Hard/Soft Deadline Assignment for High Workflow Throughput

Jin Hyun Son, Jung Hoon Kim, and Myoung Ho Kim
Department of Computer Science
Korea Advanced Institute of Science and Technology
373-t, Kusung-Dong, Yusung-Gu, Tacjon, 305-701, Korea
{jhson, kimjh, mhkim} @dbserver.kaist.ac.kr

Abstract

Many business processes which are abstracted 1o work-
flows have time constraints such that their processing
should be completed within their deadlines.  New time
management technologies arve, therefore, required for high
workflow throughput which can maximize the number of
workflow instances satisfying their deadlines. In this pa-
per we propose an efficient deadline assignment method
and validate its usefulness with experiments.  Especially,
the method divides activity deadfines into two categories,
ramely hard and soft deadlines according 1o the character-
istics of activities. This can improve workflow throughpat
maore and more.

1. Introduction

Nowadays, most business processes can be simplified,
computerized, and antomated by the help of a workflow,
The improvement of workllow rclevant technologics such
as middieware and object-oriented techniques makes work-
Row management systems available and applicahle to many
real applications. A work(low consists ol a set of activities
interconnccled by workflow conlrol structures: sequence,
AND, OR, and LOOP. Hence, there can he wmany exceution
paths in a workilow in teems of ils context. Bach activity has
an agent which performs the role of the activity, An activity
is called a human interactive activity or a system automatic
aclivity according as its agent is human or a software pro-
cess, respectively,

In practice, many business processes have time con-
siraints and some works on time-constrained work(lows
have been done [2][6]. During workflow executions, if a
workflow instance cannot mect Lhe activity deadiine, excep-
tional operations called escalation may be made for the in-
slance, Tn general, escalation includes compensations of al-
ready completed activities which may wasie shared system
resources, give additional costs 10 workflow management

0-7695-0496-5/00 $10.00 © 2000 1EEE

3

system, and finally degrade workflow throughput.

For the purposc of high work{low throughput, we shoald
minimize the number of escalated workllow instances, and
might as well cscalate workflow instances as early as possi-
bic il escalation scems 1o he unavoidable. Barly escalation
has been studied in the predictive workflow [5], In this pa-
per we are cencerned wilh minimizing the number of esca-
lated workflow instances by effectively allocating activity
deadtines. Activity deadlines can be determinced statically
or dynamically, Static activity deadlines arc determined
in a workllow definition, while dynamic deadline assign-
ment methods may adjust the static deadlines according to
workllow system environments such as system weorkloads
during workflow executions [6][5]. Basically, the dynamic
ncthods proposed in [6] and [5] distribute the slack time
oblained at an activity, which is the dilference hetween ils
static deadline and actual execution Lime, among ils subse-
quent activities. Even il hese methaods con determing activ-
ity deadlines by reflecting dynamic workflow system envi-
ronmients, they need so much deadline computing time lor
each activity as well as every work(low instance, After all,
workltow throughput may be degraded due 10 the excessive
compuling ime. Hence, only if we can estimate and de-
termine slatic aclivity deadlines at the work(low build-time
while precisely predicting system workloads, we can maxi-
mize the number of warkllow instances completed timely,

In this abjective, we first categorize activities into critical
and non-critical activities by the concept of the critical path
which is the longest exccution path in a workflow, Critical
activities may have hard deadlines while non-critical activ-
ities have soft deadlines. We expect that crilical activities
will include most bottlencek points in the workflow, 1f a
workflow instance cannot meel the hard deadline of a crit-
ical activity, we escalate the workilow instance since the
possibility noel (o meet the workflow deadline is very high.
On the other hand, if a workflow instance cannot meet the
soft deadline of a non-critical activity, we had better make
it continue to perform its works. This can samewhat reduce
the possibility that some workflow instances which will be



oy o
4 R /@\f‘ Pk i 'éé A
S QE S X A R
i‘.'k@—x'@f{ i a pi” [

Figure 1, Workilow Queueing Network

completed within the worklow deadline may be escalated
due to violating the activity deadline in any intermediate ac-
tivity. We can, therelore, apply different escalation policies
according to the activity group. Next, we propose an clfee-
tive statie deadline assignment method called Proportional
to the Sojourn Time (PST} which is based on the execution
time of cach activity, i.e., service lime plus waiting Lime.
Finally, we show the validness ol our scheme for managing
aclivity deadlines with experimenls.

