772

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.3 MARCH 2006

[PAPER

A Plan-Generation-Evaluation Framework for Design Space
Exploration of Digital Systems Design

Jun Kyoung KIM'®, Student Member and Tag Gon KIM'™, Nonmember

SUMMARY Modern digital systems design requires us to explore a
large and complex design space to find a best configuration which satis-
fies design requirements. Such exploration requires a sound representation
of design space from which design candidates are efficiently generated,
each of which then is evaluated. This paper proposes a plan-generation-
evaluation framework which supports a complete process of such design
space exploration. The plan phase constitutes a design space of all possible
design alternatives by means of a formally defined representation scheme
of attributed AND-OR graph. The generation phase generates a set of can-
didates by algorithmic pruning of the design space in an attributed AND-
OR graph with respect to design requirements as well as architectural con-
straints. Finally, the evaluation phase measures performance of design can-
didates in a pruned graph to select a best one. A complete process of cache
design is exemplified to show the effectiveness of the proposed framework.
key words: design space exploration, plan-generation-evaluation frame-
work, graph pruning, attributed AND-OR graph

1. Introduction

The progress of silicon technology enables us to implement
a highly complex system on a given chip area. The design of
such a system requires the exploration of large design space
not only for functional verification but for performance mea-
surement. The most important factor in such a design is an
efficient design framework which meets the time-to-market
requirement. Thus, required is a design framework and an
associated tool which can reduce cost of design space explo-
ration. Such cost includes the design time for construction
of a set of design candidates and the evaluation time for cor-
rectness verification and performance measurement.

Design space exploration mainly consists of three
phases: plan, generation and evaluation. The plan phase
constructs a design space of a family of design alternatives
which includes architectural variants and different parame-
ters for a given architecture. The generation phase gener-
ates feasible design candidates from the design space. Fi-
nally the evaluation phase evaluates the generated candi-
dates. Thus, a reduction of the cost of the design space ex-
ploration requires each of the three phases to be performed
in an efficient manner.

Much research has been done to attack on the design
space exploration problem. However, most of them dealt

Manuscript received June 16, 2005.
Final manuscript received November 22, 2005.

"The authors are with the Department of Electrical Engineer-
ing and Computer Science, Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Korea.

a) E-mail: jkkim @smslab.kaist.ac.kr
b) E-mail: tkim@ee.kaist.ac.kr
DOI: 10.1093/ietfec/e89-a.3.772

with efficient generation of design candidates [1]-[3] and
fast evaluation of each candidate [4], [S]. Most of them deals
with the design space construction problem as just a param-
eterization one, with which a designer can vary some fixed
parameters [6] and the degree of parameterization is totally
decided by the tool builder. Schemes or algorithms can not
be extended easily with the approach unless they are con-
sidered in the first design. In other words, they have limited
extendibility due to the lack of expression power on archi-
tecture parameterization.

Binary Decision Diagram (BDD) is an approach to the
solution space representation, which is a set of valid config-
urations [7]. Possible values for a parameter are encoded as
a sequence of binary value. By configuring the resulting bi-
nary variables, explorer can get a set of valid configurations.
However, it is hard to represent the and-rule, which can be
called as a decomposition rule, with the approach. More-
over, we can not obtain the hierarchical framework without
the and-rule, which is very important in complex digital sys-
tems design.

This paper proposes a plan-generation-evaluation
framework for efficient design space exploration of digital
systems design, with an emphasis on design space represen-
tation in the planning phase. The main goal of the repre-
sentation is two folds: representation in formal semantics
and expressive power of design alternatives. To meet such a
goal, a formalism of attributed AND-OR graph (AAOG) is
defined for design space representation. The AND and OR
relations in the graph can represent not only a collection of
components (AND relation) to form a system but variants of
alternatives (OR relation) to be used for a given component.
Moreover, attributes attached at such relations can represent
ranges of parameters and constraints on selection of a set of
alternatives located at different sub-modules.

AND-OR graph is a general tool for representation of
information structure with alternative entities for which a
search is performed to find an optimal solution. Basic defi-
nition of AND-OR graph can be found in [8] and some opti-
mal search algorithms for such graph are found in [9], [10].
The basic AND-OR graph definition has been extended to
adapt different applications which include floorplanning at
digital system design [11], model checking./testing [12],
network modeling [13], assembling /disassembly line mod-
eling [14], and others. This paper extends the general AND-
OR graph to Attributed AND-OR graph with an attempt to
support “design space exploration” of digital systems. The
main purpose of our graph is to express alternatives for ar-

Copyright © 2006 The Institute of Electronics, Information and Communication Engineers

KIM and KIM: A PLAN-GENERATION-EVALUATION FRAMEWORK FOR DESIGN SPACE EXPLORATION

chitectural components as well as parameter values for de-
sign space representation. The main differences between our
AAOG and existing ones are: (1) AAOG does not represent
cost within the graph, which is evaluated by simulation; (2)
Multiple AND-relation is represented to model a number of
identical components as a subsystem of a system; (3) At-
tributes are attached to a vertex, the values of which repre-
sent parametric design space; (4) A set of constraints is at-
tached to a vertex which defines valid combination of com-
ponents to form a (sub)system as well as holds designers’
knowledge for a system under design. In the above sense,
the proposed AAOG is a new one which has not been previ-
ously used for the design space exploration problem in dig-
ital systems design.

The similar approach has been reported in [15] which
proposed a relational algebraic framework for VHDL mod-
els management. The framework employed SES (system en-
tity structure) formalism [16] to represent a family of VHDL
models and supported an associated tool for models man-
agement which was implemented in a relational database
system. However, the framework focuses on a specific sim-
ulation tool, the VHDL simulator, rather than design space
exploration. Our work here explicitly defines the plan, gen-
eration and evaluation steps which are inevitable to design
space exploration. Also, our work supports not only man-
agement of the design entities as in [15], but also design
of a new algorithm or a system. To this end, we divide a
design space in two sub-spaces: operational design space
and structural design space. Configuration of algorithmic
parameters at the operational design space, and then synthe-
sis of the configuration at the structural design space help
to reflect new algorithms or introduce new processing ele-
ments. Thus, the framework proposed in this paper can be
more design-centric.

