ul leaves the group, the other
members generate a new session group key K ′ with changed
information. Equations for key generation in the GKA and
leaving protocols are as follows:

Previous key: K = H(k1||k2||..||kn)
New key: K ′ = H(k1||...||k′l−1||kl+1||...||kn)

Because only kl−1 is changed to k′l−1 in the new session
group key, Ul has all information about K ′, except k′l−1.
If Ul can obtain k′l−1, then he also can compute the new
session group key K ′. In the protocol, however, U1 informs
all the members about changed information as follows:

U1 → ∗ : EK(Ul||Ul−1||Ul+1||X ′l−1||X ′l+1||SIG1)
The message is encrypted using the previous group key

K, so Ul can decrypt this message to get k′l−1 = kl−2X
′
l−1;

consequently, he can generate the new session key K ′.
Through this procedure, a leaving member still can

compute a new session group key although he no longer
belongs to the group. Therefore, we can prove that the
leaving protocol cannot guarantee forward secrecy.

5. Our Proposed Scheme

Here we propose our new joining/leaving protocol of Wan
et al.’s GKA protocol.

5.1. Joining Protocol

In Wan et al.’s joining protocol, all the ki’s except kn are
reused to generate a new session group key; therefore, a join-
ing member who obtain the previous transcript can compute
the previous group key. To deal with this problem, all the
ki’s should be changed for each session, and the new group
key should not contain information of the previous session.
Computation of ki, however, requires pairing computation
which takes comparably high cost. Considering this fact, we
design our joining protocol reducing the cost of computing
k′i. We define two hash functions g : {0, 1}k → Z∗q , where
|q| = 2k − 1, and H2 : G1 → {0, 1}k.

1) Initiator U1 informs all the group members about
Un+1’s joining.
U1 → ∗ : EK(Un+1||Nym′1||...||

Nym′n||Nymn+1||SIG1)
U1 → Un+1 : En+1(U1||...||Un||Un+1||Nym′1||...||

Nym′n||Nymn+1||r1P ||rnP ||SIG1)
2) Un+1 computes

kn+1 = h(e(Q1, Sn+1)||r1rn+1P)
k′n = h(e(Qn, Sn+1)||rnrn+1P)
Xn+1 = kn+1/k′n.

Un+1 → U1, Un : Nymn+1, rn+1P , Xn+1

3) Ui computes
k′i = H2(g(ki)riri+1P), k′i−1 = H2(g(ki)riri−1P),

and U1 and Un compute
U1 : kn+1 = h(e(Qn+1, S1)||r1rn+1P),

k′1 = H2(g(k1)r1r2P)
Un : k′n = h(e(Qn+1, Sn)||rnrn+1P),

k′n−1 = H2(g(kn)rnrn−1P).
Ui → ∗ : Nym′i, X ′i = k′i/k′i−1, SIGi

Session Key: K ′ = H(k′1||k′2||..||k′n||kn+1)
The ki’s are changed in each session, so Un+1 cannot

extract the previous session group key even if he has the
previous transcripts. Additionally, when broadcasting X ′i to
other users, all users contain their signatures as recom-
mended in section 4.1.

5.2. Leaving Protocol

As in the joining protocol, all the ki’s except kl−1 are used
to generate a new session group key in Wan et al.’s leaving
protocol. Moreover, significant information to generate the
new session group key is encrypted using the previous
group key K, so leaving members can compute the new
session group key K ′. Two ways to solve this weakness are
recomputing all the ki’s and not using symmetric encryption
with previous group key K for significant information. The
protocol procedure is as follows:

1) Initiator U1 informs all the other members about Ul’s
leaving.
U1 → ∗ : EK(Ul||Nym′1||...||Nym′n||SIG1)

2) Ul−1 and Ul+1 exchange their new random values.

Ul−1 → Ul+1 : Nym′l−1, rl−1P
Ul+1 → Ul−1 : Nym′l+1, rl+1P

3) Ui computes
k′i = H2(g(ki)riri+1P), k′i−1 = H2(g(ki)riri−1P),

and Ui−1 and Ui+1 compute
Ul−1 : k′l−1 = h(e(Ql+1, Sl−1)||r′l−1r

′
l+1P),

k′l−2 = H2(g(kl−1)rl−1rl−2P)
Ul+1 : k′l−1 = h(e(Ql−1, Sl+1)||r′l−1r

′
l+1P),

k′l+1 = H2(g(kl+1)rl+1rl+2P).
Ui → ∗ : Nym′i, X ′i = k′i/k′i−1, SIGi

Session Key: K ′ = H(k′1||...||k′i−1||k′i+1||...||k′n)
The ki’s are changed in each session, so Ul cannot

compute the later session group key even if he has all the
previous ki’s. Also, the signature is included when each
group member broadcasts X ′i to other users.

