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Abstract— Given that contiguous reads and writes between
a cache and a disk outperform fragmented reads and writes,
fragmented reads and writes are forcefully transformed into
contiguous reads and writes via a proposed matrix stripe cache-
based contiguity transform (MSC-CT) method, which employs a
rule of consistency for data integrity at the block level, and a rule
of performance that ensures no performance degradation. MSC-
CT performs for reads and writes, both of which are produced
by write requests from a host, as a write request from a host
employs reads for parity-update and writes to disks in a RAID-
5 array. MSC-CT is compatible with existing disk technologies.
The proposed implementation in a Linux kernel delivers a peak
throughput that is 3.2 times higher than a case without MSC-CT
on representative workloads. The results demonstrate that MSC-
CT is extremely simple to implement, has low overhead, and is
ideally suited for RAID controllers not only for random writes
but also for sequential writes in various realistic scenarios.

Index Terms— Storage Management, Parallel I/O, RAID

I. INTRODUCTION

THE performance disparity between processor speed and the

disk transfer rate can be compensated for via the disk

parallelism capability of disk arrays. Patterson and Chen [1] de-

scribed six types of disk arrays and termed them RAID-1 through

RAID-6. RAID-6 protects against double disk failures using P+Q

redundancy, and requires six disk accesses in order to perform

a small write operation. RAID-5 requires four disk accesses for

a small write operation and protects against single-disk failure.

RAID-5 arrays are widely used due to their reasonable overhead

and moderate reliability.

RAID-5 requires four disk accesses to update a data block;

two to read old data and parity, and two to write new data and

parity. To reduce the overhead of small writes in a RAID-5 array,

Menon posited the fast write process that utilizes non-volatile

storage (NVS) as a write cache in a disk array controller [2]. The

NVS is commonly built using battery-backed volatile RAM. A

block received from a host system is initially written to the NVS

in a disk array controller and the disk array controller sends a

completion message to the host system at that time. Both the data

and the parity blocks on the disks can then be written (destaged)

asynchronously at a later time, thus hiding the write latency of

the disk.

A. Destage

Due to the asynchronous nature of the write cache, the contents

of the write cache may be destaged in a desired order to reduce

the average seek time or improve the peak write throughput of the
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system. Some disk schedulers (see Section I-E.2), least recently

written (LRW) [3] and wise ordering for writes (WOW) [4], focus

on the question of the order in which the writes are destaged from

the NVS. In particular, WOW exploits both temporal locality and

spatial locality by considering both data recency and disk seek

latency.

Another problem in the use of the write cache is to de-

termine when to destage data from the cache to the disk to

guarantee continued high response time for writes. In contrast,

if new data that were written to the cache are destaged too

aggressively, it is not then possible to fully exploit the benefits

of write caching. Varma et al. [5] introduced linear threshold

(LT) scheduling, which adaptively varies the rate of destages

based on the instantaneous occupancy of the write cache. A

simpler form of scheduling is known as high/low mark (HLM)

[6] scheduling, which enables destages to the disk when the cache

occupancy drops below a “low mark”, and disables destages when

it increases over a “high mark”. Gill and Modha [4] introduced

a destage scheduler combining high/low mark scheduling with

linear threshold scheduling.

B. How to Destage Fragmented Writes

The destage starts by using a decision algorithm such as LT

or HLM, that determines when to destage. When the start time

of the destage is decided, it is then necessary to decide which

block or stripe should be destaged by using a destage algorithm

such as LRW and WOW, that determines what to destage. Our

work contends with what comes after the selecting of a block

or stripe that is to be destaged. The focus here is on how to

efficiently destage fragmented writes from the NVS to the disk

in a RAID controller. This work is compatible with the existing

destage algorithms in terms of what to destage and when to

destage it. Fragmented writes are produced in a number of cases,

as follows:
1) Random writes with destage: All random writes from the

host can be converted into fragmented writes to the disk by

destage algorithms that re-order write-requests in an increasing

block index order. CSCAN [7], CLOCK [8], and WOW destages

dirty blocks to disks only in an increasing block index order.

WOW is a variant of CLOCK with a stripe cache that is managed

in terms of stripe groups. If a destage algorithm that does not

destage blocks in an ascending order manages their cache in

terms of stripe groups, all writes within the stripe are sequentially

contiguous or sequentially discontiguous. Section III-A describes

the stripe cache in detail.
2) Multiple concurrent writes: In the local storage of a server

and in storage servers such as network attached storage [9],

multiple users read or write concurrently. Especially if multiple

users create a large amount of files simultaneously, these files

may be interleaved with each other. Thus, fragmented writes are

produced due to the in-place update of the files.

Digital Object Indentifier 10.1109/TC.2007.1058 0018-9340/$25.00 ©  2007 IEEE

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 200X 2

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9 10 11

Average distance  [block]

ST373454LC (Seagate 15000rpm SCSI320)

ST3120023AS (Seagate 7200rpm SATA)

6V160E0 (Maxtor 7200rpm SATA)

WD2500JD (WesternDigital 7200rpm SATA)

simulation

the sequentially contiguous writeN
o

rm
a
li
z
e
d
 t

u
rn

a
ro

u
n
d

 t
im

e

(a) The normalized turnaround time of the write versus the average
stride distance with an exponential distribution for various disks.
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(b) A sequentially contiguous write and a sequentially discontiguous write
with an exponential distribution.

Fig. 1. Writes to the disk perform in an increasing block index order. The
distribution of the stride distance is exponential. The write starts at the same
preset block and stops when it reaches the same preset destination. Each
turnaround time is normalized with the sequentially contiguous write, of which
the normalized value is one.

3) Aged filesystems: On real filesystems, files are divided

into pieces scattered around the disk, thus sequential writes at

the filesystem level may appear as fragmented writes at the

block level. Fragmentation occurs naturally when we use a disk

frequently, creating, deleting, and modifying files.

4) Sequential writes of multiple small files with pre-allocation:
When a new disk data block is allocated, filesystems such as

ext2 and ext3 internally pre-allocate a small number of disk

blocks adjacent to the just allocated block, in order to expand the

files in the future [10]. Hence, there exist pre-allocated, unused

blocks between files, which cause fragmented writes when we

copy a directory that contains small files. As the size of the files

decreases, the portion of fragmentation increases.

C. Motivation of Our Work

It is evident that a sequentially discontiguous (fragmented)

write to a disk is slower and employs a longer seek distance

compared to a sequentially contiguous write if the two types

of writes contain the same amount of data. However, we found

another characteristic about a fragmented write. By referring to

the experimental results shown in Fig. 1, we discovered that a

sequentially contiguous write outperforms a sequentially discon-

tiguous write even if the two types of writes employ the equivalent

seek distance with different amounts of data as shown in Fig.

1(b). The equivalent seek distance indicates that identical start and

end positions are applied, and signifies that the maximum stride

distance does not exceed a threshold value. The stride distance

is defined by the number of blocks between two discontiguous

I/Os.

We presume that the result shown in Fig. 1 is induced by the

following process: after finishing a block write, a host sends the

next data to the disk for the subsequent discontiguous block in the

same disk track as the previous write. If sending the subsequent
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Fig. 2. An example that exhibits the unexpected disk rotation.

data transfer requires more time than the rotational latency that is

required for the disk head to reach to the subsequent block, then

the disk head misses the block and requires another revolution.

It is important to reduce not only the seek time but also

unexpected disk rotation. For example,the revolution time of the

disk ST373454LC is 4 ms, which is as long as the average write-

seek time (i.e. 4.1 ms).