2. Proposed Framework

Figure 1 shows the design space exploration employing
plan, generation and evaluation framework. Functional re-
quirement enables us to make a set of designs/models, which
we call functional design space. Technology requirement
enables to check the variability of the models against it.
Then the realizable set of models which comply with func-
tional/technology requirement constitute the design space.
This is plan phase. At generation phase, one can decrease
the design space with the user constraints, which reflect the
designers’ knowledge. The resulting design space is called
a pruned design space. With the model base which contains
the operation of models, model synthesis is performed. To
evaluate, all the models are compiled with the simulation
library and the evaluation is performed by running the re-
sultant simulator.

The three steps are tightly coupled but what schemes or
algorithms are used in each step does not affect one another.
For example, the form or semantics we use to represent a
design space does not constrain the generation algorithm as
in Fig. 2.

773
External Input Design Space Exploration Process
(Functional Requirement)—-(Functional Design Spaﬁe)
4
(Technology Re quirement)—’| Realizability Test | Plan
i
(Realizahle Design Space)
. ¥ —
Domain Experts’
(Constraints } | Prline |
- Generation
(Reduced Design Space)
T —
S ———
'l Model Synthesis |
]
(Model)
¥ Evaluation
| Evaluate
!)
(Result J]

Fig.1 Proposed framework.

| Design Space 1 Generation Algorithm 1 Evaluation Scheme 1 |

| Design Space 2 Generation Algorithm 2 Evaluation Scheme 2 |

| Design Spacen Generation Algorithm n Evaluation Scheme n |

Fig.2 Free combination of each step.

Analytic Model I - i> | Estimation I
XR? Model |3 :’>| XR? Simulator |

SimpleScalar SimpleScalar
Configuration - :> Simulator

SystemC Model ||:f‘>| SystemC Simulator |
HDL Model I |::’L>| HDL Simulator I
Model Synthesis

: - T
Genetic Algorithm \‘."i
Simulated Annealing %g:e

LN

[Taboo Search

Generation Evaluation

Fig.3 Objective-driven generation-evaluation combination.

Figure 3 shows this property more obviously with the
relation between generation and evaluation. If a designer
needs short evaluation time, he or she can possibly adopt the
analysis method for the evaluation scheme. If the designers’
main concern is the performance of processor architecture,
Simplescalar or XR2 simulator [17] is adequate. A designer
has only to modify the model synthesis routine. It does not
affect what kind of pruning algorithm such as genetic algo-
rithm, simulated annealing, or taboo search, will be used.

3. Representing Design Space
Attributed AND-OR

3.1 Representation Formalism:
Graph

Attributed AND-OR graph expresses the design space of
any structure by using the AND-rule and OR-rule. An
AND-rule implies a decomposition relation between design
entities. OR-rule defines the selection or specialization re-
lationship between design entities. The attributed AND-OR
graph is formalized as follows.

Figure 4(a) is an example of a design space of a digi-
tal system. A digital system is assumed to consist of three
components: proc, peripherals and memory_subsystem.

774
total_system - Havard
. i hani.ns!cnnel 1= ——-[Legend] - -~
peripheral E— 1 |
HO | Py | e | 1 ABC model ABC |
proe FR | it | ko consists of

memory i b—
subsysiem 1 E A,Band C |
System H vonNeuman 1 0
frr—— : 1 modclABcanl
H % P|L_cache | | "4 |be realized |
Icon:_wo_wchel }:one_w_cac]wl‘j“ core 1 |AB] using either |
" 1 "A orB |

searsssessesnssresnnnsnech [
X I
l data_core] Idata_i.ust_mre]
(a) Digital System
® :and-relationship
total te:
system P : or-relationship
| ® i
proc peripheral memory_subsystem

r—é——j

core_wo_cache core_w_cache

.

mem_wo_cache mem_w_cache

&

I 1
vonNeuman Havand

- S

core cache data_inst core dcache icache

e

data_core data_insi_code

(b) Attributed AND-OR Graph for Digital System Shown at (a)
Fig.4 Attributed AND-OR graph.

Two kinds of core, core_wo_cache and core_w_cache, are
available for the proc entity. Core with on-chip cache,
core_w_cache, has different forms depending on the inter-
nal structure. Harvard architecture has separate on-chip
cache for instruction and data. On the contrary, only one
on-chip cache can exist at vonNeuman. data_core is a core
that sends only data address to the cache component, and
data_inst_core sends both data address and instruction ad-
dress to cache component.

Figure 4(b) is the attributed AND-OR graph represen-
tation of digital system shown in Fig.4(a). The relation
connected with indicates OR-relation and the relation con-
nected with AND-relation. total_system consists of three en-
tities, proc, peripheral and memory_subsystem. In the case
of proc entity, there are two candidates, core_wo_cache and
core_w_cache. core_w_cache can be implemented to von-
Neuman or Harvard. The design space of a digital system is
formally represented in this way.

A vertex can have attributes. For example, word_size
can be attached to the proc entity as a parameter. Let’s as-
sume that the value, 16, 32, 64, is possible for the word_size.
Then, the word_size is defined as following by definition:
{(word_size, 16), (word_size, 32), (word_size, 64)} Together
with OR-relation, parameters constitute the design space of
a target system.

3.2 Embedding Pre-Constructed Design Space

While planning, a designer may need to embed a pre-
constructed design space. To use the mechanism, a designer
has only to specify the following:

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.3 MARCH 2006

Havard

| $ |

dcache data_inst_core icache

cache_operation

—&—

read_opn write_opn

tppe feache_operation] tppe :fcache_operation|
prefivd_ pyefm i

Attach and
Rename

-_——

Havard

| ¢ !

d_cache_operation data_inst_core 1_cache_operation

—— —e—

d_read opn d_wnte_opn i_read opn i write_opn

Fig.5 Embedding pre-constructed design.

e nodes to use pre-constructed design space

o what kind of design space will be embedded

o the prefix used to differentiate the children nodes from
the other nodes

Figure 5 shows a scenario of embedding the cache de-
sign space into Harvard architecture shown in Fig.4. We
assume that the cache design space is already constructed
and verified while previous systems design. Then, the cache
itself is independent of external environment. If a designer
keeps the rules for interface for cache design space, he or
she can take the cache design space freely into any designs
that require cache. This scheme is used for Sects. 6 and 7.