6. Analysis

In the previous sections, we recommended including
signature during Wan et al.’s GKA protocol and proposed
our new joining/leaving protocols. Here, we analyze security
and performance of our scheme in detail.

6.1. Security

As already explained, there are two types of adversaries:
passive and active adversaries. From eavesdropping the
protocol execution, the passive adversary can get Nymi,
riP , and Xi values. With this information, the adversary
should not be able to get any information about the group
members or the session group key. The active adversary
want to interrupt the protocol execution or to impersonate
the legitimate group member with more information than
the passive adversary. This type of adversary additionally
can obtain ki’s or the public/private key pair <Qi, Si>
of the group member. In the case that the adversary
gets the public/private key pair of the group member, he
should not be able to compute the previous group keys.
Also, the joining/leaving group member who gets the
current or previous ki’s should not be able to compute the
precedeing/subsequent group keys.

a) Anonymity : In the GKA protocol, the message firstly
sent from the initiator is encrypted using the private key of
each member, and only the legitimate group members can
decrypt this message and get the pseudonyms. Even though
an outside eavesdropper obtains all the pseudonyms from the
transcript, the eavesdropper cannot match them to the real
identities of members unless he can decrypt the message
using the private key.

Similarly, the informing messages sent from the initiator
are encrypted using the group key of the previous session
in the joining/leaving protocols.
- Join : EK(Un+1||Nym′1||...||Nym′n||Nymn+1||SIG1)
- Leave : EK(Ul||Nym′1||...||Nym′n||SIG1)

The eavesdropper cannot get the pseudonyms of all
the group members without the previous session group
key K. Therefore, the protocols keep the group members
anonymous to outside eavesdroppers.

b) Unlinkability : When the session starts, the initiator
always generates pseudonyms for the group members (also
in the joining/leaving protocols); that is, the pseudonyms
are never reused. Although the adversary wants to trace
user information using all the pseudonyms of different
sessions, he cannot link them to any user information
because pseudonyms always change in each session and
do not carry any information about the group members’
identities.

c) Group Key Secrecy : In the GKA protocol, the group key
K is generated by concatenating all the ki’s. Because the
ki’s are obtained sequentially with one ki and all the other
Xi’s, the adversary should have at least one ki to compute
the session group key. However, when computing ki, it is
difficult to compute riri+1P given <P , riP , ri+1P> tuple
under the ECDH assumption; also computing e(Qi+1, Si)
without the master secret key s is a hard problem under the
BDH assumption. Therefore, the passive adversary cannot
compute the group key K.

d) Group Forward Secrecy : Our leaving protocol provides
group forward secrecy when a user leaves the group; in
other words, the Ul cannot compute the subsequent group
key. In our protocol, all the ki’s changes in each session
and no symmetric encryption is used to encrypt new Xi’s,
so Ul cannot extract k′i using ki. Also, under the ECDH
assumption, it is hard to compute riri+1P given <P , riP ,
ri+1P> tuple when computing k′i = H2(g(ki)riri+1P);
therefore, Ul cannot compute k′i although he has all the
previous ki and riP . Through this result, we can prove that
our leaving protocol provides group forward secrecy.

e) Group Backward Secrecy : Our joining protocol provides
group backward secrecy when a user joins the group; that
is, the Un+1 cannot compute the preceding group key. In
our protocol, all the ki’s changes for each session, so Un+1

cannot extract these values using the previous transcript.
A joining member must compute ki again with gathered
information to compute the previous group key, but it is
impossible to extract ki from k′i = H2(g(ki)riri+1P).
Therefore, joining members cannot compute previous group
keys; in other words, our joining protocol provides group
backward secrecy.

f) Perfect Forward Secrecy : In our protocol, the computation
of ki needs public/private key pair and riri+1P . Although
the adversary reveals the private key Si, he cannot compute
ki because computing riri+1P given <P , riP , ri+1P> is
hard problem under the ECDH assumption. Therefore, our

Table 1. Comparison: Joining Protocols

[7]

Ours

ID Sig Sym P M D B U
U1 3 3 1 1 1 1 1 3
Un 0 0 0 1 1 1 0 1

Un+1 0 0 0 2 2 1 0 2
U1 1 2 1 1 2 1 2 1
Un 0 1 0 1 2 1 1 0

Un+1 0 1 0 2 2 1 0 2
Ui 0 1 0 0 2 1 1 0

protocol provides perfect forward secrecy that revealing
long-term keying material does not affect the secrecy of the
established keys from previous sessions.

g) Entity Authentication : When the group members broad-
cast Xi’s in Wan et al.’s protocols, they verify that value
with only the pseudonym Nymi. This verification causes
user impersonation of the malicious participants who know
the pseudonyms. If the group members generate ID-based
signatures for Xi and the other members verify all the
signatures, they can easily authenticate the other users.
Therefore, our protocol can provide entity authentication
with the verification of the ID-based signatures that we
recommended in section 4.1. (In this case, the security by
entity authentication depends on the security of the ID-based
signature.)