The workloads used in the experiment of Fig. 1 are sequentially

discontiguous writes, the stride distance of which has an expo-

nential distribution as shown in Fig. 1(b), where the maximum

stride distance is limited up to 32 blocks, and the block size is set

to 4 KiB (KiB is the abbreviation of kibibyte, as defined by the

International Electrotechnical Commission. 1 KiB refers to 210

bytes, instead 1 kB refers to 103 bytes. [11]). Fig. 1(a) shows the

normalized turnaround time of a write for various disks by varying

the average stride distance with an exponential distribution. Write

starts at the same preset block and stops when it reaches the same

preset destination. Each turnaround time of the writes shown in

Fig. 1(a) is normalized with that of the sequentially contiguous

write.

The normalized turnaround time of the contiguous write is

1. All of the normalized turnaround times of the fragmented

writes shown in Fig. 1(a) are always higher than 1. Therefore

a sequentially contiguous write outperforms sequentially discon-

tiguous writes with an equivalent seek distance. Sequentially

discontiguous writes with a small stride distance significantly de-

grade disk performance. In other words, fragmented writes of finer

granularity give rise to a much higher probability of the additional

disk rotation. Some disks also show such a characteristic for reads

as shown in Fig. 9.

To obtain quantitative results of the unexpected disk rotation,

we implemented a benchmark as a kernel driver of Linux (version

2.6) in order to eliminate the effects of cache, prefetching,

synchronous I/O, and disk scheduling. The benchmark uses the

function generic make request() of the Linux kernel for a disk

interface to avoid cache and prefetching. The benchmark produces

from 32 to 64 outstanding I/Os, processes all I/Os asynchronously,

and periodically calls the function unplug() every position of

32 blocks to mitigate the unexpected waiting time caused by

the anticipatory disk scheduler [12], which is the default disk

scheduler of Linux.

Figure 2 illustrates an example where unexpected disk rotations

occur. In Fig. 2, the host transfers sequentially discontiguous data

(blocks 1, 3, 5, 7, 9, 11, and so on) to the disk in a command

queuing fashion where the host queues multiple commands to the

disk. In Fig. 2, the host transfers blocks 1, 3, 5, and 7 to the disk

at the first time (t1), and the disk buffers the blocks in its cache

and seeks the block 1 (t1 ∼ t2). After writing blocks 1 and 3

to the magnetic media, the disk sends completion messages for
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blocks 1 and 3 (t3, t4). The host transfers the subsequent blocks

9 and 11 (t5 ∼ t7) after it receives the completion messages.

While the disk receives the subsequent blocks 9 and 11 from the

host, the disk head misses the media location that corresponds

to the queued block 5 (t6, missing point). In order to write the

missed block to the media, the disk must fully rotate (t6 ∼ t8). In

this scenario, missing points occur every two written blocks if the

host sends two data blocks simultaneously in order to sequentially

write odd blocks. The frequency of the missing point depends on

the cache policy of the disk, the stride distance, the command

queuing policy of the host, the internal/external transfer rate of

the disk, and atypical operation of the disk.

The following equation provides an analytical model of this

problem.

td = tc + tr × Nr, (1)

where td and tc are the turnaround time of the discontiguous write

and the contiguous write, respectively. tr is one revolution time

of the disk. Nr is the number of occurrences of unexpected disk

rotation, which occurs if the sum of the data transfer time and

the computational overhead requires more time than the rotational

latency that corresponds to the interval between two discontiguous

blocks.

The turnaround time tc consists of only the transfer time

without any overhead. The sum of seek time and transfer time

of td equals tc due to the equivalent distance, but td requires

additional rotations (tr × Nr). The simulation result for this

analytical model with performance parameters of ST373454LC

is shown in Fig. 1. The simulation result is similar to the

experimental results.

The write-back policy of the disk aggregates written data into

its on-board cache and transfers the data from the on-board

cache into the disk media at a later time, thereby mitigating the

missing points shown in Fig. 2. However, the write-back policy

is unreliable against power-failure. Commercial disks, shown in

Fig. 1, widely use write-on-arrival [13] capability, which begins

writing sectors to the disk media as soon as they are transferred

to the on-board cache, thereby reducing rotational latency. The

closely-discontiguous read can be enhanced by a prefetching

scheme that reads ahead up to the end of the track or cylinder

containing the last sector of the read request [13]. However, some

disks, shown in Fig. 9(a) and 9(d), do not use this prefetching

scheme in order to reduce response time.

D. Our Contributions

There are a large number of algorithms for fragmentation

reduction at the filesystem level, or spatial locality and temporal

locality of the write cache at the block level. However, in contrast

to the purpose of traditional schemes, our proposal, known as

the matrix stripe cache-based contiguity transform (MSC-CT)

as explained in Section III, mitigates the unnecessary rotational

latency caused by fragmented writes at the block level. MSC-

CT is compatible with existing algorithms such as destage, disk

scheduling, prefetching, read cache management, and filesystem;

it cooperates with the existing algorithms for better performance

as it solves an entirely novel problem.

We make several contributions to the design and implemen-

tation of a low overhead, self-tuning algorithm for an actual

RAID system that exploits a sophisticated redundancy scheme

such as the distributed-parity and P+Q redundancy of RAID-5

and RAID-6 [1]. To efficiently destage fragmented writes, MSC-

CT employs a stripe cache management scheme and a contiguity

transform scheme. By using a stripe cache that is managed

in terms of stripe groups, MSC converts all reads (for parity-

update) and writes into sequentially contiguous or sequentially

discontiguous reads and writes within the stripe at the destage. CT

then transforms discontiguous reads and writes into contiguous

reads and writes by inserting additional reads and writes. Such

transform is performed by a proposed rule for consistency, thereby

not affecting the filesystem and not changing the data and block

locations. Furthermore, MSC-CT does not involve performance

degradation by using our proposed rule for performance in a self-

tuning fashion.

We implemented a kernel module in Linux version 2.6 as a

RAID-5 driver with MSC-CT, which significantly outperforms the

MD (Multi-Device) driver that is a traditional RAID-5 driver of

Linux. Our experiments are performed on random writes, concur-

rent sequential writes using existing benchmarks, artificially aged

filesystems, and various types of realistic sequential copies.In

summary, MSC is a practical algorithm that does not conflict with

existing algorithms and enhances a RAID controller to process

more fragmented I/Os and sequential I/Os.

E. Prior Works for the Fragmented I/O

To improve random or fragmented I/O, which is the leading

cause of performance degradation, researchers have investigated

a variety of new technologies that are related to filesystems, disk

scheduling, prefetching, read cache management, RAID, destage,

and etc. However, our scheme is independent of and compatible

with the prior technologies. This section briefly describes these

technologies.

1) Filesystems: Fragmented I/Os can be produced by a highly

utilized filesystem, in which files are fragmented into multiple

segments [14]. Sequential access to a fragmented file causes frag-

mented I/Os at the block level. A log-structured filesystem (LFS)

[15] always sequentially writes data without in-place updates. A

de-fragmented filesystem (DFS) [16] dynamically relocates the

fragmented data of a file. Howerver, such filesystems involve

garbage collection and degradation of read performance.

2) Disk Scheduling: The disk scheduler is responsible for

dynamically re-ordering the pending requests in a block device’s

request queue into a dispatching order that results in minimal

seeks or instantaneous access time for random I/Os. Such algo-

rithms include FCFS [17], SSTF [18], SCAN [18], CSCAN (it is

also known as C-LOOK) [7], VSCAN [19], FSCAN [17], SPTF

[20], GSTP [21]. In addition, disk schedulers are also responsible

for load balancing, quality of service, and accumulating pending

requests. The complete fairness queuing, the earliest deadline

first scheduler, and the anticipatory scheduler [12] are adopted

to Linux for these purposes.