3.3 Semantics for Constraint in AAOG

One can specify the constraint relationship for a vertex, or
a combination of vertices. Constraint relationship is defined
as follows

The first thing one can do with the constraint specifi-
cation is to declare the physically possible combination of
the vertices which constitute the design space. More impor-
tantly, one can reflect his/her own knowledge base to reduce
the design space. For example, let’s assume that a designer
does not want to use the core_wo_cache design entities after
analyzing the target application. Then, it is expressed in the
following form:

const(core_wo_cache) = false

Another situation tells that core_wo_cache is not se-
lected with mem_wo_cache. Then, we can express this con-
straint with the following manner:

const(core_wo_cache, mem_w_cache) = true

To investigate the effect of the constraints to design
space, let’s assume the design space problem as parameteri-
zation one. If the number of parameters is m and the number
of candidates for each parameter is n, and all the parameters
are independent of one another, then the number of design
candidates becomes n”', which is often too many to explore
all the candidates. Let’s assume that there is an expert about
the system or application. He or she may fix a parameter
to one value based on his knowledge or experience. Then

KIM and KIM: A PLAN-GENERATION-EVALUATION FRAMEWORK FOR DESIGN SPACE EXPLORATION

the number of design candidates reduces to #"~!. One of
ultimate goals of this work is to provide means with which
experts can store and reflect hisher own design knowledge
or experience obtained during real design work in the form
of constraints.

4. Generation

Figure 6 is an algorithm to compute all the candidates from
design space in attributed AND-OR graph. It works in post-
order. Post-order search guarantees that the design candi-
dates set of the child node is available when we compute the
candidates of a parent node. The entity nodes are classified
into three types, leaf node, parent node of AND-relationship
and parent node of OR-relationship. Firstly, when this algo-
rithm meets a leaf node, it does nothing and just returns.
When this algorithm meets the parent of OR-relationship,
the node makes its own candidate set by performing union
of the children’s candidate set. Lastly, when the algorithm
meets a parent of AND-relationship, it computes the par-
ent’s candidate set by performing cross product of children’s
candidate set

This procedure is well-described in Fig.7, which
shows the read operation of cache. The read operation
read_opn is composed of five operations, address_match,
update_candidate, replacement, data_fetch and line fill.
There are three specialization children nodes for the up-
date_candidate and four specialization children nodes with
replacement.

Algorithm
input : nd of type node;
given : each node has its container cand_set to hold candidates
begin
Jor all the children c, of node nd begin
compute_candidate(c,); /* post-order search */
end for
if (nd is a leaf node) return;
else if (nd is a parent of OR-relation) begin
Jor all the children cf begin
nd.cand_set € nd.cand_set U({(nd.namd, c,name) }x c,cand_set)
end for
else if (nd is a parent of AND-relation) begin
Jor all the children cl, 2, ., ¢f begin
nd.cand_set €[]}, (c.cand_set Uf(ndname, c name)})
end for
end if
end

computeCandidate(nd)

Fig.6 Algorithm for candidates generation.

firead_opm, address _mmatch)20
(UHIOHApdate_candidate cand list {iTead opn, update_candidate 13 2
(UHIOMiTeplacemm ert card lict {iTead opm, Teplacervnt’y}) 20

{lread_opm, data fetch} 20 (UHIOHlne AT).cand lict {(read opm, line file)ih

775

Figure 7 shows that the candidate list of up-
date_candidate is (update_candidate, hist_update), (up-
date_candidate, fifo_update), (update_candidate, freq-
update). The candidate set of the root node of this graph
is shown somewhat mathematical representation. That im-
plies that the candidate set of read_opn is the cross product
of all the children’s candidate set. We will not describe the
evaluation here because it depends on the evaluation tool.
Instead, we will show the case where the SystemC simula-
tion environment is adopted for evaluation step in Sects. 6
and 7.

5. Implementation of Proposed Framework

Figure 8 shows the proposed framework. We used XML
(eXtensible Markup Language) to specify all the contents
of attributed AND-OR graph including constraints. XML
is a markup language for documents containing structured
information. Structured information contains both contents
and some indication of what role that contents plays [18].
We used XML because it is easy to describe hierarchical
data structure in XML.

Design entities in XML go through Expat XML parser
to be data structure, which in turn is translated to the SQL
queries. Through MySQL++, which is a library with which
our framework can communicate with MySQL server, de-
sign entity in data structure is stored in MySQL server. Once
it is stored to the database, any one in any place can connect
with it to obtain or update the design space.

To generate feasible designs, the design space explorer
receives user specification and constraints. Firstly, de-
sign space explorer fetches all the necessary entities from
MySQL server via MySQL++ library and reconstructs the
design space. By performing pruning/searching, our de-
sign space explorer can obtain a set of SystemC models.

Design Entity
in L

User Constraints

Result &
Configuration

- ooy
SystemnC Compilatio

Fig.8 Implementation of framework.

read_opn

UMIOH(, b= { fc Ub}|forallc = a}

ipxdate copadidate, carad st =

= figadate_corudidate, Fost wpadde)i
adﬂmss—mauh “Pdate—cmaateifme copadidate, fife_wpdme)i

| | d}, lsmi:xe}mme ﬁwq:wm)}'[i EB freplacenenn, ifu) }

Iru fifo

hist_update fifo_update freq update

et camd_list =
replasenent cand st = { | | dre il cand Jist = £

replacemengl Fiaanas, bu)i data_feich line fill ;500 75 reg dza firsn:

ftreplacemers, fifoly

;|I-\ {ihine AL req_data last)i }

Ifu req data first req data last

Fig.7 Computing all the design candidates from design space in AAOG.