6.2. Performance

Tables 1 and 2 show the comparison of Wan et al.’s
protocols [7] and our proposed protocols in performance.
We use the following notations:

ID: Number of ID-based encryption using Qi / Si

Sig: Number of ID-based signature using Qi / Si

Sym: Number of Symmetric encryption using K
P: Number of pairing computation for each user
M: Number of multiplication for each user
D: Number of division for each user
B: Number of broadcast for each user
U: Number of unicast for each user

Although all users should compute their ki for each
session in our joining/leaving protocols, the computation of
new ki requires only 2 scalar multiplications, 1 division,
and 1 broadcast. Moreover, in Wan et al.’s joining protocol,
U1 should compute 4 encryptions for generating new session
group key, but only 2 encryptions are required in our joining
protocol. Therefore, our joining/leaving protocols does not
increase much computation cost from Wan et al.’s protocols.

7. Conclusion

In this paper, we found security weaknesses in Wan et
al.’s ID-based GKA protocol and joining/leaving protocols:

Table 2. Comparison: Leaving Protocols

[7]

Ours

ID Sig Sym P M D B U
U1 0 2 2 0 0 0 0 2

Ul±1 0 0 0 1 2 1 0 2
U1 0 1 1 0 2 1 2 0

Ul±1 0 1 0 1 3 1 1 1
Ui 0 1 0 0 2 1 1 0

the GKA protocol suffers from insider colluding attack,
and joining/leaving protocols cannot guarantee group back-
ward/forward secrecy. We recommended using the ID-based
signature to prevent the attack on the GKA protocol and
proposed our joining/leaving protocols. In our protocols,
all the group members must recompute individual secret,
ki, for each session to generate a new session group key,
so no joining or leaving member can obtain the previous
or later session group key with the previous individual
secrets. In other words, our protocols can provide group
forward/backward secrecy. Additionally, our joining/leaving
protocols can operate efficiently compared with the previous
protocol. With the our joining/leaving protocols and the
GKA protocol containing ID-based signature, the security
can be enhanced while comparable efficiency is maintained.

References

[1] A. Shamir, Identity-based Cryptosystems and Signature
Schemes, Advances in Cryptology-Crypto 84, LNCS 196,
pp.47-53, Springer-Verlag, 1984.

[2] D. Boneh and M. Franklin, Identity-based encryption from the
Weil pairing, Proc. of Crypto’01, LNCS 2139, pp.213-229,
Springer-Verlag, 2001.

[3] K. Y. Choi, J. Y. Hwang and D. H. Lee, Efficient ID-based
Group Key Agreement with Bilinear Maps. PKC’04, LNCS
2947, pp.130-144, Springer-Verlag, 2004.

[4] J. H. Cheon, and Y. Kim, H. Yoon. A New ID-based Signature
with Batch Verification, Cryptology ePrint Archive, Report
2004/131.

[5] Y. Shi, G. Chen, J. Li. ID-Based One Round Authenticated
Group Key Agreement Protocol with Bilinear Pairings, Inter-
national Conference on Information Technology: Coding and
Computing (ITCC’05),-Volume I pp.757-761, 2005.

[6] L. Zhou, W. Susilo, Y. Mu. Efficient ID-based Authenticated
Group Key Agreement from Bilinear Pairings, Mobile Ad-hoc
and Sensor Networks -MSN 2006, LNCS 4325, pp. 521-532,
Springer-Verlag, 2006.

[7] Z. Wan, K. Ren, W. Lou, B. Preneel, Anonymous ID-
based Group Key Agreement for Wireless Networks, Wireless
Communications and Networking Conference-2008 (WCNC
2008),IEEE , pp.2615-2620, 2008.

[8] G. Yao, H. Wang, Q. Jiang. An Authenticated 3-Round Identity-
Based Group Key Agreement Protocol, In proc. of the third
International Conference on Availability, Reliability, and Se-
curity -ARES’08, pp. 538-543, ACM, 2008.