Work{low management systems allow to deling the dead-
lines of a workilow and its activilies in a workflow defini-
tion 4], Nowadays, many buginess and scientific workliow
applications have adopted time management technologies,
Originally, the deadline assignment problem has becn inten-
sively studicd in distributed soft real-1ime systems in which
a task 15 composed of subtasks 3], [3] introduced four
deadline assignnient methods: Ultimate Deadline {UD), Hi-
feetive Deadline {(ED), Equal Slack (EQS8), and Geual Flex-
ibility (EQF). Under UD, a task and all its subtasgks have
the sume deadlines. In IED, the deudline of any subtask
is the time thal is the deadline of the task minys (he total
cxpeeled execution lime of its subsequent subtasks, These
two metheds delermine activity deadlines statically, EQS
divides the total remaining slack equally among the remain-
ing subtasks. And, EQF divides the total remaining slack
among the subtasks in proportion 10 their exceution times.
These two methods can be applied to both static and dy-
namic deadline assignment. Becuuse a task is 1o subtasks
in distributed solt real-time systems what a workflow is to
activities in workflows, four deadline assignment methods
above can be casily applied to workflow systems [6][5]. Cn
the other hand, [6] proposed four dynamic deadline assign-
ment methods based on the static activity deadlines: Total
Stack (TSLY, Under Proportional Execution (PEX), Propor-
tional Bscalation (PLS), and Proportional 1.oad (PLO).

In section 2, we describe the worklow mode] considered
in this paper. Section 3 explains how to {ind out critical and
not-critical activities. Scction 4 presents owr static deadline
assignment method, and section 5 analyzes the method with
several experimentad resulis, Finally, we conelnde our papey
wilh its summary and further works in scetion 6,

2. Workflow Model

A workitow js a network consisting of activities inter-
connected with each other as in Figure |. Bach activity hag

360

an agent Lo perform its role, In this paper we assume (hat
the arrival process of workflow service requests is a Pois-
son process and the agent of each aotivity has an exponen-
tial service time. This can make a workfow modeled as a
M/M/I queucing network in which each activity is an inde-
pendent M/M/1 queueing system, We can specily the arrival
and departure process in each activity as in Tigure 1 with the
information of the initial arrival rate to the workflow, the
service rate ol each activity agent, and the branch prebabil-
ity in OR and LOOP. The decompasition and superposition
of independent Poisson processes in the OR conirol struc-
lure, e.g., aclivity 10 and 14 of Figure 1 are knows to be also
Poisson processes from time reversibility [8]. Cven though
the actual internal flow ol & LOOT” is not a Poisson process
due Lo its feedback, it is known that (his structure behaves
as il its activities are independent M/M/ 1 [1]. In the AND
contral structure, the departure processes of an AND split
aclivity, ¢.g., activity 2 are clearly Poisson pracesses, but
the arrival process of an ANIY join activity, c.g., activity &
is not actually a Poisson process because all requests com-
ing into the activity must be synchronized before its agem
is invoked. Beeausc a point ol synchronized time is greatly
determined by the path with the longest average cxecution
time of = paths in the AND, the arrival process of an AND
Join aetivity can be approximated by the Poisson process
of the requests going through the longest execution path.
Hence, a workllow can be modeled hy a M/M/1 queneing
network with Poisson arrival and departure processes,

It is difficult 1o undersiand worklow schemas and find
their faults if they are designed by specifying arbitrary re-
lationships between actlivitics 10 a workflow delinition [6],
In this regard, we define a nested work{low with siructural
forms and only consider work{low schemas delined with it,

Definition 2.1 When a nan-sequential control structure in
a workflow contains anathier workflow contrel structures
within it, the workflow is called the nested workflow, Here,
when a LOOP is contained within some non-sequentiaf con-
trol structure ', the destination af the feedback nust be
somewhere within .

Definition 2.2 The outermost non-sequential control strisc-
ture in o nested workflow iy called a non-sequential control
block, or simply contrel block.

There are two control blocks in Figure 1, an AND control
block containing an OR and an OR centrot block with a
LOOP. If the destination of the fecdback of the LOOP is an
activity 6 instead of activity 11, the work{low does not have
meaningtul control flows. Thus, we only consider a nested
work(low in this paper.

In the following, we distinguish between critical and
nen-~-critical activities in a worklow. And then, our static
deadline assignment method called PS'T delermines the



hard or soil deadline of each activity. We can apply dif-
ferent escalation policies to workiflow management systems
according to the hard or soft deadline,

3. Critical/Non-critical Activitics

As a work(low management syslem creates a new work-
flow instance for an user’s workflow request, there can be
many workflow instances which are concurrently executed
and some workflow instances may wait at the queue of an
activity during other workflow instances to arrive ahead are
served, This means that the average execution iinie of a
work (low instance in an activity is the average service time
of the agent Jor the activity plus the average waiting time of
the work(low instance al the activity.