776

SystemC compilation enables to obtain SystemC simulator.
This is generation phase. Lastly, evaluation is done by run-
ning the resultant SystemC simulator. All the processes are
designed so that it works in a fully automatic way without
designer’s intervention. The environment and the package
used are listed below:

WindowXP on Pentium4 3.0 GHz, 1 GB memory
Compiler: Microsoft Visual Studio 6.0

Evaluation tool: SystemC simulation environment
XML parser: Expat 1-95-7

Back-end DBMS: MySQL 4.1.14

Library for connection with MySQL: MySQL++-
1.7.1-1-win32-vc++

6. Example and Experiment: Cache Operation

In this section, we will give the cache operation example
to investigate how one can construct a design space with
the proposed methodology. Then, we will give the evalua-
tion result of our framework. Cache is a good example for
design space exploration because it has various parameters
and schemes. We considered the following parameters and
schemes.

e Mapping: direct-mapped, 2-way/4-way/8-way/16-way
set associative mapping, fully associative mapping
Cache size: 4K/8K/16K/32K/64K-bytes

Line size: 4/8/16/32/64/128-bytes

Line fill scheme: request data first, request data last
Replacement scheme: LRU (least recently used), LFU
(least frequently used), FIFO (first-in, first-out)

We wrote down all the components that constitute the
cache operation and the resulting design space in attributed
AND-OR graph is given in Fig. 9. We can divide the design
space into two component, one from the OR relationship and
the other from the parametric design space. In this example,
the number of design candidates due to OR-relationship, de-
noted as NOR, is 6 because there are selection constraint
between update_candidate and replacement. To use LRU,
hist_update of update_candidate should always be chosen.
The same relationship exists between fifo and fifo_update.
For Ifu, freq_update should be chosen. This is specified in
constraints. Therefore, NOR is 6, not 18. Compared to that,
the parameters can be freely combined. The number of de-
sign candidates due to parametric design space, denoted as
NPARAM, is 180. Therefore, the total number of design
space is 6 * 180 = 1080 because the design space due to

cache_gerati on

1
write_opn

[I I 1
data_write update_candidate replacement address_match

e

I
read_opn

Ammmm———

Refer to Figure 7 Refer to Figure 7

Fig.9 Design space of cache operation in AAOG.

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.3 MARCH 2006

OR-relationship and that due to parameters are independent
of each other.

6.1 XML Description

Figure 10 describes the XML specification of the read_opn
node that we can see in Fig. 7. It defines the interface, states,
children and action. The content in the action is copied to
the SystemC model as a function. One can easily understand
the action of read_opn with the action component. It uses all
the children nodes as functions. Therefore, we can think of
this as a coupling strategy.

Figure 11 is XML specification of replacement scheme,
which also appears in Fig. 6. Instead of the action section
of AND-relationship, there is mapping section at the OR-
relationship specification. With the mapping section, one
can specify how the interface defined for the parent node is
mapped to the interface of the children nodes.

As will be explained at Sect. 6.3, one entity is trans-
formed to one SystemC function in this abstraction level.
Within the process, the sequence of the function argument
should be decided based on these XML model. The order of

<operation name = "read_opn">
<input name = "address" type="bitvector" width = "32"/>
<putput name = "data" type="bitvector" width ="32"/>
<input name = "unit_transfer" type ="bitvector" width ="2"/>
<state name = "hit" type="hool"/>
<state name = "slot" type="integer"/>
<state name = "setIndex" type="integer"/>
<and_rdation> <child name="address_match"><{child>
<child name = "update_candidate"></child>
<child name = "replacement" > </child>
<child name = "data_fetch"></child>
<child name = "line_fill"></child>
<fand_rdation>
“action>
<I[CDATA[
slot = address{addr_wadth-tag_wadth-1, byte_sel)to_umt();
address_match(hit, address, slot, setlndex),
1f{1hut) { repl acement(address, slot, setlndex);
line_fill{address, slot, setlndex); }
data fetch(), update candidate{address, slot, setlndex),
1=
<faction>
</operation>

Fig.10 XML specification of reand_opn node.

<operation name = "replacement" >
<input name ="address" type ="bitvector' width ="32"/>
<oputput name ="slot" type ="integer"/>
<output name = "setIndex" type =" integer"/>
<or_relation> <child name ="1Iru"/>
<child name ="1r"/>
<child name ="Ifu"/>
</or_relation>
<mapping>
<I[CDATA]
(this.address, Iru address)(this slot, lru.slot)this setIndex, lru setIndex)
(this.address, fifo address)(this slot, fifo slot)(this. setIndex, fifo. setIndex)
(this.address, Ifu address)(this slot, 1fu.slot)(this setIndex, 1fu.setIndex)
1=
</mapping>
</operation>

Fig.11 XML specification of replacement node.

KIM and KIM: A PLAN-GENERATION-EVALUATION FRAMEWORK FOR DESIGN SPACE EXPLORATION

nysql> select * from decomp;

+
i arch ! relation | ent i type I oprefix |

+
i cache_operation | and i read_opn i (hull> | <pulld
i cache_operation | and I write_opn P (hull) ¢ <nulld
i read_opn i and i address_match P (null) & <(pulld>
i read_opn i and i data_fetch P Cnull) § o <nulld
Vo3 e " oana Vrion ez2an R N S T R

(a) and-relation

Elvlys(,[l} select * from spec;

I ent i relation | arch i type i prefix 1|
! update_candidate | o» i freq_update P Coulld | <(nulld> §
I update_candidate | o» i hist_update P (hulld | C(nulld> i
i revlacement i or i 1fu i (null> § <(pulld i

(b) or-relation

Fig.12 And-relation and or-relation in database table.