3) Prefetching: By speculatively prefetching or prestaging

pages even before they are requested, multiple sequential reads

may be made of a single read request, thus the prefetching reduces

a deep read latency [22]. Fragmented reads within prefetched

pages lead to cache hits, thereby improving read performance

by an order of magnitude. One of the latest and most outstanding

investigations of prefetching involves sequential prefetching in

adaptive replacement cache (SARC) [23]. SARC combines and

adaptively balances both the cache and prefetch.
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Fig. 3. The data organization and terminologies of a RAID-5 array.

4) Read Cache Management: Fragmented or random reads

can be mitigated by a read cache. A large number of cache

replacement algorithms have been well studied. Examples are

LRU, CLOCK, LRU-2, LRFU, 2Q, LIRS, FBR, MQ, CAR [24],

ARC [25], and DULO [26]. Most of the read cache algorithms

focus on the hit ratio by statically or adaptively combining recency

and frequency. Meanwhile, DULO gives randomly-placed blocks

higher durability than sequentially-accessed blocks in the read

cache, thereby improving fragmented or random reads.
5) RAID: A large number of researchers have investigated

RAID technologies. Among these studies, AutoRAID [27],

AFRAID [28], and DMP [29] focus on the small write that

also produces a fragmented write. To improve the response time

related to the small write that produces two reads and two writes

in RAID-5, AutoRAID writes data to the mirrored storage class

in a log-structured fashion, and then migrates the data to the

RAID-5 storage class at a later time. AFRAID does not wait

for the parity to be updated; it updates the parity when disks are

idle, thereby improving the instantaneous response time, however

it loses guaranteed reliability. DMP exploits more than one (R)

number of parity strips per stripe for single-disk-failure tolerance,

thereby enabling R number of writes to acquire the stripe lock

simultaneously.

II. BACKGROUND OF RAID-5

RAID-5 employs a coarse-grained striped parity technique so

that small requests can benefit from the concurrency during the

servicing of multiple requests. The RAID Advisory Board [30]

describes RAID-5 using the terminology of both strip and stripe

in more detail, as shown in Fig. 3. A RAID-5 array is organized

by stripes, each of which consists of a parity strip and data strips.

Each strip comprises a set of blocks that are partitioned by disks.

The parity block group (PBG1) is defined by the group of blocks

that are located at the same offset of the member disks. The parity

block in the parity strip stores the result of the bitwise eXclusive

OR (XOR) of the data blocks that are in the same PBG. The

parity strip comprises the parity blocks in the stripe.

A. Reconstruct-write and Read-modify-write

All actions of RAID-5 can be categorized by six operations:

r, t, w, x, xx, and that are described in Table I. We use these

1Many people confuse stripe with PBG, as there is no widely-used
terminology for PBG.
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Fig. 4. A read-modify-write cycle in a RAID-5 array.

mnemonics to conveniently describe our work.

TABLE I

OPERATION MNEMONICS

Mnemonic Description

r Read the block from the disk to the block cache memory

t Read the block from the disk to a temporary memory

w Write the block cache memory to the disk

x XOR the block cache memory

xx XOR the block cache memory and the temporary memory

The destination of the XOR result

To update one block with new data, it is necessary to (1) read

all other blocks of the PBG to which the updated block belongs,

unless it is cached; (2) XOR all data blocks; and (3) write the

parity block and the new block. This operation requires (N −
1 − d − c) reads and (d + 1) writes, both of which comprise

(N − c) I/Os, where N is the number of disks, c is the number

of cached clean blocks, and d is the number of dirty blocks to

be updated. This process is known as a reconstruct-write cycle.

When d = N − 1, it is unnecessary to read any block; this case

is known as a full-parity-block-group-write2.

A read-modify-write cycle can be used to reduce the number of

I/Os when N−c > 2(1+d), as the reconstruct-write cycle requires

(N − c) I/Os while the read-modify-write cycle requires 2(1 + d)

I/Os. This process does the following: (1) it copies the new data

to the cache memory; (2) it reads the old parity block (r) and

reads the old block to a temporary memory (t) simultaneously;

(3) it XORs the new block with the old block (xx), and XORs

the result with the old parity block (x) to generate the new parity

block ( ); and (4) it writes the new block (w) and writes the new

parity block (w) simultaneously, as shown in Fig. 4. The read-
modify-write cycle requires (1+d) reads and (1+d) writes, both

of which comprise 2(1 + d) I/Os.

For various cases of cache status, Fig. 5 shows operations for

PBGs to be destaged by the mnemonics. If two blocks are cached

(clean) and another block is written (dirty) as shown in Case 2

of Fig. 5, we choose the reconstruct-write cycle to destage the

PBG, as N − c < 2(1 + d), where N = 5, c = 2, and d = 1.

Hence it is necessary to read the empty block (r), XOR all data

blocks to update the parity block (x), and write the dirty block

and the new parity (w). Therefore, the clean blocks only involve

x, the dirty block requires xw, the empty block requires rx, and

the parity block requires w. If all blocks are dirty as in Case 4,

2The terminology full-stripe-write is usually used instead of it because there
is no general terminology for PBG.
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Fig. 6. The LRW list examples for the conventional parity block group and
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it is necessary to XOR all data blocks without a read, and write

all blocks and the parity. In other words, all data blocks and the

parity block require xw and w, respectively. Case 1 and 6 in Fig.

5 show the cases that use the read-modify-write cycle.

III. MATRIX STRIPE CACHE-BASED

CONTIGUITY TRANSFORM

We now describe our scheme for how to efficiently destage

fragmented writes, namely, matrix stripe cache-based contiguity

transform (MSC-CT). Most of the writes from the host can be

converted into sequentially contiguous or sequentially discontigu-

ous (fragmented) writes to the disk during the destage by a stripe

cache (SC) that is managed in terms of stripe groups. MSC is

a stripe cache managed by the rxw-matrix (explained in Section

III-B) for the contiguity transform (CT) of fragmented writes. CT

transforms fragmented I/Os into a contiguous I/O by inserting

unnecessary I/Os into the discontiguous region using the rules

for consistency and performance.

A. Stripe Cache

Figure 6(a) shows the traditional parity block group cache

(PBGC) of RAID-5. Traditional cache replacements and destages

are managed in terms of parity block groups (PBG) (see Section II

for PBG). For example, the software RAID-5 of the Multi-device

(MD) of Linux manages the LRW cache in terms of PBG. Fig.

6(b) shows an example of the LRW list of a stripe cache (SC) for

RAID-5. Each SC unit corresponds to each stripe, which is the

management unit for cache replacement and for destages. Figure

6 shows the LRW list examples when the sequence of the block

numbers for writes is 〈17, 1, 9, 0, 11, 25〉.
In a PBGC that is destaged by LRW, the LRW list head points

to the least recently written PBG. The blocks to be destaged are

selected from the head of the LRW list. When a block in a PBG

becomes dirty, the updated block and all of the other blocks that

belong to the same PBG move to the end of the LRW list. For

example, because block 25, which belongs to PBG5, is the most

recently written block, PBG5 is in the end of the LRW list even

though the block 17, which belongs to the PBG5, is the least

recently written block. Similarly, in an SC that is destaged by

LRW, the head of the LRW list points to the least recently written

stripe cache unit. When a block in a stripe cache unit becomes

dirty, the updated block and all of the other blocks that belong

to the same stripe cache unit move to the end of the LRW list.

Therefore, SC exploits spatial locality by coalescing writes that

are in the stripe.