How to distingnish hetween critical ot non-eritical ac-
tivitics is dependent on workflow designers’ decisions, For
cxample, a workflow designer can sclect some critical activ-
ities by heuristic and analytical methods based on the work-
flow schema. In this paper we use the concept of the critical
path for the classification. The eritical path is a sequence of
activitics from the beginning to the end of a workflow such
that has the longest average cxceution time. If an activity
hetongs to the critical path, it is called a critical activity.
Otherwise, it is a pon-critical activity. Our previous work
[7] proposed a methad to find ocut the critical path which is
based on the characleristics of worklow control struclures
as well as the average execution time of a worklow instance
in an activity. The method is called the Innermost Control
Suucture First (FCSTF) and its algorithm is described in Fig-
ure 2.

ICSF first determines a sub-critical path with the longest
average cxecution time in each control hlock, and then com-
bines these sub-critical paths. When we determine a sub-
critical path in ench cantrol block, the longest exeeulion
path is selected from the inncrmost control structure to the
outermost control strueture, If the tnmermost contrel struc-
ture is an AND or OR, we select a path with the longest
average exccution time. II a LOOP control structure, we
transform it into a sequential control structure which we can
analyze with case. All sequential control structures excepl
ones within control blocks belong to the critical path be-
cause the sequences are all unique paths in the workftow,
Because the average execuition time is known as W7 = ﬂ_%\
in M/M/1 with the arrival rate A and the service raie g, the
longest exceution path in an AND or OR control structure
as in Tigure 3 is determined as follows. With W; = ﬁ
of the average exccution time in an activity 4, the longest
execution path is a sequential path with MAX (G ;:,EA )
for all activities wilhin each path, where the arrival rate A;
and the service rale g in activity ¢. Translorming a LOOP
into a sequence will be presented in section 4.

As an cxample 1o {ind out the critical path using Lhe

[ 1. All seqquential control structures except ones within control
blocks beleng to the critical path.

2. WHILT {cach contrel block)

3, IF (the innermast control structure in the conirel block
is an AND or OR)
Select a path with the longest average execinion
time in the control structure.

4. [[F {the innermost control structere in the control block
is a LOODP)
Transform it into a sequential control structure,

3. IIF {a sub-critical path of the control block is not yel

determined)

GO TO 3.
}

6. The critical path is ohlained by combining all the suberitical
paths.
Figure 2. ICSF Algorithm
B B W,
2y Ap() e _

e SRRV e

- (TP

Figure 3. AND or OR Control Structure

[CSFE, there arc twa control blocks in Figure 1: an AND and
OR control block. Innermaost conteol structures are OR and
LOOP, respectively. We first delermine a sub-critical path
in the OR conirol structure and transform the LOOP into a
sequence. After determining sub-critical paths for two con-
trol blocks, we can find out the eritical path by combining
all the sub-crilical paths,

4, Deadline Assignment Method

Under the high arrival rate (or requesting workllow ser-
vices, the time that a work{low instance waits [or the service
at an activity is usually much more longer than the time that
the instance is served at the activity. If we allocate activily
deadlines without considering the waiting time, many waork-
Mow instances will not meet their deadlines to be finally cs-
calated, which may well degrade workflow throughput. In
this respect, we propose a new deadline assignnient method
called Proportionai to the Sojourn Time (PST) using the
average execulton time in an activity and considering the
characleristics of work({low control structures. Because an
aclivity basicalty needs its scrvice lime, PST determines the
static deadline of an activily by means ol giving the activity
some additional slack lime adding to its service lime.

361



Definition 4.1 Workflow slack time = Workflow deadline -
Longest qverage execution time among workflow paths

Eventually, our PST divide the workflow slack time among
activities in proportion to their average execution times,
which means that the workflow slack time is cqual to the
sum of all activity slack times. In the following, we cxplain
the PST method with in-depth analyses for workflow con-
trol structures.

STEPL: Transform a nested worklow into a sequential worklow nsing
{he execution time of an activity
WHILL {for all conwe! blocksh {
1. IF (the innetiostcanirol sirgcture is a 1O}
- Transform the LOOP into o sequence
- Subsitute an activity for the sequence
2, 1F fihe innermwst contrel struclare is an ANIY or OR)
< Inan AND or OR with n paths, transform each path
into an activity
- Transformr paths inle an activity
A 1F {there ¢xist any control bloeks ned to be eanstormed inta
an achivity)
GOT ]