------------------ — - e

! type t width | ord

I add match

s ! bitvector ! 32 1 11
| address_match 1 slot I integer 1 Coulld 2 1 Cnull) | <oulld § Coull) d
| cache_operation | address ! bitvector ! 32 H 1 1 (null) § <pull) ! Caull)
! cache_operation | req { bool 1 Caulld 4 1 Coulld | Caulld ! CnullD)
! cache_operation | ru 1 bool 1 Coulld> @ 1 Coulld> | Coulld 1 Coull) 3
! cache overation ! unit transfer ! bitvector ! 2 i 2 1 <oull)> | Cpulld § Caull) 3
(a) Input table

nysql> select * from output;

i ent ! outName | type ! width 1§ ord | dim ! dindex1l ! index2 !
! address_match | hit ! hool t <oulld 8 ! (oull) ! <null) ! <null)
i address_match | setlndex ! integer <oulld i 3 1 <oull) § <oull> § <oulld 8
i freq_update | setlndex ! integer i <oulld 2 ! (oull) ! <oull) ! <null)
i freq_update i slot i integer i <oulld i 1 3 <oull) § <oull> | <oulld
i 1fu ! setlndex ! integer i <nulld i 2 ! <oull) § <null) ! <null)
L P ! catlndav ! inteaen ! (anll) 2 ! (onll) ! faull) ! Canll) !

(b) Output table

ysql> select % from inout;

‘

il ent i outName | type i width | ord | dim i dindex1l | index2 1

%l cache_operation ! data ! bitvector ! 32 i 3 1 (oulld | (nulld | CaudlD
(c) Inout table

Fig.13 Interface tables.

interface declaration will determines the formal argument
of the function. Therefore, a designer should be careful in
declaring interface.

6.2 Design Entities in Database

The design entities described in XML are stored to database.
There are 15 tables in the database each of which stores and-
relation, or-relation, input, output, inout, etc. In this section,
we will show how some tables hold the information of de-
sign entities.

Figure 12 shows the MySQL snapshot of and-relation
and or-relation. Table named decomp implies the and-
relation. There are 5 columns with decomp table. The first
one is the name of parent node, the second one the rela-
tion. The third column is the child name. We can know
that there are two children, read_opn and write_opn, for
cache_operation node. The last two columns are used when
importing other design space. Type specifies what design
space will be imported, and the prefix is specified to rename
all the nodes attached below. or-relation is specified in the
similar way.

Figure 13 shows the input, output and inout relation.
The first row implies that address_match entity has input

ysql> select ent, st. type, width. dim, indexi. index2 from state;

! ent ! st ! type ! width ! dim ! dindex1 ! index2 !
i cache_operation i readHitCount i integer i C(null) HECTS SORERE TS § PRI CYYS § PO
! cache_operation ! readMissCount | integer I <pulld I Cnull> 1 <pulld i (hull) |
! cache_operation ! tag ! bitvector ! tag_width ! 2 ! nun_line ! assoc !
! cache_operation ! use ! hool ! Coulld t2 ! nun_line ! assoc !
i cache_operation ! uriteHitCount | integer i Cnull> HIECTS SORERE TS PRI CINS § P
! rache anewation | uniteMiceCount ! inteoes EEECETRR B Y P a1y 1 and D ! CanlT) 8

Fig.14 State table.

hysql> select * from mapping;

i entl i portl i ent2 I port2 H

+
! line_£ill ! address | reg_data_first | address |
i line_fill i setlndex | regq_data_first | setlndex |
! line_fill i slot i req_data_first | slot H
! replacement i address | 1lfu i address |
! replacement i address | lru i address |
i replacement i address | rr i address |
i replacement i setlndex | 1fu ! setlndex 1|
!' manlacramant ' catTondav ' T !' catTndaw !

Fig.15 Mapping table for OR-relation.

mysql> select % from paraneter;

! ent i param ! val H
cache_operation ! addr_width 32 H
cache_operation assoc pouw2assoc_base) H

{8, 1. 2. 3, cache_addr-line_size_base}
Cline_size_base)

<12, 13, 14, 15>

{pow2{cache_addr)>=8>

assoc_base
byte_sel

cache _addr
cache_size

cache_operation
cache_operation
cache_operation
cache_operation

Fig.16 Parameter table.

named address, typed bitvector, and the width of the vec-
tor is 32. ord column implies the order of the port at the
address_match entity. For example, address is the second
argument for address match. If we look at the output table,
we can see that the first argument of address_match is hit.
This is necessary to synthesize the complete model. Inter-
face can be n-dimensional at the real-life digital system de-
sign. Therefore we support this with the last three columns.
We support only two-dimensional vector. index1 and index2
determines the size of the vector.

Every leaf node and the parent of and-relation can have
states used within the action body. Figure 14 shows the state
table. The first row implies that there is a state named read-
HitCount, whose type is integer. This will be declared as a
variable during model synthesis.

and-relation has action body and or-relation has map-
ping relation, as shown in Fig. 10 and Fig. 11 respectively.
There are two separate tables named action and mapping.
It is difficult to show the action table here because the ta-
ble contains the behavioral SystemC code. Instead, Fig. 15
shows the mapping relation between parent and children of
the or-relation.

Figure 16 shows the parameter table. For example,
addr_width parameter is attached to cache_operation entity,
and the value is 32. Parameters also constitute the design
space, and we can see this with assoc_base parameter. as-
soc_base parameter can have 0, 1, 2, 3, and (cache_addr-
line_size_base) as its value. The associativity is computed
with this assoc_base parameter.

778

read_opn
| |é®]

address_match update_candidate 1 data_fetch line_ fill Model Base
.
1
i
i
i
I

NG ﬁ‘;cb

'
: fifo_update
!

Fig.17 Order of building model.

<XML entity> <SystemC function>

int hit;

voidread_opn(

sc¢_lv=32>& address

™ sc Iv=32>& data,
Y
e}

<operation name = fread opn”
Finput name = “address”, ...>

Foutput name = “data”, ...>

<state name = “hit”, ...> H

<action> Action_hody;
Aetion_body | }
<faction> 7

&

Fig.18 Parent of AND-relation to SystemC function.

<SystemC function>

<XML entity >
<operation name = [‘Teplacement’)=.. | inthit;
input name = “address”, ...> ‘| void[replacement(|
output name = “slot”, ...> [} sc_lv address
Tl int& slot,
<mapping>
fthis. addyess,lru. address), | {
</mapping> 'rg@ slot, ...);
e }
<operation name = “Iru”>
<input name ~ [F-TAress”
<output name = “slot”, ...>
Vo

Fig.19 Parent of OR-relation to SystemC function.

