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A New Speech Enhancement Algorithm for Car Environment Noise
Cancellation with MBD and Kalman Filtering

Seungkwon BEACK†a), Seung H. NAM††, and Minsoo HAHN†, Nonmembers

SUMMARY We present a new speech enhancement algorithm in a car
environment with two microphones. The car audio signals and other back-
ground noises are the target noises to be suppressed. Our algorithm is com-
posed of two main parts, i.e., the spatial and the temporal processes. The
multi-channel blind deconvolution (MBD) is applied to the spatial process
while the Kalman filter with a second-order high pass filter, for the temporal
one. For the fast convergence, the MBD is newly expressed in frequency-
domain with a normalization matrix. The final performance evaluated with
the severely car noise corrupted speech shows that our algorithm produces
noticeably enhanced speech.
key words: speech enhancement, multichannel blind deconvolution,
Kalman filter

1. Introduction

Recently, speech recognition algorithms have been applied
to the car environments, but inevitably their performances
are severely degraded due to car noises. Car noises can gen-
erally be categorized into spatial and temporal ones. Spatial
noises come from single or multiple point sources such as
client’s speech and car audio signals while temporal noises
are the ones generated by the engine vibration, the air turbu-
lence, and the tire friction.

The spatial car noises are one of the hardest obstacles in
speech enhancement. Recently, as the MBD has been intro-
duced for the spatial noise suppression, the speech quality
becomes dramatically improved. However, the simultane-
ous occurrence case of the spatial and the temporal noises
is still a challenging task. In [3], several types of spa-
tial or temporal noises were independently tested with the
MBD combined with the sub-band processing and produced
rather successful results. The simultaneous cases in car en-
vironment were tested with the spatio-temporal enhance-
ment technique [2]. It produced fairly enhanced speech with
rather complicated processes.

In this paper, we present a new speech enhancement al-
gorithm basically based on the spatio-temporal process as in
[2]. However, the components of our process are newly pro-
posed and the overall structure is relatively simple. Our goal
is to design a successful speech enhancement algorithm in
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a car environment where various car audio and background
noises exist simultaneously. We exclude other clients’ in-
terfering speech noises partly because the drivers are usu-
ally more often disturbed by the car audio than the client’s
speech in a running car.

For the robustness of our algorithm, the frequency-
domain block-based MBD (FB-MBD) with a normal-ization
matrix is proposed as a part of the spatial process. The
matrix is designed to overcome the intrinsic problems of
the time-domain MBD (TD-MBD) such as the whitening
effect and the slow convergence [8]. It is derived from
the information-maximization-based TD-MBD with natural
gradients [1]. The temporal process based on the high pass
and the Kalman filtering to suppress the background noises
is subsequently applied [7].

We use the following notation throughout the paper.
Bold uppercases and lowercases are used for matrices and
vectors, respectively. Normal lowercases are for scalars
and vector elements. “n” and “b” are for the time and the
block indices, respectively. The superscript f indicates the
frequency-domain quantity.

2. Problem Description

The corrupted signal, x j(n) from the jth-microphone can be
represented as the convolution sum,

x j(n)=
Q∑

p=0

aj j,ps j(n − p) +
l∑

i=1
i� j

Q∑
p=0

aji,psi(n − p) + v(n),

j = 1, 2, . . . ,m. (1)

In this equation, aji,p is the ( j, i) element of the mixing sys-
tem of A(z) =

∑Q
p=0 Apz−p with the finite impulse response

(FIR) Q, and si(n) is the ith-point source. The second term
on the right-hand side indicates the group of spatial noises
propagated from the several interfering point sources, where
s j(k) is the target speech signal. v(n) is the microphone-
independent temporal noise. Similarly, the jth-unmixing
signal can be described as

uj(n) =
Q∑

p=0

w j j,p(n)x j(n − p) +
l∑

i=1
i� j

w ji,p(n)xi(n − p)

+

l∑
i=1

w ji,p(n)v(n − p)

 (2)
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where w ji,p is the ( j, i) element at the lag p of the unmixing
system at time n.

The fundamental problem of the MBD comes from the
fact that it estimates the unmixing system using the mixed
signal without any information of the mixing system under
the assumption that the number of microphones is equal to
that of sources. The car audio signal propagated from mul-
tiple sources violates this assumption because only two mi-
crophones are adopted in our approach. If the spatial noises
are successfully separated, the desired speech signal is ob-
tained as the arbitrarily delayed and scaled version of the
original speech with added convolution sum as in Eq. (3).
This uj(n) is generally accepted as the MBD solution.

uj(n) = d′j s j(n − τ j) +
Q∑

p=0

w ji,p(n)v(n − p). (3)

The channel permutation (CP) has also been accepted
as a solution in the MBD [1], [6]. This CP problem occurs
when the microphone in the direction to the jth-point source
fails to keep the jth-point source power dominantly. The
temporal processing requires the unmixed signal identifica-
tion. Without the channel identification, the added compu-
tational burden to identify uj(n) is required. Several MBD
approaches in a car have adopted closely coupled two mi-
crophones for other clients’ speech suppression. In our al-
gorithm, the spatial approach is mainly for the car audio
signal cancellation. In this case, the CP can easily occur.
Therefore, it has to be admitted that our algorithm would
not always be free from the CP problem.