When a stripe cache unit destages, all blocks in the stripe

are destaged sequentially, thereby converting all types of writes

into sequentially contiguous or sequentially discontiguous writes

within the stripe. SC also allows a better exploitation of spatial lo-

cality by coalescing writes together. Disk schedulers and destage

algorithms that determine what to destage also save disk head

seeks. However, MSC-CT can coexist with such schemes and

helps such schemes to exploit much spatial locality. WOW also

manages the cache in terms of stripe groups to reduce the sorting

overhead of CLOCK and to exploit spatial locality. However

MSC-CT treats the stripe cache unit as a matrix and enhances

the performance of fragmented writes using the CT scheme.

B. Contiguity Transform

If a disk head misses the subsequent fragmented block due to

the missing point of Fig. 2, it requires a full disk spin (see Section

I-C). To alleviate this problem, we propose a contiguity transform

(CT) process at the destage. CT transforms the discontiguous

writes into the contiguous writes by inserting additional writes

in between the discontiguous writes. CT is also applied to the

read operations that occur in the reconstruct-write and read-

modify-write cycles. Fig. 7 shows an example of the CT process

in a RAID-5 array when a stripe is destaged. However CT is

applicable to the other types of RAID, such as RAID-6.

Figure 7(a) shows an example of the block status in a stripe,

where D denotes a dirty block in which new data is in the cache

but not yet updated to a disk, C denotes a clean block in which

consistent data with the disk is in the cache, and E denotes an

empty block in which valid data is not in the cache. Let u be

the number of blocks per strip, and let v be the number of disks

consisting of a RAID-5 array. The cache status of the blocks

in a stripe that is shown in Fig. 7(a) can be represented by the

following u × (v − 1) matrix:

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 200X 6

PS1 S2 S3S0

D E E E

E C E D

E E E E

D D D D

D C D D

E D E E

rx_wtxxw

_wrx x rx xw

_wxw xw xw xw

_wxw x xw xw

rx_wtxxw

rx_wtxxw

r_wrxw x rx xw

rwrw r

r_wtxw txw txw xw

r_wtxw xw txw xw

rx_wrw txxw rw

rt

rr r

rr r

rt t

rt t

rr t r

ww

ww w

ww

ww w w w

ww w w w

ww w w

rt

r r

rt

ww

ww

ww w w w

ww w w

ww

basic rxw-matrix, M

rxw-matrix M after 

write contiguity transform

The cache status of 

blocks in a stripe

D E E E

E E D E

rx_wtxxw

rx_wtxxw

rt

rt

ww

ww

rx_wtxxw rw

rx_wtxxw

rt r

rt

ww w

ww

read write

x_xx

_x x x x

_x x x x

_x x x x

x_xx

x_xx

x_xx

x_xx

_x x x x

_x x x x

_x x x x

x_xx

x_xx

x_xx

XOR

rx_wtxxw

r_wrx x rx xw

rr r

r_wtxw xw txw xw

r_wtxw x txw xw

rx_wr txxw r

rxw-matrix M after

read contiguity transform

rx_wtxxw r

rx_wtxxw

S1 S2 S3S0 PS1 S2 S3S0 PS1 S2 S3S0 PS1 S2 S3S0

PS1 S2 S3S0PS1 S2 S3S0PS1 S2 S3S0PS1 S2 S3S0PS1 S2 S3S0

(a) (b)

(d) contiguity transform

(c) destage operations by the basic rxw-matrix

(e) destage operations by the rxw-matrix with contiguity transform

read writeXOR

Block0

Block1

Block2

Block3

Block4

Block5

Block6

Block7

Block8

Block9

Block10

Block11

Block12

Block13

Block14

Block15

Block16

Block17

Block18

Block19

Block20

Block21

Block22

Block23

Block24

Block25

Block26

Block27

Block28

Block29

Block30

Block31

Strip0 Strip1 Strip2 Strip3

st
ri
p
e

Strip0 Strip1 Strip2 Strip3 Parity

contiguity transform
tr

ad
it

io
n
al

 p
at

h

m11

m21

m31

m41

m51

m61

m71

m81

m12

m22

m32

m42

m52

m62

m72

m82

m13

m23

m33

m43

m53

m63

m73

m83

m14

m24

m34

m44

m54

m64

m74

m84

m15

m25

m35

m45

m55

m65

m75

m85

Fig. 7. MSC-based contiguity transform: When a RAID driver destages a stripe, it uses the reconstruct-write cycle or the read-modify-write cycle for each
row to generate the basic rxw-matrix. It is possible to successfully destage the stripe by executing reads, XORs, and writes based on the basic rxw-matrix
(c). However the proposed scheme inserts the contiguity transform process (d) between the generation of the basic rxw-matrix (b) and the actual execution
of the rxw operations (e).

Z = [zij ]u×(v−1) =

2
666666664

D E E E
E C E D
E E E E
D D D D
D C D D
E D E E
D E E E
E E D E

3
777777775

. (2)

Before the actual execution of the read, XOR, and write for

all blocks in a stripe, it is necessary to determine which blocks

should be read, how the parity blocks should be made, and which

blocks should be written, by generating a basic rxw-matrix, as

shown in Fig. 7(b). By choosing one of the reconstruct-write

cycle and the read-modify-write cycle shown in Fig. 5 for each

row of the matrix Z, we determines the basic rxw-matrix, M,

whose element, mij , is a subset of {t, r, x, xx, ,w}. The basic

rxw-matrix represents all operations that destage all blocks in the

stripe. We can express the basic rxw-matrix shown in Fig. 7(b)

as the following equation:

M = [mij ]u×v =2
666666664

{t, xx, w} {} {} {} {r, x, , w}
{r, x} {x} {r, x} {x, w} { , w}
{} {} {} {} {}

{x, w} {x, w} {x, w} {x, w} { , w}
{x, w} {x} {x, w} {x, w} { , w}
{} {t, xx, w} {} {} {r, x, , w}

{t, xx, w} {} {} {} {r, x, , w}
{} {} {t, xx, w} {} {r, x, , w}

3
777777775

.
(3)

It is possible to successfully destage the stripe by executing

reads, XORs, and writes that are based on the basic rxw-matrix

as shown in Fig. 7(c). However, the proposed scheme inserts

the contiguity transform process between the generation of the

basic rxw-matrix and the actual execution of the rxw operations

as shown in Fig. 7(d). The contiguity transform consists of a read

contiguity transform and a write contiguity transform. The read

contiguity transform must precede the write contiguity transform

to increase the possibility of the write contiguity transform.

Section III-C describes the reasons in detail.

The read contiguity transform inserts read operations, which

appear as the bold-faced r in Fig. 7(d) and 7(e), between two

discontiguous reads for each column in the basic rxw-matrix. For
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the example in Fig. 7(b), there exists the read operation r in m21,

{r,x}; the read operation t belongs to m71, {t,xx,w}. However,

there is no read operation between the two elements m21 and m71.

Hence, r or t is inserted into all of the elements between m21 and

m71. The read operations, r and t, must be properly chosen for

consistency. The choice of r and t is explained in Section III-C.

The left matrix of Fig. 7(d) shows the rxw-matrix after applying

the read contiguity transform.

If we formally describe the above constraints, i and j of the

rxw element mij , to which we can add the read operation, must

satisfy at least the following predicate:

∀i∀j∀a∀b[ (a < i < b)

∧ ((maj ∩ {r, t}) �= ∅) ∧ ((mbj ∩ {r, t}) �= ∅)
∧ (¬∃h∀h[((mhj ∩ {r, t}) �= ∅) ∧ (a < h < b)]) ].

(4)

The rxw element mij , to which the read operation can be added,

is in the discontiguous region between two discontiguous blocks,

maj and mbj , both of which include r or t. In the discontiguous

region, there exists no element (mhj) that includes r or t. In the

case of the strip 0 shown in Fig. 7(b), it is possible to add r or

t between m21 and m71 by predicate (4) with j = 1, a = 2, and

b = 7.