6.3 SystemC Model Synthesis

Simulator is synthesized after pruning out unnecessary com-
ponents and collecting all the candidates. In this section, we
will briefly show how the simulator is synthesized from the
design space stored at database. Briefly speaking, only one
SystemC class that corresponds to the root node of design
space is generated. All the children nodes become member
functions within the class. Figure 17 shows the sequence of
building model. We assume that the tree is pruned. In other
words, every parent node of or-relation has only one child,
and the parameters’ values are fixed. Firstly, model syn-
thesizer fetches all the required models from model base.
And then, from leaf to root node, appropriate functions are
synthesized considering the interface. The more detail pro-
cedure will be available with Fig. 18 and Fig. 19.

Actually, the SystemC model is synthesized from the
data stored at database. However, the data stored at database
is transparent because the data contained in XML document
is all the same with the data stored at database. Therefore,
we will describe the translation relation between XML en-

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.3 MARCH 2006

File Describing What , .
Performance Index to Evaluate SystemC-related Flles
Erequire header> " i J

iArcadefh; defh; main(){

makefile]

;leakage.h; main.h; .
</require_header> :: c?;:(?;)‘:?(),

<require library path> cache.cleanup();
.MeCacti; cache.write_result();
</require_library path> }

<require_library> ”
eCactilib;

SC_MODULE(cache){ ..

</require library>
<state name = “rhp” type = “double™/> i [

yistates declaration;
write result(){
i cout << “READ_HIT”

<perf index name="READ HIT <= thp;
| b cout << “POWER” i
i << rhp*readHitCountt ...}

value = “rhp”/>
<perf_index name = “POWER”

value = “thp*readHitCount + ...”/>)
. startup(){
1mhahzgtlo_n—) it g
'y il 5od
SO || cleampog
& Cleanup code : computation =77 HeebiCieanup eode T
<fclean“p> .} .. p

Fig.20 Using external library for evaluation.

tity and SystemC model. Figure 18 shows the translation
of AND-relation to SystemC function. Operation name be-
comes function name and the interface declared becomes
argument of the function. The order of declaring the inter-
face is the same with the order of the argument. The action
body is copied to the function body.

Figure 19 shows how the parent of OR-relation is trans-
lated to SystemC function. In this case, the function body
has only to call the proper function that is selected by the
pruning algorithm. We will assume that lru algorithm is se-
lected. Then, model synthesizer checks between the par-
ent’s interface, child’s interface and the parent’s mapping
relation. Comparing them enables the synthesizer to call the
child function appropriately.

A designer can also use the external library. For exam-
ple, there is a toolkit named eCacti [19] which is designed
to estimate the cache power. This toolkit is easily employed
into our framework for power estimation. Figure 20 shows
how we can use external library. A designer has only to
write down an XML file that contains all the required infor-
mation for the performance index that the designer is inter-
ested in. Header, library and all the paths are specified to be
used at makefile for SystemC compilation. Three functions,
startup, cleanup and write_result are synthesized and written
to the model. startup and cleanup functions are copied from
the corresponding section of the file. write_result function is
synthesized from perf_index section of file. The correspon-
dence is available in Fig. 20. In the main module, the func-
tion call is sequenced for the module to behave correctly.
All these are shown in Fig. 20.

Figure 21 shows the actual code for Fig. 9, Fig. 10 and
Fig. 11. We can see that there is only one SystemC class,
cache_operation. There are variable declarations that cor-
respond to the state component. Two functions are shown,
each of which corresponds to the modules. With the gen-

KIM and KIM: A PLAN-GENERATION-EVALUATION FRAMEWORK FOR DESIGN SPACE EXPLORATION

SC_MODULE(cache_operation){

boal hit;

int slot;

int setIndex;

/* other variables */

void read_opn{sc_lv<32>& address, sc_lv<32>& data,
sc_lv<2> unit_transfer)

{

slot = address(addr_width-tag_width-1, byte_sel).to_uint();
address_match(hit, address, slot, setlndex),
1f{ bt { ff tiss case
replacement(address, slot, setlndex);
line_fill (address, slot, setlndex);

1
data_fetch(),
update_candidate(address, slot, setlndex),

1

void replacement(sc_lv<32> address, int& slot, intd setlndex)

/* in case of lru iz selected */
lru{address, slot, setlndex),

/* other components are omitted */
IR
Fig.21 Synthesized SystemC model.

erated SystemC model, one can perform functional simula-
tion. The simulation result will be given in Sect. 7.2 with the
evaluation of the framework itself.

7. Evaluation of Proposed Framework
7.1 Plan: Flexibility to Add New Algorithm Scheme

With the given design space, one can easily reflect his/her
own algorithm by attaching it as a child node of OR-
relationship. In this section, we will explain how to apply
a new replacement scheme, random, to the pre-constructed
design space of cache operation.

Figure 22 shows adding random replacement scheme
in AAOG. There are two nodes related with replacement
scheme, update_candidate and replacement. Therefore, to
reflect random replacement scheme, two new nodes should
be devised and attached to the right place. Figure 22 shows
the process. random_update node should be attached to up-
date_candidate node as a child of OR-relationship, and ran-
dom node to the replacement node. This is done by sim-
ply modifying the children section of update_candidate and
replacement specification. Writing the two nodes in XML
is so simple that we could do it within five minutes. Af-
ter that, we should write down an appropriate constraint
in such a way that when random_update is chosen for up-
date_candidate, random should always be chosen for re-
placement. Lastly, by running the program to reflect these
changes into the database, planning phase completes. We
need not modify any other nodes of the design space. Doing
all these tasks took less than ten minutes. By just performing
generation-evaluation steps, we could get the cache evalua-
tion results.

779

update_candidate replacement

— T O

hist_ fifo_ freq random_ Iru fifo Ifu random
update update update update

- : newly attached replacement scheme

Fig.22 Adding random replacement scheme in AAOG.