The MBD process does not influence the inherently re-
verberant temporal noises since it only maximizes spatial
independency when their originations are deterministic. So
the temporal noise, the second term in Eq. (3), still exists as
a filtered version after the MBD. Hence, the temporal noise
reduction needs another process as mentioned in [2].

3. Speech Enhancement Scheme

The scheme of our proposed algorithm is shown in Fig. 1.
The microphone positions are selected in consideration of
the CP problem. Our algorithm firstly reduces the car au-
dio signal from the mixed x1 with the MBD. As a result, u1

becomes the unmixed output corresponding to x1. Then the
temporal noises in u1 are suppressed by the temporal pro-
cess.

3.1 Frequency Domain Block-Based MBD (FB-MBD)

Gradient algorithms show fast convergence properties when
their estimations are based on block processes due to the
more accurate gradient vector estimation [10]. The compu-
tation power can also be reduced by overlap-save or overlap-
add methods [12]. In this section, we formulate the normal-
ized FB-MBD algorithm (NFB-MBD). It is confirmed that
our algorithm is almost free from the speech whitening ef-
fect while converging rather fast.

3.1.1 Time Domain Formulation of MBD

As in [1], the gradient equation of the MBD can be repre-
sented as

∆Wp(n) =

Wp(n) − y(n − L)
L−1∑

q

WT
L−qu(n − q)

 (4)

where y(n) is f (u(n)) for some monotonic nonlinear func-
tion f (·), u(k) is [u1(k) · · · um(k)]T , and the filter length L
is the truncated version of Q. The variation of E

{
∆Wp(k)

}
depends mainly on the eigenvalue spread of the cross-
correlation matrix between y(k − L) and u(k). The varia-
tion can be smoothed through the cross-correlation matrix
normalization based on the diagonal terms. The anti-causal
filtering, the second term of Eq. (4), however, makes it diffi-
cult to derive the normalized form directly, because there is
L sample delay assumption to reduce the computation [1].
We ignore the anti-causal part of Wp(k), because the causal
FIR can be successfully used as an unmixing system in a
small reverberant space such as in a car. Then, Eq. (4) can
be represented as the correlation matrix whose lag is a posi-
tive integer.

∆Wp(n) =
p∑

q=0

(
Iδp−q − y(n)uT (n − p + q)

)
Wq(n),

0 ≤ q ≤ p ≤ L − 1. (5)

Equation (5) is identical to the causal MBD algorithm de-
rived from the manifold using the isometry of the Rieman-
nian metric [5]. If u(n) is adjusted to have the unit variance,
the equilibrium point of Eq. (5) is

E
{
Iδp−q − y(n)uT (n − p + q)

}
= 0 (6)

Equation (6) can be modified by the normalized matrix Λ−1

on the constraint of the same equilibrium point,

Fig. 1 Proposed speech enhancement process.
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E
{
I − Λ−1y(n)uT (n − p + q)

}
= 0. (7)

If Λ−1 is designed as a diagonal matrix whose elements
are the diagonal elements of E

{
u(n)uT (n − p + q)

}
, Eq. (7)

has the spatial self-orthogonalization property. And ac-
cording to the Bussgang property, E

{
y(n)uT (n)

}
becomes

E
{
u(n)uT (n)

}
[12]. Our normalization technique is realized

in preference of the temporal orthognalization rather than
the spatial one because the MBD’s temporal i.i.d.(identically
independent distribution) assumption mainly contributes to
the performance degradation of the TD-MBD in case of the
convolved acoustic mixture. The NFB-MBD is derived by
modifying Eqs. (5) and (7).

3.1.2 Realization of NFB-MBD

For the block-based implementation in frequency domain,
all the following fundamental vectors in time domain are
defined with L, in the form of 2’s power, elements for the
convenient FFT implementation. The fundamental vectors
are defined as,

xi(b)
∆
= [xi(bL) · · · xi(bL + L − 1)]T (8)

u j(b)
∆
=
[
uj(bL) · · · uj(bL + L − 1)

]T
(9)

where i, j = 1, 2, · · · ,m. These vectors are packed to be
represented by the frame as follows

x̃i(b)
∆
= [xi(b − k + 1) · · · xi(b − 1)xi(b)]T (10)

ũ j(b)
∆
=
[
u j(b − k + 1) · · ·u j(b − 1)u j(b)

]T
(11)

ỹ j(b)
∆
= f (ũ j(b)). (12)

Here, k determines the hop size in the correlation matrix
and u j(b − k + 1) is a surplus circulant part produced by the
circular convolution. We use F to denote the kL × kL FFT
matrix [10] , and the frequency domain input vector is

x f
j (b) = F x̃ j(b) (13)

In order to represent the point-wise multiplication pro-
cedure mathematically, the diagonal matrix X f

j (b) can be de-

fined as diag
[
x f

j (b)
]
.