The write contiguity transform is processed in the same manner

as the read contiguity transform. For example, in the basic rxw-

matrix, M, shown in Fig. 7(b), there is the write operation, w, in

the two separated elements, m11 and m41 but there is no w in m21

and m31, to which, therefore, w is added. It is now feasible to

transform two discontiguous writes into a single write command.

The indices i and j of the rxw element mij , to which the

write operation can be added, must satisfy at least the following

predicate that is similar to predicate (4):

∀i∀j∀a∀b[ (a < i < b)

∧ (w ∈ maj) ∧ (w ∈ mbj)

∧ (¬∃h∀h[(w ∈ mhj) ∧ (a < h < b)]) ].

(5)

In this way, two separated requests can be merged into a single

request, thereby reducing the number of fragmented requests that

show poorer performance than the contiguous I/O that employs

the same start and end block. This section describes the contiguity

transform and the several rules required for consistency and

performance. The following sections present the rules.

C. Rules for Consistency

We must distinguish r and t for data consistency in the read

contiguity transform. If a cache status zij is dirty, reading old data

from the disk to the cache through r spoils the latest data in the

cache. Hence, t should be used to preserve the newest data in the

cache. t reads data to a temporary memory that will be released

after the destage. If the block status is not dirty, r is used for a

cache hit in the future. For example, t is added to m51 in Fig. 7,

as z51 is dirty (D). However r is used for m61, as z61 is not dirty.

This process can be formally written as the following equation:

mij ←
(

mij ∪ {t} if zij = D,

mij ∪ {r} otherwise.
(6)

We add t to mij if the cache status zij is dirty, otherwise r is

added to mij .

If we implement a MSC driver that a physically contiguous

memory is allocated to each strip, a read group that is composed

only of r can be made for a single request without a scatter-gather

list, by which a single procedure call sequentially reads data form

a single data stream to multiple buffers. A read group that contains

t may be merged into a single request using a scatter-gather list.

In contrast to the read contiguity transform, the write contiguity

transform can not be processed in the case that at least one

cache block, which is empty (E) and contains no r, exists in the

discontiguous region that is located between the two separated

blocks. By r, the empty cache block becomes clean (C) before

the write execution to the disk. It is possible, therefore, to add

w into an rxw element containing r, although the corresponding

block cache is empty. Therefore, the read contiguity transform

must precede the write contiguity transform.

In other words, the write contiguity transform between maj

and mbj must satisfy the following predicate:

¬∃l∀l[ (a < l < b) ∧ (zlj = E) ∧ (r /∈ mlj) ]. (7)

For all mlj that are in the discontiguous region between maj and

mbj , there must be no mlj such that its cache status, zlj , is empty

and it does not contain r.
For example, m24 and m44 in Fig. 7(b) form a discontiguous

write operation but m34 of the final rxw-matrix shown in Fig.

7(d) does not contain r and z34 is empty. Hence it is impossible

to make a write contiguity transform in this case. In the other case,

blocks between m21 and m71, z31 and z61 are empty, and m31

and m61 of the basic rxw-matrix do not contain r. However, m31

and m61 will contain r after the read contiguity transform (see

Fig. 7(d)), thereby containing the latest data in the cache before

the write execution and enabling the write contiguity transform

of 〈m11, m41〉 and 〈m51, m71〉. The read contiguity transforms of

m63, m73, and m35 also enable the write contiguity transforms.

D. Rules for Performance

To guarantee the performance of CT without degradation, we

introduce a terminology, stride distance, which is defined by the

number of blocks between two discontiguous writes. In other

words, if two discontiguous writes are located at block position

a and b and if a write operation between a and b does not exist,

then the stride distance is (b− a). In addition, the stride distance

for a read is applied in the same way.

The write contiguity transform is restricted by automatically

determined parameters, Smax
w and S

except
w , that are shown in

Fig. 9. Smax
w is the threshold value of the stride distance S

in order to limit a write contiguity transform process. A write

contiguity transform is permitted when its stride distance, S, is

less than Smax
w and not included in any excluded regions that

are determined by S
except
w (= {Sexcept

w,1 , Sexcept
w,2 , . . . }). Fig. 9(d)

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

B0 B2 B4 B6 B8

B0 B3 B6 B9

B12

B0 B4 B8

B10 B12
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Stride 
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4

B0 B13 B14 B15

B14

B15

I/O sequence

Fig. 8. The stride benchmark generates the workload in stride pattern by
varying the stride distance. All workloads employ the same start and end
positions. The stride distance of 1 denotes the contiguous I/O. When the
stride distance is i, after one block is read or written, the consecutive (i− 1)
blocks are skipped and this cycle repeats.
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Fig. 9. Smax
w , Smax

r , S
except
w , and the normalized turnaround time versus the stride distance for various disks. A fragmented I/O whose normalized turnaround

time is below one is faster than the contiguous I/O.

shows an excluded region, Sexcept
w,1 , that ranges from Sexcept

w,1,s

to Sexcept
w,1,e . If there exists a second excluded region, it can be

expressed as Sexcept
w,2 . For the read contiguity transform, Smax

r

and S
except
r are applied in the same manner.

Smax
w , S

except
w , Smax

r , and S
except
r are obtained from a member

disk of a disk array by a stride benchmark, which is automatically

performs when an administrator creates the disk array. The

obtained parameters are saved in a non-volatile storage, on which

the other information of the disk array is also stored. Hence,

the stride benchmark that obtains the parameters performs only

once. It is possible to retrieve the parameters from the non-volatile

storage without executing the stride benchmark any more.

To find the statistical and relative costs of discontiguous I/Os

over the contiguous I/O shown in Fig. 9, the stride benchmark

generates the workload in a stride pattern by varying the stride

distance as shown in Fig. 8. The stride distance S of 1 indicates

the contiguous I/O. If S is i, after one block is read or written,

the next consecutive (i − 1) blocks are skipped, and this cycle

repeats. In this way, the stride benchmark repeats such a pattern

to statistically evaluate a fragmented I/O with a specific stride

distance. All workloads start at the same source block and stop

at the same destination block.

Figure 9 displays the parameters and the normalized turnaround

time versus the stride distance for various disks. A fragmented

I/O is slower than the contiguous I/O if its normalized turnaround

time is larger than 1. In all of the disks shown in Fig. 9, a

fragmented I/O such that its stride distance S is less than a

threshold shows degraded performance. The threshold value can

be the maximum stride distance, Smax
w for write or Smax

r for read.

Therefore the write contiguity transform performs when its S is

less than Smax
w . Smax

w is chosen as the smallest S such that the

normalized turnaround time is less than 1.2 for all S. 1.2 is used

instead of 1.0 because it is necessary consider the tolerance of

the benchmark results and the performance degradation caused by

additional I/Os that occupy additional bus resources such as the

SCSI bus and the memory bus. The threshold value of 1.2 was

obtained by some empirical results, hence it may not be optimal

to apply the value to all systems. Smax
r is also determined in the

same way. This selection method of Smax
w and Smax

r is validated

through an experiment, which is described in Section IV-F.

We can formally describe the performance rules for the read

contiguity transform, whose stride distance is denoted by S(=

b − a), as the following predicate:

[ (S < Smax
r ) ∧ (¬∃k∀k[Sexcept

r,k ,s ≤ S ≤ Sexcept
r,k ,e ]) ]. (8)

S must be less than Smax
r and not be included in [Sexcept

w,k,s , Sexcept
r,k ,e ]

for all k. Similarly, the write contiguity transform must satisfy the

following predicate:

[ (S < Smax
w ) ∧ (¬∃k∀k[Sexcept

w,k ,s ≤ S ≤ Sexcept
w,k ,e ]) ]. (9)

In summary, the total rule for the read contiguity transform is

constructed by aggregating (6), (4), and (8). The total rule for the

write contiguity transform is constructed by aggregating (5), (7),

and (9).

