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The four Bell-type entangled coherent states,ual u−al± u−al ual andual ual± u−al u−al, can be discriminated
with a high probability using only linear optical means, as long asuau is not too small. Based on this
observation, we propose a simple scheme to almost completely teleport a superposed coherent state. The
nonunitary transformation that is required to complete the teleportation can be achieved by embedding the
receiver’s field state in a larger Hilbert space consisting of the field and a single atom and performing a unitary
transformation on this Hilbert space.
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I. INTRODUCTION

Since its first proposal[1], a large number of theoretical
and experimental investigations have shown that teleporta-
tion of superposed polarization states[2], superposed one-
particle and vacuum states[3], and continuous-variable light
states[4] can be accomplished. The major obstacle to a dem-
onstration of a complete teleportation for discrete systems
with 100% success probability is that a clear distinction of
four Bell states, a necessary requirement for a success-
guaranteed teleportation, is not possible with linear optical
means[5]. Although this obstacle can in principle be over-
come by various means such as exploiting feedback from
detectors, employing additional degrees of freedom or utiliz-
ing nonlinear optical interactions[6], its experimental real-
ization seems difficult[7].

Quantum teleportation of a superposed coherent state
(known as the Schrödinger cat state), a superposition of two
nonorthogonal coherent states with opposite phases, has also
been studied in the past[8]. Theoretical investigations have
revealed that an interesting feature that characterizes telepor-
tation of a superposed coherent state is that the four “quasi-
Bell states,” four Bell-type entangled coherent states[9], can
be distinguished with a probability approaching unity using
only linear optical devices. The main purpose of this work is
to propose a simple scheme that can perform a near-complete
teleportation of a superposed coherent state with the success
probability and fidelity of nearly 100%. The scheme uses
linear optics except in the state transformation process that
needs to be carried out in the final stage of the teleportation,
where an additional system, an atom, is brought in contact
with the field and the subsequent atom-field interaction is
utilized.

It should be emphasized that, while the teleportation
scheme for continuous-variable light states(in which a 100%
success probability can in principle be achieved through
ideal homodyne detection[4]) is designed to teleport the
quadrature amplitudes of a light field, our scheme takes a
discrete system with the coherent states of opposite phases,
ual and u−al, as the two basis states for a qubit. An input
state for the continuous-variable teleportation is typically a
coherent state, whereas for our teleportation scheme it is a
superposed coherent state.

II. TELEPORTATION SCHEME

The scheme we propose is identical to the standard linear-
optical teleportation scheme, except that Bob’s station needs
to be equipped with an additional system, i.e., a single atom
trapped in a cavity, to perform a state transformation, as de-
scribed later. At the source station, the entangled coherent
state

uClAB = NsualAu− alB − u− alAualBd s1d

is generated, whereA andB refer to the waves that are sent

to Alice and Bob, respectively, andN f=1/Î2s1−e−4uau2dg is
the normalization constant. At Alice’s station, the waveA is
combined via a 50/50 beam splitter with another waveC that
contains an unknown superposed coherent state to be tele-
ported,

uClC = xualC + yu− alC, s2d

where the unknown coefficientsx and y satisfy the normal-
ization conditionCkC uClC=1. The stateuClABuClC is trans-
formed, by the action of the beam splitter, into the state
uClEFB,

uClEFB =
N

2
h− u0lEsuÎ2alF − uÎ− 2alFdsxualB + yu− alBd− u0lEsuÎ2alF + uÎ− 2alFdsxualB − yu− alBd+ suÎ2alE − uÎ− 2alEdu0lFsxu

− alB + yualBd+ suÎ2alE + uÎ− 2alEdu0lFsxu− alB − yualBdj, s3d
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whereE and F denote the waves that exit through the two
output ports of the beam splitter, which lead to the detectors
DE and DF, respectively. Equation(3) indicates that, as has
already been noted[8], the four “quasi-Bell states,”sualu
−al± u−aluald and sualual± u−alu−ald, can be distinguished
by observing which detector,DE or DF, measures an odd or
even number of photons and which detects no photon. The
only indistinguishable case is when both detectors detect no
photon, in which case no distinction can be made between
sualu−al+ u−aluald and sualual+ u−alu−ald. The probability
that Alice’s Bell measurement fails is then given byPF
= zFuk0uEk0uClEFBz2= zCk0uAk0uClABuClCz2 and can easily be
calculated to be