When the frequency domain unmixing vector of length
L is defined as follows,

w f
i j(b)

∆
= F
wi j,0(b) · · ·wi j,L−1(b), 0 · · · 0︸︷︷︸

(k−1)L


T

(14)

the output vector in (10) can be evaluated as

u f
j (b) = X f

j (b)w f
i j(b). (15)

For the linear convolution, the circulant part of ũ j(b) should
be removed by

u f
j (b) = PO,kL−Lu f

j (b) (16)

where PO,kL−L is the following window matrix.

PO,kL−L
∆
= F
[

0 0
0 IkL−L

]
F −1. (17)

The cross correlation matrix between the jth-unmixing vec-
tor ũ j(b) and the ith-nonlinear vector ỹi(b) can be obtained
as ϕ f

i j(b) in frequency domain,

ϕ f
i j(b) = PL,Oϕ

f
i j

(b) (18)

ϕ f
i j

(b) = diag
[
y f

i (b)
(
u f

j (b)
)H]

(19)

where y f
i (b) is F ỹi(b) and PL,O is another window matrix.

PL,O
∆
= F
[

IL 0
0 0

]
F −1. (20)

Therefore, we can formulate the (i, j)th-element of the
causal FB-MBD algorithm,

w̃ f
i j(b) =

m∑
r=1

PL,O

(
INδi jr − ϕ f

ir(b)
)
w f

r j(b). (21)

where δi jr = 1 when i = j = r, otherwise zero. The hop size
of correlation is proportional to k within the frame length
kL. It can be expected that the large hop size with the large
k estimates more accurate cross correlation quantities de-
spite of the relatively short filter length L. The increased hop
size, however, does not always guarantee the accuracy im-
provement mainly because speech and acoustic signals are
considered to be stable only for the short-time duration. In
other words, the extended filter length is not essential for the
separation performance improvement and the details about
this can be found in [11]. Hence, the value of k is experi-
mentally determined in our study.

In order to implement the NFB-MBD with the tempo-
ral self-orthogonalization property, we introduce a diagonal
matrix Λ f

i j(b),

Λ
f
i j(b)

∆
= diag

[
u f

i (b)
(
u f

j (b)
)H]

(22)

and the matrix is updated with the forgetting factor γ as fol-
lows

Λ
f
i j(b) = (1 − γ)Λ f

i j(b − 1) + γΛ f
i j(b) + αIN . (23)

Here, α is an arbitrary small constant to keep the normal-
ization matrix nonsingular. The cross correlation matrix in
frequency domain is now redefined as the normalized form
of ϕ f ,N

i j (b).

ϕ f ,N
i j (b) = PL,O

(
Λ

f
i j(b)
)−1
ϕ f

i j
(b). (24)

Finally, we can formulate the NFB-MBD by substituting
Eq. (24) for Eq. (21):

w̃ f
i j(b) =

m∑
r=1

PL,O

(
INδi jr − ϕ f ,N

ir (b)
)
w f

r j(b). (25)
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We tested two matrices Λ f
i j(b) and

∥∥∥∥∥diag
[
ϕ f

i j
(b)
]∥∥∥∥∥

2

for

the use as the normalization matrix. Theoretically, they are
supposed to produce the same results at the Bussgang equi-
librium point but experimentally, i.e., in the vicinity of the
Bussgang equilibrium point, Λ f

i j(b) is slightly superior to∥∥∥∥∥diag
[
ϕ f

i j
(b)
]∥∥∥∥∥

2

and that is why we selected Λ f
i j(b).

3.2 Temporal Processing

The temporal noises such as engine and air friction noises
usually have colored spectra and the spectra also change
themselves in accordance with the car speed. Fortunately,
the characteristics of the temporal noise spectra are rather
slowly changing compared to the spatial noise and speech.

Firstly, the almost band limited noises can be removed
with a simple second-order HPF, proposed for the GSM-
EFR, with 80 Hz cutoff frequency [9].

H(z) =
0.9273 − 1.8545z−1 − 0.9273z−2

1 − 1.9059z−1 + 0.9114z−2
(26)

With this filter, most components of the engine vibration and
the air friction noises can be successfully reduced but still
there are noises having above 80 Hz components.