Some disks, as shown in Fig. 9(d), may have excluded regions,

S
except
w or S

except
r . CT does not perform if S is included in

such excluded regions because it is impossible to achieve a gain

through CT. Unlike Smax
w , some disks have a Smax

r value of 1,

as shown in Figs. 9(b) and 9(c).
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ReadContiguityTransform(M, Z, Smax
r , S

except
r )

1 for (j ← 1; j ≤ v; j++) { // for each column
2 p ← −1;
3 for (i ← 1; i ≤ u; i++) { // for each row
4 if (mij ∩ {r, t}) �= ∅ ) {
5 S ← i − p;
6 if (p ≥ 0 and S < Smax

r

and (S < Sexcept
r,k,s or S > Sexcept

r,k,e , for all k)) {
7 for (h ← p + 1; h < i; h++) {
8 if (j = v) mhj ← mhj ∪ {r};
9 else if (zhj = D) mhj ← mhj ∪ {t};

10 else mhj ← mhj ∪ {r};
11 }
12 }
13 p ← i;
14 } } }
WriteContiguityTransform(M, Z, Smax

w , S
except
w )

16 for (j ← 1; j ≤ v; j++) { // for each column
17 p ← −1;
18 for (i ← 1; i ≤ u; i++) { // for each row
19 if ( w ∈ mij ) {
20 S ← i − p;
21 if (p ≥ 0 and S < Smax

w

and (S < Sexcept
w,k,s or S > Sexcept

w,k,e , for all k)) {
22 for (h ← p + 1; h < i; h++) {
23 if (j = v) {
24 if (r /∈ mhj) goto Next;
25 } else if (r /∈ mhj and zhj = E) goto Next;
26 }
27 for (h ← p + 1; h < i; h++)
28 mhj ← mhj ∪ {w};
29 }
30 Next: p ← i;
31 } } }

Fig. 10. The procedures of CT

If Smax
r is 1, there is no write contiguity transform that is

assisted by the read contiguity transform (see Section III-C). All

reads shown in Fig. 9 are never below one. In other words, the

throughput may be lightly affected even if we do not obey the

rule of the normalized turnaround time of 1.2 to determine Smax
r .

Therefore, if we aggressively increase Smax
r without obeying the

threshold value of 1.2 in order to increase the possibility of the

write contiguity transform, we may achieve better performance.

So we plan to research a better scheme of an aggressive transform.

E. Procedure

Figure 10 shows the pseudo code that represents the procedures

of CT. Lines 4 and 13 resolve two discontiguous reads, mpj and

mij . Line 6 determines that the condition of the stride distance

satisfies the performance rule. If the condition is true, lines 7-

11 add r or t into all elements between mpj and mij by the

consistency rule. If column j is the parity column, r is added

without checking the cache status (line 8) because the cache for

parity blocks is not employed.

In the write contiguity transform, if the condition of the stripe

distance satisfies the performance rule (line 21), lines 22-26

determine that it is possible to perform the write contiguity

transform between mpj and mij by the consistency rule (Eq.

(7)). The discontiguous write region is skipped by jumping to

line 30 if there is at least one element that does not satisfy the

consistency rule. If column j is the parity column (line 23), we

do not check the cache status (line 24). Finally, w is added to all

elements between mpj and mij (lines 27-28).

F. Performance Issues

The proposed scheme causes a negligible amount of perfor-

mance degradation because CT requires very inexpensive com-

putational power that investigates which blocks are applicable

to CT. The overhead of CT is that additional reads and writes

consume additional bus resources, such as those of the SCSI

bus and memory bus. However, fragmented writes significantly

deteriorate write performance, thereby rarely saturating those

buses. Moreover, our experimental results show that CT enhances

performance to a much greater extent than the degradation that

is caused by the additional bus occupation.

The amount of performance enhancement depends on the

amount of the fragmented writes and on the distribution of the

stride distance. The proposed CT scheme employs no gain for the

purely contiguous write, but affects various types of writes that

include (1) concurrent sequential writes, (2) sequential writes on

an aged filesystem, (3) sequential writes of multiple small files,

(4) random writes, and so on.

The benefit from MSC-CT depends on the internal charac-

teristics of the disk drives and on the portion of the closely

discontiguous writes that depend on the write cache size and the

workspace, to which requested I/O locations are bounded in terms

of storage capacity. The average stride distance increases as the

workspace increases, and the average stride distance decreases as

the write cache size increases. CT has greater benefits for shorter

distributions of the stride distance.

CT performs for writes and reads for parity-update but not

read requests from the host. A read request cannot be delayed

to the disk unlike a write request. Hence a read request must

immediately respond to the host with data from the disk. However

CT requires multiple pending I/Os that form as sequentially

discontiguous. Therefore, it is impossible to apply CT to the read

requests.

MSC is a stripe cache managed by the rxw-matrix for the

contiguity transform (CT) of fragmented writes. By coalescing

I/Os together, SC allows for a better exploitation of spatial locality

than parity block group cache (PBGC). SC simplifies cache

management and control, thereby enhancing bulky or sequential

I/Os. CT depends highly on the strip size of SC because CT

performs within the strip. The maximum stride distance for CT

is restricted by the strip size if the number of blocks per strip is

less than Smax
r or Smax

w .

G. Implementation

The RAID can be implemented either using a dedicated com-

puting device, called hardware RAID, or using a host processor,

called software RAID. Teigland [31] discussed several software

RAIDs that include MutliDevice of Linux, Veritas Volume Man-

ager, Sun Solstice DiskSuite, and FreeBSD Vinum.

In Linux 2.6, we have implemented a software RAID-5 with

the MSC-based CT (MSC-CT) scheme as a block device driver.

To be precise, this is the MSC driver, which includes a stripe

prefetching scheme [32], a configuration tool for administrators,

and a status notification interface using the /proc filesystem. For

complete implementation of the MSC driver, we exploit several

design techniques as follows:
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1) When and What to Destage: An important decision for

destage is “When to Destage”. We chose a destage scheduler

as the well-known scheduler, the high/low mark scheduler [6].

Destages to disks are disabled when the cache occupancy is

below a “low mark” (85%). If the cache occupancy is at or

above a “high mark” (95%), then the destage is continued. Better

destage schedulers such as the linear threshold (LT) scheduler

[5], variants of LT [33], and a combination of LT and HLM

[4] may be considered in the design, but destage schedulers are

not in the scope of this paper. Upon starting the destage, we

must determine which block or stripe is selected to be destaged.

For a fair comparison with the existing RAID-5 driver of Linux,

the simplest scheme, LRW, was used in order to decide what to

destage.

2) Lock: A lock management of our implementation for parity

access performs in terms of stripe groups, thereby resulting in a

coarser granularity compared to a lock that is managed in terms

of parity block groups. However our lock management is simple,

thereby providing easy implementation and efficient performance

for sequential or bulky I/Os. The coarse-grained lock is somewhat

acceptable, except for a write lock while reading. The read lock

can enter into the critical section that was previously granted with

another read lock. The read lock can not be granted if the section

is locked with a write mode. However, the granted duration of

the write lock is very short because the write from the host to the

NVS performs merely by copying requested data to the NVS.

Destaging a stripe acquires the write lock, which delays read

requests and write requests for the stripe until the destage of

the stripe finishes. However, the stripe selected for destage may

be the least frequently or least recently used stripe, thus read or

write requests for the stripe, which is under destage, are rarely

claimed.