PF = PFsx,yd =
e−2uau2

1 + e−2uau2
ux + yu2. s4d

This is negligible for sufficiently largeuau.
After being informed of Alice’s Bell measurement result,

Bob needs to perform an appropriate transformation on the
field stateB to complete the teleportation. If detectorDE
detects no photon and detectorDF measures an odd number
of photons, corresponding to the first term of Eq.(3), then
Bob need do nothing and the teleportation is achieved. If
detectorDE measures an odd number of photons and detector
DF detects no photon, corresponding to the third term of Eq.
(3), then the unitary transformations−1da†a brings the state of
the fieldB to the original state.

The difficulty arises when either of the two detectors mea-
sures a nonzero even number of photons, because then a

nonunitary transformation is needed. This nonunitary trans-
formation can be accomplished approximately by applying a
unitary transformation that displaces the state by an appro-
priate amount[10], or probabilistically by performing tele-
portation repeatedly with entangled ancilla photons until the
desired transformation is reached[11]. We show in the next
section that one can perform the required nonunitary trans-
formation successfully with a high probability by bringing an
additional system, a single atom trapped in a cavity, in con-
tact with the field to be transformed and utilizing the inter-
action between the field and the atom.

III. STATE TRANSFORMATION

Let us consider the case when detectorDE detects no pho-
ton andDF measures a nonzero even number of photons. The
transformation needed isMsxual−yu−ald⇒ sxual+yu−ald,
where M is the normalization constant fM
=1/Î2suxu2+ uyu2d−1g. In order to achieve this transforma-
tion, we allow the field to interact with a single two-level
atom prepared in its lower levelugl. We assume that the
atomic transition between the upper leveluel and the lower
level ugl is resonant with the field frequency. The state of the
system, atom +field, at the initial time,t=0, is ucst=0dl
=Muglsxual−yu−ald. The state at a later timet.0 is given,
under the rotating-wave approximation, by the solution of
the Jaynes-Cummings model, provided that spontaneous
emission and the cavity decay can be neglected. We then
obtain, for the fidelity of the field state at timet with respect
to the desired statesxual+yu−ald,

Fsx,yd = sx*kau + y*k− audrsxual + yu− ald = uMu2e−2uau2HUo
n=0

` uau2n

n!
fuxu2 − uyu2 + 2s− 1dni Imsxy*dgcosSÎng0t

2
DU2

+ Uo
n=0

` uau2n+1

În ! sn + 1d!
ux + s− 1dnyu2 sinSÎn + 1g0t

2
DU2J , s5d

wherer is the reduced density operator of the field at timet,
and g0 is the single-photon Rabi frequency. The fidelity
Fsx,yd depends uponx andy as well asa andt. In Figs. 1(a)
and 1(b), we show the fidelityF we computed as a function
of time for the casea=5 and for x=y=1/Î2s1+e−50d
.1/Î2, and x=Î2y=Î2/s3+2Î2e−50d.Î2/3, along with
the probabilityPe at timet that the atom is found in its upper
level uel. It is seen thatF and Pe show similar temporal
behavior. The time at whichF takes on the largest value is
given roughly byt.p / uaug0, as long asuau is not too small
suau*3d. Figure 2 showsFst=p / uaug0d, the fidelity F at t
=p / uaug0, as a function of a for the case x=y