The Kalman filter with a whitening process is adopted
to cancel the remaining temporal noises. Whitening is
achieved by using the autoregressive inverse model of ρ(n)(z)
estimated for the initial 100 msec of u′i(n), the HPFed ver-
sion of ui(n). After Kalman filtering, the distortion of ûi(n)
caused by the whitening process is compensated by 1/ρ(n)(z)
and then the final enhanced speech s(n) is obtained. The
details of our temporal noise cancellation procedure can be
found in [7].

3.3 Placement of Microphones

The CP problem is critical in temporal processes. It is in-
sisted that the constraint wii,p = δi jδp can solve this problem
[2], but it is not hard to find the failures even under the con-
straint in real applications especially when the closely cou-
pled microphones are used. When each sound is recorded
on each microphone with the comparatively large energy,
the problem can be avoided under the above constraint. In
our experiment, we cope with this CP problem by simply lo-
cating two microphones separately, i.e., one in the front and
the other in the rear section as shown in Fig. 1.

4. Experiments

The performance of our NFB-MBD is firstly checked and
then the overall performance of our proposed algorithm is
evaluated for the test materials containing both the temporal
and the spatial noises.

4.1 Performance Evaluation of NFB-MBD

To demonstrate the usefulness of our proposed speech en-
hancement algorithm, the performance of our NFB-MBD is
compared with those of the causal FB-MBD (CFB-MBD)
and the nonstationary statistics-based MBD (NSB-MBD) in
[5], [6]. The CFB-MBD is realized based on Eq. (23). The
mixture is recorded with two omni-directional condenser
microphones (Audio-Technica AT9500II). The distance be-
tween two microphones is 215 cm and the recorded signals
are digitized at 16 kHz with 16 bit resolution. Our present
goal is to evaluate only the NFB-MBD performance; the
data are collected in a stand-still car.

The learning parameters of the NFB-MBD and the
CFB-MBD are equal; the filter length is 128, the frame size
for the FFT is 512 with 75% overlapping. Both algorithms
are on-line operation ones and their step size µ0 is 0.005.
The step size adaptation for the robustness of the CFB-MBD
can be achieved as follows [1],

µi(b) =
µ00.01 +

∑
p

ui(n − p) f (ui(n − p))


(27)

The NSB-MBD is an off-line multi-iteration algorithm with
the same filter length but the frame size is 1024.

To verify the usefulness of our NFB-MBD, the per-
formance is evaluated for the music-Korean speech mixture
and the results are summarized in Fig. 2. As easily can be
seen from the figure, channel 1 contains stronger speech
than channel 2, and in case of the music signal, the situa-
tion is reversed. Listening tests confirm that our NFB-MBD
algorithm separates the speech and the music with almost no
quality degradation and outperforms the others. The causal
MBD is also successful in signal separation but the results
still suffer from the whitening effect. Surprisingly, the NSB-
MBD fails to separate the signals.

4.2 Overall Performance Evaluation

To show the efficiency of our algorithm, the computation

Fig. 2 Comparative performance evaluation results for music-Korean
speech mixture. (a) original mixed signal, (b) CFB-MBD, (c) NSB-MBD,
and (d) NFB-MBD.
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Table 1 Comparison of computation loads between proposed and con-
ventional method.

Table 2 Comparison of output SNR between proposed and conventional
method.

loads are compared with that of conventional method in [2]
at first. Each computation load is counted till termination of
one-output block process with equal size. From Table 1, it
is clear that our method is much more efficient.

To evaluate the overall performance, input noisy
speech contains both temporal and spatial noises. Temporal
noises are recorded in a running car at various speeds with
partly opened windows, and spatial ones are constructed by
using different speech and a popular music from the one
mentioned above. The parameter setting is identical to the
NFB-MBD performance evaluation case. Final results in
terms of the segment signal-to-noise ratio (SNR) are sum-
marized in Table 2 [7]. It is clear that our method is superior
to the conventional one in all cases.

5. Conclusion

A new speech enhancement algorithm using the NFB-MBD
and the temporal process is presented for the use in car noise
environments. Our algorithm is proved to reduce not only
the background audio signal but also the typical temporal
car-noises successfully. The NFB-MBD is introduced to
deal with the background audio from the multiple sources,
and its performance is shown to be better than those of the
causal MBD and the nonstationary statistics-based MBD.
The HPF and the Kalman filter procedure with the noise
whitening also work fairly well as the temporal noise re-
duction process. In addition, the overall structure and the
computation of our algorithm are relatively simple and ef-
ficient compared with the previous approaches. Our final
results show remarkably enhanced speech waveforms and it
is believed that we can recommend the use of our proposed

algorithm for the car-environment applications.
Our future works include more extended evaluation of

the proposed algorithm in conjunction with a speech recog-
nizer and more detailed convergence property analysis on
the NFB-MBD. In addition, the performance analysis with
more versatile types of noises would be included for more
practical and reliable application of our proposed algorithm.
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