3) Memory allocation: Two alternative memory allocation

schemes can exist for SC. The first is that cache memories are

only assigned to blocks that contain valid data, thereby increasing

memory utilization. The second is that a physically-contiguous

memory of the stripe size is assigned to the stripe cache unit,

which, although, holds only a single clean or dirty block. The

latter scheme decreases memory utilization for widely-spread

random small I/Os; however, it can reduce the number of memory

allocation processes by an order of magnitude, and is efficient for

sequential or bulky I/Os. We adopted the latter allocation scheme.

IV. EVALUATION

A. Experimental Set-up

This section describes a system that we built to measure the

performance of MSC-CT and SC, and to compare them with the

existing RAID-5 driver of Linux, MultiDevice (MD), the cache

of which is managed in terms of PBG. In the source code of

MD, the stripe head structure represents the PBG. Hsieh et al.

[34] evaluated the software RAID of Linux, MD, which has a

comparable performance as a hardware RAID for most of test

cases that are performed by them.

The system in the experiments uses dual 3.0 GHz Xeon

processors, 1 GB of main memory, two Adaptec SCSI320 host bus

adapters, and five ST373454LC disks, each of which has a speed

of 15000 rpm and a 74 GB capacity. A Linux kernel (version

2.6.11) runs on this machine hosting benchmark programs, the

ext3 filesystem, and the proposed MSC driver or the MD driver

as a RAID-5 driver. Apart from the page cache of Linux, both
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Fig. 11. A throughput comparison for random write workloads by varying
the workspace size using Tiobench. As the workspace size increases, the gain
of MSC-CT over SC decreases but never become negative.

the MD driver and the MSC driver have their own cache memory

of 512 MiB. The block size is set to 4 KiB.

All through the figures and tables of this paper, PBGC (parity

block group cache, Fig. 6(a)) denotes the PBGC scheme using

the MD driver, SC (stripe cache, Fig. 6(b)) when using the MSC

driver without CT, and MSC-CT when using the MSC driver with

CT.

B. Random Write Workload

We use a random write workload using Tiobench [35], which

generates multiple threads that uniformly write 4 KiB pages in

their own file. In Fig. 11, we compare PBGC, SC, and MSC-

CT using random write workloads with a fixed number of writes

(160k) on a RAID-5 array by varying the size of the workspace.

A 1 GB file is allocated for each thread, and we vary the number

of threads. Hence the workspace increases as the number of

threads increases. At the lowest workspace size of 1 GB, MSC-CT

outperforms SC by 170%, and MSC-CT outperforms PBGC by

220%. With a workspace size of 8 GB, MSC-CT outperforms SC

by 108%, and SC outperforms PBGC by 10%. As the workspace

size increases, the gain of MSC-CT over SC decreases but will

not be negative because the increased workspace size with the

fixed cache size causes for the average stride distance to increase

and CT only performs when a stride distance is less than Smax
r

or Smax
w . Theoretically, if the workspace size is infinite, the

throughput of MSC-CT is nearly identical to that of SC because

there is no CT with an infinite stride distance.

Figure 12 shows various metrics such as throughput, average

latency, maximum latency, and throughput over CPU load by

varying the number of writes from a host with a fixed workspace

size of 1.5 GB using Tiobench. In Fig. 12(a), the increase in

the throughput is saturated as the number of I/Os increases.

Meanwhile, too small a number of writes cannot consume the

entire cache before the destaging of the cache and decreases the

number of dirty blocks in a stripe, thereby increasing the average

stride distance and reducing the transform opportunity. With the

smallest number of writes (40k), the throughput gain of MSC-

CT over SC is 53%. However, with the largest number of writes

(2560k), MSC-CT outperforms SC by 141%. SC shows slightly

less throughput than PBGC due to the memory allocation scheme

of our implementation but not SC itself. The memory allocation

of a full stripe size provides less memory utilization than the MD

driver.
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Fig. 12. Various metrics by varying the number of I/Os using Tiobench

Figure 12(b) shows the average latency in this experiment. The

average latency shows a similar trend to the throughput. When

the number of writes is 2560k, MSC-CT delivers the maximum

latency that is 260% less than SC. PBGC delivers severely poorer

maximum latency than SC; nearly 56 times worse. This significant

difference in the maximum latency may depend on the different

implementation techniques of the MD driver for PBGC and the

MSC driver.

It is necessary to measure the amount of CPU load degradation

by the additional I/Os caused by CT. Throughput over CPU load

may be an adequate metric for this measurement. According to

Fig. 12(d) that shows this metrics, it becomes clear that PBGC,

SC, and MSC-CT have similar values of throughput over CPU

load. Therefore, CT rarely has a CPU load degradation.

C. Concurrent Sequential Write

To generate concurrent sequential I/Os, we used the benchmark

DBench [36], which produces the local filesystem load. It does

all the same I/O calls that the smbd server in Samba [37] would

produce when confronted with a Netbench [38] run. DBench

generates multiple threads, each of which produces various I/O

patterns. However, a large portion of its writes form sequential

or bulky accesses.

Figure 13 compares PBGC, SC, MSC-CT, and a hardware-

based RAID using DBench. The hardware-based RAID is an Intel

SRCU42X [39] with 512MB memory and write-back/cached-IO

capability. The benchmarks used in this paper, except for DBench,

cannot fairly compare SRCU42X with the software RAID drivers

because there is no interface to fully flush the cache of SRCU42X.

This can only be accomplished by shutting down its device driver.

However, DBench excludes the results of the cleanup phase and

thus it is unnecessary to fully flush the cache.
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Fig. 13. A comparison of PBGC, SC, and MSC-CT using DBench
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Fig. 14. A comparison of SC and MSC-CT on a synthetically aged filesystem

We vary the number of clients from 1 to 256 in Fig. 13(a).

When the number of clients is 1, there is no gain by CT because

most of the writes that each client produces are sequential or

bulky. However, MSC-CT significantly outperforms SC, with the

exception of a single thread and the range that the performance is

saturated. In the best case, MSC-CT outperforms SC by 30%, and

PBGC by 59%. Through this experiment, it becomes clear that

concurrent sequential writes at the filesystem level may produce

fragmented I/Os at the block level.

In Fig. 13(b), we vary the strip size from 8 to 256 with 128

clients. When the strip size is 8, there is no discontiguous region

in a strip because one 8 KiB strip consists of only two 4 KiB

blocks. As the strip size increases, the gain by CT increases. In the

best case, MSC-CT outperforms PBGC by 80%. The throughput

of SC decreases as the strip size increases as a result of the

memory allocation scheme of our implementation. However, SC

significantly outperforms PBGC in all of the cases shown in Fig.

13.

D. Aged Filesystem

In actual filesystems, files are divided into pieces scattered

around the disk, thus sequential writes at the filesystem level

may appear as fragmented writes at the block level. We made

a benchmark to artificially age a filesystem. Up to 90% of the

storage capacity, the benchmark sequentially writes files, the sizes

of which have a normal distribution with a mean value μ and

standard deviation μ/4. The benchmark deletes 20% of the files,

and then creates such files up to 90% of the storage capacity.

To increase the fragmentation of the filesystem, the deletion and

creation cycles were repeated several times.