=1/Î2s1+e−2uau2d (whenuClc is the even coherent state) and

for the casex=−y=1/Î2s1−e−2uau2d (when uClc is the odd

coherent state). It is seen that, asuau becomes larger, the
fidelity at t=p / uaug0 becomes close to unity. We note that the
fidelity Fst=p / uaug0d varies slowly with respect tox and y
for uau*1. For example, the plot forFst=p / uaug0d for the

case x=Î2y=Î2/s3+2Î2e−50d and for the casex=−Î2y

=Î2/s3–2Î2e−50d is almost indistinguishable from Fig. 2. It
should be remarked that, when we fix the values ofa, x, and
y and follow the time variation of the fidelityF, the maxi-
mum valueFmax occurs at the time very close to but not
exactly equal top / uaug0. Thus, the actual maximum value
Fmax of the fidelity is slightly greater than the valueFst
=p / uaug0d that Fig. 2 indicates. The difference, however, is
negligibly small if uau*3. One can conclude that, as long as
uau is not too smallsuau*3d, the transformation of the field
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state fromMsxual−yu−ald to sxual+yu−ald can be achieved
with high fidelity by allowing the field to interact with a
single two-level atom in its lower level and waiting for a
time of p / uaug0 (i.e., waiting until the atom is excited). At
this instant, if one wishes, one can measure the state of the
atom, decoupling the atom from the field, and confirm that
the atom has indeed been excited.

When detectorDE measures a nonzero even number of
photons and detectorDF detects no photon, Bob needs to first
apply the unitary transformations−1da†a to the field state and
then allow the field to interact with a single atom as de-
scribed above.

We remark that, as our analysis of the atom-field interac-
tion neglects spontaneous emission and the cavity decay, the
successful operation of our scheme requires a setting in
which coherent atom-field interaction dominates dissipation.
Specifically, it requiresÎn̄g0@g and În̄g0@ n̄k, where n̄
s=uau2d is the average photon number in the field,g the spon-
taneous decay rate of the atom, andk the cavity field decay

rate. We call attention to the factorn̄ on the right-hand side
of the second inequality, which arises because the super-
posed coherent state interacting with an atom in a cavity
decoheres fast into a statistical mixture in time,1/n̄k
[12,13]. Because of this factor, strong coherent fields cannot
be used in our scheme. As an example, let us take the ex-
perimental parameters,g0/2p=47 KHz, tsp=1/g=30 ms,
tc=1/k=1 ms, quoted in a recent cavity quantum electrody-
namics (QED) experiment with circular Rydberg states of
rubidium atoms in a millimeter wave super-conducting high-
finesse cavity[14]. The first inequality is easily satisfied, but

the second inequality requiresÎn̄!g0/k<300, i.e.,n̄!105.
If we take g0/2p=32 MHz, g /2p=2.6 MHz, and k /2p
=4 MHz from an experiment[15] conducted in the near-
infrared regime with cesium atoms trapped in a far-off-
resonance trap, the first inequality requiresÎn̄@g /g0

<0.081, i.e.,n̄@0.066, and the second requiresÎn̄!g0/k
=8, i.e., n̄!64.

IV. AVERAGE FIDELITY

We now wish to calculate the average fidelity of the entire
teleportation process. The average fidelityFav can be defined
as

Fav = o
i=1

5

Pisx,ydFisx,yd, s6d

where P1, P2, P3, P4, and P5 represent, respectively, the
probability that the number of photons measured by detec-
tors sDE,DFd, is (0,odd), (odd,0), (0,nonzero-even),
(nonzero-even,0), and (0,0); Fi denotes the fidelity of the
field stateB with respect to the original state of Eq.(2),
obtained after an appropriate transformation performed ac-
cording to the result of Alice’s Bell measurement; and the
bar on the right-hand side indicates averaging over the un-
known coefficientsx and y. It is clear thatP1=P2= 1

4, P5

=PFsx,yd [see Eq.(4)], P3=P4= 1
4 − 1

2PFsx,yd, F1=F2=1,
and F3=F4=Fmaxsx,yd, where the actual maximum value
Fmaxsx,yd of the fidelity of Eq.(5) can be replaced byFsx,yd

FIG. 1. The fidelity F (solid
curve) of Eq. (5) and the excita-
tion probability Pe (dotted curve)
as a function of time for the case
a=5 and(a) x=y=1/Î2s1+e−50d,
(b) x=Î2y=Î2/s3+2Î2e−50d.