Design Space Construction |~~~ 77" #iter | Total(ms) |Mean(ms) | Std dev
based on DB Phase 1 1 52.527 52.527 0
Phase 1 pasea] 6 | 347803 | 57950 | 5840
[Collecting Candidates | Phase 3| 1080 | 28269445 | 2617.541 | 156.477
St Phase 4 | 1080 |7434767. 72 6384.044 |35201.97
—~| Selecting Candidates I (b) Profile of the Generation-Evaluation Step
i Phase 2
| Reconstruct Design Tree J 18 s
"""" 16
reveeyrorem I 14 /
Selecting Parameter I 12 Cache size . 4KB /
b 10 Line size : 4 bytes /
| Model Synthesis I Phase 3 3 LFU replacement algonthm /
+ 6 /
I Compile I 4 7
""" 2
______ -y .k
SystemC Simulation Phased 0 1 2 4 3 16 fully

(a) Fine-grain Steps of Generation-Evaluation () Evaluation Time for Associativity

Fig.23 Profile for generation-evaluation steps.

7.2 Analysis on Generation-Evaluation Phase

We have experimented with the cache_operation design
space to obtain the timing profile of our design space ex-
ploration environment. We modified ARMulator such that it
emits the trace in DINERO III format whenever there is the
memory reference to compare the simulation result with the
DINERO simulator. We used adpcm benchmark as an appli-
cation. Trace with 93645 memory references is extracted.

Figure 23(a) shows the detail steps of generation-
evaluation phase. Firstly, our framework fetches all the re-
lationship with which one can construct the design space
from MySQL database. By applying constraints, we can
reduce the design space to some degree. Next, all the candi-
dates are computed using the algorithm shown above. The
design candidates are based on the OR-relationship, without
parametric design space. After choosing one candidate from
the candidates set, we reconstruct the design tree where all
the OR-relationship has only one child, i.e. pruned design
graph. We apply constraints that consist of more than two
entity nodes. Deciding the parameter enables us to construct
a complete SystemC model. After compiling the generated
SystemC model, we can evaluate by running the resultant
executable.

Figure 23(b) shows the experimental result for each
phase shown in Fig.23(a). During the design space explo-
ration, phase 1 is executed only once. Phase 2 is related with
the design space of OR-relationship. The number of itera-
tion is 6. Phase 3 and phase 4 are related with the both types
of design space, resulting in the number of iteration 1080.
During phase 3, compile time is the most overhead. But,
the standard deviation informs us that the time for phase
3 is relatively close to constant. The standard deviation

780

core w_cache [1168560]

ol

|
Havard [1166400]

| ® | I

[2] core cache data_inst core dcache icache
[1080] [1080] [1080]

[
[2160] vonNeuman

data_core data_inst code

Fig.24 AAOG with number of design.

#of design candidates
1400000

1200000
1000000 | B
800000
600000 .
400000
.

200000

0 ki 1 1 & 1 1
5 4 3 2 1

of cache size oficache can have

Fig.25 Effect of cache_size on size of design space.

for phase 4 is very large. This is because when simulat-
ing the fully-associative cache, there happens many address
matching. Figure 23(c) shows that the evaluation time is
so long for the fully-associative mapping. We can formu-
late the time required for exploration as follows: #,,piore =
tphasel + tphaseZ X NOR + NOR X Npamm X ([phaxe3 + tphaxe4)-

7.3 Generation: Effects of Constraints

In this section, we will investigate the effect of constraints
on the size of design space. Figure 24 shows the number
of design space for each design entity. In Fig. 24, cache,
dcache, and icache are of type cache_operation of Fig.9.
The number of design candidates of cache, dcache and
icache is 1080 as explained in Sect. 6. The resulting number
of design candidates of core_w_cache is 1168560, which is
too many to explore completely. Let’s assume that it takes
about 10 seconds to evaluate one design candidate. Then
more than 135 days are necessary to evaluate all the design
candidates.

Appropriate usage of constraints can solve this prob-
lem. Figure 25 shows how the number of variation that
cache_size of icache affects the number of design candi-
dates. 1168560 number of design candidates has decreased
to 235440 as the possible number of cache_size decreased
from 5 to 1. By aggressively exploiting the designers’
knowledge in the form of constraints, one can reduce the
size of design space efficiently.

For example, let’s assume that the following constraints
are specified by considering the characteristics of applica-

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.3 MARCH 2006

of design candidates
250000

200000

150000

tooooo

50000

c1 c2 c32 ca ch CE

Constraints

Fig.26 Effect of constraints on size of design space.

tions and the hardware requirements.

o CI: fix the cache size of icache to 4 kbytes

e C2: fix the cache size of icache to 4/8 kbytes and line
size to 4/8

e (C3: fix the cache size of icache to 4/8 kbytes, line size
to 4/8/16, and replacement scheme to LRU

e (C4: fix the cache size of icache to 4 kbytes, cache size
of dcache to 4/8/16 kbytes

e C5: fix the cache size of icache to 4 kbytes, cache size
of dcache to 4/8/16 kbytes and the replacement algo-
rithm of the both cache to LRU

e C6: use only vonNeuman

The effect of each constraint to the size of design space
is shown in Fig.26. From this, we can know that with a
list of appropriate constraints, one can efficiently reduce the
design space to manageable degree.

8. Conclusion and Further Work

This paper proposes a complete path of constructing a
design space of a digital system by introducing plan-
generation-evaluation framework.

First advantage we could obtain with this work is, of
course, the easiness to construct a design space. Attributed
AND-OR graph and related operations on it enable design-
ers to construct design space easily and correctly. The next
advantage is that one can use many evaluation techniques.
There have been many approaches to solve the long-time
evaluation problem as one of design space exploration re-
search. The last and the most important one is that one
can reflect his/her own knowledge base to prune the design
space efficiently with constraints.

In addition to the above advantages about design space
exploration, this framework can help in developing a new
idea or modules based on pre-constructed design base as
shown in Sect. 7.1.