This experiment uses an ext3 [40] filesystem of 10 GB. As

shown in Fig. 14(a), the gain by MSC-CT in an aged filesystem

TABLE II

EXPERIMENTAL RESULTS OF BULKY I/OS

Benchmarks PBGC (MD) SC MSC-CT

video self-copy 31.4 s 21.6 s 21.6 s

music self-copy 20.6 s 10.5 s 10.5 s

src self-copy 29.3 s 15.2 s 13.5 s

mkfs (ext3) 42.0 s 34.2 s 34.0 s

sequential read (fs) 190 MB/s 252 MB/s 252 MB/s

sequential write (fs) 166 MB/s 189 MB/s 189 MB/s

bulky random read (fs) 57.5 MB/s 67.4 MB/s 67.4 MB/s

bulky random write (fs) 58.8 MB/s 68.0 MB/s 68.0 MB/s

sequential read (block) 106 MB/s 381 MB/s 381 MB/s

sequential write (block) 168 MB/s 289 MB/s 289 MB/s

bulky random read (block) 81 MB/s 85 MB/s 85 MB/s

bulky random write (block) 80 MB/s 94 MB/s 94 MB/s

is evaluated by repeating the process of deletion and creation

50 times. For an average file size of 16 KiB, MSC-CT is 2.3

times faster than SC. For an average file size of 2048 KiB, MSC-

CT outperforms SC by 6%. The smaller the file, the better the

throughput. The average file size of the /usr folder in a Linux

filesystem is approximately 12 KiB. The size of photo files ranges

from 1 MiB from 2 MiB. Therefore the experimental results help

infer the enhancement of MSC-CT in terms of widely used files.

Figure 14(b) shows the trend of the gain of MSC-CT on the

aging amount of a filesystem with an average file size of 16 KiB.

For the twentieth aging cycle over the first aging cycle, SC is

degraded by 86% but MSC-CT is degraded by only 17%.

E. Sequential or Bulky I/O

To investigate the effect of sequential or bulky I/Os on MSC-

CT, we performed various experiments, as shown in Table II,

where self-copy denotes the writing of files, that are read from a

storage device, to a different directory on the same storage device.

The video, music, and src benchmarks were performed by a single

file of 2.13 GB, 154 mp3 files of 682 MB, and 25628 Linux

kernel source and object files of 458 MB. We also performed

sequential-random read-write tests both at the filesystem level

using Tiobench and at the block level without a filesystem, where

the request size and the boundary of the random I/O are aligned

in the stripe so that there is no contiguity transform. The stripe

size was set to 512 KiB in this experiment.

MSC-CT shows the same throughput as SC at video self-
copy, music self-copy, and sequential/random read/write, while

SC significantly outperforms PBGC in all of the cases, as shown

in Table II because SC exploits more spatial locality than PBGC.

SC delivers 45% better throughput than PBGC for video self-
copy, and 117% higher throughput than PBGC for src self-copy.

In addition, the MSC driver significantly outperforms the MD

driver. In particular, the best increase in speed of 117% was

achieved for the src self-copy benchmark. Therefore, MSC-CT

employs no disadvantage for sequential or bulky I/Os, and SC

delivers a more efficient performance than PBGC for sequential

or bulky random I/Os.

MSC-CT outperforms SC by 13% for the src self-copy bench-

mark, which sequentially writes a large number of small files.

The src self-copy benchmark produces fragmented writes that are

caused by the pre-allocation scheme used in the ext3 filesystem:
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Fig. 15. By varying Smax
w and Smax

r , CT is applied to a fragmented read and
write with an exponential distribution. The optimal Smax

r and Smax
w should

produce the fastest turnaround time.

when a new disk data block is allocated, a filesystem such as ext2

or ext3 internally pre-allocates a small number of disk blocks

adjacent to the just allocated block in order to expand files in

the future [10]. Hence, there exists pre-allocated, unused, blocks

between files.

The block-level throughput of the MD driver (PBGC) shows

severe degradation because the anticipatory disk scheduler [12],

which is the default disk scheduler of Linux 2.6, does not function

well with the MD driver due to the write-after-read pattern. The

anticipatory disk scheduler expects the read-after-read pattern.

Our MSC driver shows the full throughput of the physical devices

by repairing the problem that the scheduling strategy of the MD

driver interferes with the anticipatory disk scheduler, where we

neither modified nor disabled the anticipatory disk scheduler. The

bulky random write of MSC-CT is better than the bulky random

read because the anticipatory disk scheduler significantly reduces

the average seek distance of writes.

F. Experimental Verification of Smax
r and Smax

w

This section verifies the selection method of Smax
r and Smax

w

that is performed by the repeating stride pattern described in Sec-

tion III-D. The method selects Smax
r and Smax

w as the minimum

stride distance, S, with a normalized turnaround time of less than

1.2.

Figure 15 shows the normalized turnaround time of the disk

ST373454LC, which is shown in Fig. 9(a). The block interval

between sequentially discontiguous blocks is exponentially dis-

tributed, where we use the mean value of 10. We assume that

the stripe size is 128 KiB (= 64 blocks with the 4 KiB block

size), hence there is no stride distance that exceeds 64 blocks

within the 128 KiB stripe. Therefore, we limit the maximum stride

distance up to 64 blocks. CT was performed on the workload by

varying Smax
r and Smax

w . Fig. 9 shows Smax
r and Smax

w that were

selected by the selection method described in Section III-D. Fig.

9(a) with a stride pattern shows the same Smax
r and Smax

w as the

fastest cases shown in Fig. 15 with an exponential distribution.

The parameters, Smax
w and Smax

r , that are obtained by the stride

benchmark by using the stride pattern, are applicable to realistic

workloads.

V. CONCLUSION

Conventional destage algorithms typically focus on when and

what to destage. However, the proposed scheme, MSC-CT, solves

how to efficiently destage fragmented writes. It was found that

a sequentially contiguous write outperforms a sequentially dis-

contiguous write, even if the two types of writes employ the

equivalent seek distance. The stripe cache that manages the cache

in terms of stripe groups converts all writes from the host into

sequentially contiguous or sequentially discontiguous reads for

parity-updates and writes to the disk. MSC-CT generates the rxw-

matrix to destage a stripe and transforms two discontiguous reads

or writes into a contiguous read or write by inserting additional

reads or writes, thereby reducing fine-grained fragmented reads

and writes. MSC-CT exploits the rules for consistency and per-

formance, which enable data to be consistent without filesystem

dependency, data modification, and performance degradation.

Additional reads of the read contiguity transform can assist the

write contiguity transform by the rxw-matrix that separates the

read stage from the write stage in term of stripe. Therefore MSC-

CT is effective to disk arrays with sophisticated fault-tolerant

schemes such as RAID-5, RAID-6, and Hierarchical RAID [41],

which require additional reads to update redundant information. In

such disk arrays, a fragmented write produces a fragmented read,

thereby also obtaining the gain by the read contiguity transform

and the higher possibility of the write contiguity transform.

We have implemented the MSC driver for RAID-5 as a block

device driver of Linux, and compared it with the MD driver that

is a software RAID driver of Linux. We used various types of

workloads that include random writes using Tiobench, multiple

concurrent sequential writes using DBench, sequential writes on

an artificially-aged filesystem, and sequential writes of multiple

small files on an ext3 filesystem. MSC-CT delivers a peak

throughput that is 3.2 times higher than the traditional scheme in

a random workload. In a setup-up for concurrent sequential I/O

using DBench, MSC-CT delivers a peak gain that is 80% higher

than MD. In a sequential write on an aged filesystem with an

average file size of 16 KiB, MSC-CT delivers 180% throughput

gain. Furthermore, in a sequential copy of small files, MSC-CT

shows 2.7 times better throughput compared to MD. MSC-CT

outperforms MD by 45% in a video file copy.

In summary, MSC-CT is a destage algorithm that destages

fragmented I/Os in a RAID controller. MSC-CT is extremely

simple to implement, has low overhead, and is ideally suited for

RAID controllers for random I/Os as well as sequential I/Os. It

was demonstrated that the RAID-5 implementation of MSC-CT

significantly outperforms the existing RAID-5 driver of Linux in

a variety of realistic scenarios.
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