FIG. 2. The fidelityFst=p / uaug0d as a function ofuau for the

casex=y=1/Î2s1+e−2uau2d (solid curve) and for the casex=−y

=1/Î2s1−e−2uau2d (dotted curve).
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at time t=p / uaug0 if uau is sufficiently large. We can also
calculate easilyF5 and obtainF5=fs1−e−2uau2d /2gux−yu2. In
order to perform averaging overx andy, it is convenient to
express the stateuClc of Eq. (2) in orthonormal bases. We
choose to express it in terms of even and odd coherent states
uael and uaol [16] as

uclC = sin
u

2
uaelC + cos

u

2
eifuaolC. s7d

The probabilitiesPi and the fidelitiesFi can be expressed as
a function of u and f, and Pisu ,fd and Fisu ,fd, and the
averaging can then be performed according to

Fav =E
0

2p

dfE
0

p

sin uduo
i=1

5

Pisu,fdFisu,fd. s8d

In Fig. 3, we show the average fidelityFav, as a function of
a, that we computed using the Monte Carlo method, where
the solid and dotted curves are obtained by using the actual
maximum valueFmax andFst=p / uaug0d, respectively, for the
value of the fidelity F3=F4=Fsx,yd. Compared with the
standard linear optical scheme of teleporting a superposed
polarization state, where a beam splitter and two polarizing
beam splitters are used for Bell-state measurements, in which
case the average fidelity is given by56,1 the present case
yields a higher average fidelity foruau*1.33. If uau is not too

small, the average fidelity is close to unity(for example,
Fav=0.955 atuau=3), and for reasonably largeuau, Fav can be
regarded as practically equal to 1.

V. DISCUSSION

In this section, we remark on the issue concerning experi-
mental realization of our proposed scheme. The scheme re-
quires generation and manipulation of the entangled coherent
state, and photodetection that distinguishes between even
and odd photons, all of which are highly demanding experi-
mentally. There have, however, been suggestions and propos-
als that would help to overcome the difficulties. The
entangled coherent state of Eq.(1) can be generated
by illuminating a 50/50 beam splitter with a superposed
coherent stateuÎ2al− u−Î2al through one of the input ports.
The superposed coherent state can in turn be generated by
exploiting nonlinear interaction between a coherent state
field and atoms[13,18], or by means of a conditional mea-
surement on a beam splitter[19]. Discriminating even to odd
photons requires in principle detectors with single-photon
resolution that can distinguish betweenn andsn+1d photons.
Visible light photon counters have recently been constructed
that can distinguish between no photon and a single photon
with a quantum efficiency exceeding 70%[20], and that can
distinguish between a single photon and two photons with a
quantum efficiency of 47%[21]. Using such counters in an
arrangement of detector cascades[22] or N-ports[23], it is in
principle possible to distinguish betweenn and sn+1d pho-
tons. It has also been suggested thatn andsn+1d photons can
be distinguished by utilizing homodyne detection looking at
the imaginary quadrature[11], or by coupling the field to a
two-level atom through nonlinear interaction[24]. Our
scheme also requires the superposed coherent state to enter
the cavity without destruction. This represents another ex-
perimental challenge, because the superposed coherent state
is in general highly fragile.

In conclusion, we have shown that a near-complete tele-
portation of a superposed coherent state is possible using
only a linear-optical scheme and an atom-field interaction.
The average fidelity of the proposed scheme exceeds that of
the standard linear-optical scheme for teleporting a super-
posed polarization state, as long asuau*1.33. We mention as
the last remark that another advantage of the teleportation
scheme using coherent state qubits is that, compared with
schemes based on other types of qubits such as polarization
qubits, it is in general more robust against amplitude errors
that can occur during generation or transmission of entangle-
ment [25].
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1When the Bell-state measurement is successful, which occurs
with the probability of1

2, the fidelity is 1. When it is not, which also
occurs with the probability of12, the maximum possible fidelity
averaged over the unknown coefficients after a bit-flip operation by
Bob is 2

3, being equivalent to the case when Alice and Bob are
connected only by a classical channel[17]. The average fidelity is
thus given by1

2 31+ 1
2 3

2
3 = 5

6.

FIG. 3. The average fidelityFav as a function ofuau. The solid
and dotted curves representFav computed using, for the value of
F3=F4, the actual maximum valueFmax and the value of the fidelity
at t=p / uaug0, respectively.
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