Currently, the evaluation phase is performed by run-
ning all the executables and finding the model with optimum
performance, without ranking the models. However, we can
find the optimum, or at least optimal, solution without eval-
uating all the models if we apply evolutionary method to

KIM and KIM: A PLAN-GENERATION-EVALUATION FRAMEWORK FOR DESIGN SPACE EXPLORATION

generation phase such as genetic algorithm[10] or simulated
annealing. The design space representation of the proposed
framework is based on sound graph-theoretical semantics,
so a lot of algorithms on graph theory can be applied to im-
plement such a generation method.

References

[1] S. Kobayashi, K. Mita, Y. Takeuchi, and M. Imai, “Design space ex-
ploration for DSP applications using the ASIP development system
PEAS-III,” IEEE International Conference on Acoustics, Speech
and Signal Processing, pp.3168-3171, 2002.

[2] A.LaRosa, L. Lavagno, and C. Passerone, “Hardware/software de-
sign space exploration for a reconfigurable processor,” Design, Au-
tomation and Test in Europe Conference and Exhibition, pp.570-
575, 2003.

[3] M. Palesi and T. Givargis, “Multi-objective design space explo-
ration using genetic algorithm,” International Symposium on Hard-
ware/Software Codesign, pp.67-72, 2002.

[4] L. Eeckhout, D. Stroobandt, and K. De Bosschere, “Efficient micro-
processor design space exploration through statistical simulation,”
Simulation Symposium, pp.233-240, 2003.

[S] H. Blume, H. Hubert, H.T. Feldkamper, and T.G. Noll, “Model-
based exploration of the design space for heterogeneous system on
chip,” IEEE International Conference on Application-specific Sys-
tems, Architectures and Processors, pp.29—40, 2002.

[6] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration for
pareto-optimal configurations in parameterized system-on-a-chip,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.10, no.4,
pp.416-422, Dec. 2002.

[7] T. Hadzic, S. Subbarayan, R.M. Jensen, H.R. Andersen, J. Moller,
and H. Hulgaard, “Fast backtrack-free product configuration using
a precompiled solution space representation,” Proc. International
Confernece on Economics, Technical and Organizational Aspects of
Product Configuration Systems, pp.131-138, 2004.

[8] N.J. Nilsson, Problem Solving Methods in Artificial Intelligence,
MacGraw-Hill, New York, 1971.

[9] C.L. Hang and J.R. Slagle, “An admissible and optimal algorithm
for searching AND/OR graphs,” Artificial Intelligence, pp.117-128,
Feb. 1971.

[10] A. Mahanti and B. Bagchi, “AND/OR graph heuristic search
method,” J. ACM, vol.32, no.1, pp.28-51, Jan. 1985.

[11] P.S. Dasgupta, S. Sur-Kolay, and B.B. Bhattacharya, “VLSI floor-
plan generation and area optimization using AND-OR graph
search,” Proc. International Conference on VLSI Design, pp.370—
375, Jan. 1995.

[12] D. Owen, B. Cukic, and T. Menzies, “An alternative to model check-
ing: Verification by random search of AND-OR graphs representing
finite-state models,” International Symposium on High Assurance
Systems Engineering, pp.119-126, Oct. 2002.

[13] O. Das and C. Murray Woodside, “The fault-tolerant layered queue-
ing network model for performability of distributed systems,” In-
ternational Computer Performance and Dependability Symposium,
pp.132-141, Sept. 1998.

[14] H. Mosemann and F.M. Wahl, “Automatic decomposition of planned
assembly sequences into skill primitives,” IEEE Trans. Robot. Au-
tom., vol.17, no.5, pp.709-718, Oct. 2001.

[15] H.C. Park and T.G. Kim, “A relational algebraic framework for
VHDL models management,” Transactions of the Society for Com-
puter Simulation, pp.43-55, June 1998.

[16] B.P. Zeigler, H. Prachofer, and T.G. Kim, Theory of Modeling and
Simulation, 2nd ed., Academic Press, 2000.

[17] J.K. Kim, H.Y. Kim, and T.G. Kim, “Top-down retargetable frame-
work with token-level design for accelerating simulation speed of
processor architecture,” IEICE Trans. Fundamentals, vol.E86-A,
no.12, pp.3089-3098, Dec. 2003.

781

[18] http://xml.com/pub/a/98/10/guide0.html?page=2
[19] http://www.ics.uci.edu/"maheshmn/eCACTI/howto.htm

Jun Kyoung Kim received the B.S. de-
gree in Electronic Engineering from Yonsei Uni-
versity in 1997 and M.S. degree in Electri-
cal Engineering from Korea Advanced Institute
of Science and Technology in 1999, respec-
tively. From 1999 till now, he stays at Systems
Modeling Simulation Laboratory (SMSLAB),
in KAIST. His research interests include dis-
crete event systems modeling/simulation, pro-
cessor design, co-design and processor descrip-
tion language.

ersrrond

Tag Gon Kim received his Ph.D. in com-
puter engineering with specialization in systems
modeling/simulation from University of Ari-
zona, Tucson, AZ, 1988. He was a Full-time In-
structor at Communication Engineering Depart-
ment of Bookyung National University, Pusan,
Korea between 1980 and 1983, and an Assistant
Professor at Electrical and Computer Engineer-
ing at University of Kansas, Lawrence, Kansas,
U.S.A. from 1989 to 1991. He joined at Electri-
cal Engineering Department of KAIST, Tajeon,
Korea in Fall, 1991 as an Assistant Professor and has been a Full Profes-
sor at EECS Department since Fall, 1998. His research interests include
methodological aspects of systems modeling simulation, analysis of com-
puter/communication networks, and development of simulation environ-
ments. He has published more than 100 papers on systems modeling, sim-
ulation and analysis in international journals/conference proceedings. He is
a co-author (with B.P. Zeigler and H. Praehofer) of Theory of Modeling and
Simulation (2nd ed.), Academic Press, 2000. He was the Editor-in-Chief
of SIMULATION: Trans of SCS published by Society for Computer Sim-
ulation International (SCS). He is a senior member of IEEE and SCS and a
member of ACM and Eta Kappa Nu. Dr. Kim is a Certified Modeling and
Simulation Professional by US National Training Systems Association.