H We obtain a new sequential workflow, *f

STEP?: Reallocare activity slack thues
4. Allucite the workllow slack time to nerivities of U sequential
workflow in praportionts their execution times
WIIILE (for all uctivities corresponding to comral blocks in the original
nested warkflow) {
5. IF {the outermost contral simelure to whicli the activity sluck time
is ek reagsigoed yetis 2 LOOP in i conteol block)
- Divide the slack Hine woknig activitios, which belong te
the sequence transformed from a LOOP in STLIEPT,
in preparionto their execution times
f, I fihe oulermost control structure to whict (he acdvity slack time
is not reassigned yetis an AND or OR
in a control hleck)
« Egually allocate the slack time as the rotal slik time of each
pathi in an AMD or OR
- Tneach path with o sequence, divide its skack time anong
activities in propartion ta their execulion Hmes
7. IF (thers exist control struclires o which the slack time s ned
reassigned)
GOTOR

Figure 4. PST Algorithm

The PST algorithm is composed of two steps as in Tig-
ure 4. STEP! transforms a nested workilow into a workiflow
with only a scquential control structure. With 1his sequen-
tial workflow, we divide the workMow slack time among ac-
tivities in proportion to their execution times in STEP2. In
this process, slack times ol activities corresponding to con-
trol blocks or workflow control structures are reallocated to
aclivities within them in the reverse order of the transfor-
mation. Figurc 5 shows the result of STEPL which is the
sequential workflow transformed [romn the nested workflow
depicted in Figure 1, AND and OR control blocks are re-
ptaced with activity 71 and 1'2, respectively, by the WHILE
of STEPE. Figure 6 explains the process of transforming the
AND control block into activity 2" and reallocating the ac-
tivity slack time to activities within the control block in the

362

D3y ’G% B A «% G

Figure 5. Workflow transformation

T*  Trantiik @ eotral Biock ink3 st aciwiey (STERDD

et Retllacabe bha acklvlby slace i (STERD)

Figure 6. Transformation and reassignment

reverse order of the wansformation. During STEPL, activity
4 and 5§ of the inncrmost OR control structure are first trans-
formed into activity ¢1. And then, two scquential conrtrol
slructures are translormed into aclivity ¢2 and 3, respec-
tively. Finally, we can abtain activity T'1 corresponding to
the control block by transforming activity £2 and 43 into 7'1.
The OR control block can be also transformed into activity
T2 in the same process as the AND control block.

STEP2 starls with the scquential workélow from STEPI.
First, we distribute the workflow slack time among activi-
tics which belong to the sequential workilow in proportion
to their execution times. For cach activity corresponding to
a control block, e.g., activity T1 and 72 in Pigure 5, we
reallocate the activity slack time to activities included in
the control block. After all, we can distribute the workflow
slack time among all activities wilhin a nested workflow and
determine their static deadlines. Next, we demonstrate how
to trans[orm sequence, AND, and OR control structures into
an aclivity and a LGOI into a sequence. These are cssential
for the PST algorithm, as shown above.

Sequential Control Struocture:

In STEPI, a sequential control structure composed of »
activities is transformed into activity ¢ as in Figure 7. For
the transformation, we must delermine the servicerate ¢ of
aclivity # satisfying that the average execution time of activ-
ity t is cqual 10 that of the sequence. Because the average
exscution time is W = L—_I_T in a MM/ with the arrival
rate A and service ratc g, the average execution time of a
sequence is the sum of the average execution times of all
activities included in the sequence [8]. Hence, when the
average execution time of activity ¢ is Wi = —— {i =
1,’...‘ n), the service rate ,u' of activity t can be obtained as:

p o= ﬁ + A from T, Wi = ;;;3_-; On the other



A == @
" i* e

I

Figure 7. Transformation of a sequence

T =)

u,

/4»
A

{)l_ — .1@ 1‘.@ 1@

‘“-t;;@rn,

Figure 8. Translormation of an AND control
structure

hand, we divide the slack time allocated to activity £ among
1 activities of the sequence in proportion to their average
cxccution times.

AND Control Structure: .
Beenuse cach sequence path in an AND contrel struc-
wre can be transformed into an activity, we just consider
an AND with a single aclivity per path as in Figure 8. In
STEPI, an AND control structure is transformed into an
activity which has (he same average execution time as the
AND, Since n sub-requests of the AND must be synchro-
nized at the AND join aclivily, ic., aclivily b, the average
exeeution tinic of the AND is dependent on the longest exe-
cution path. Let random variables on the average execution
times ol activity 1,2, ..., n in Figure 8 be Xy, Ya, ..., X,
respectively. With the average execution time Wy = —4 5
for activity #, the probability density function {5, (£) ()[ LY
is fa () = 1 — e~ 062t 4 =1, n When YV is a ran-
dom variable on the average excoution iime of the AND,

Y = moex(XNi, X, ..., Xp) ond the distribution function
Ghy () ds
Gy(x) PY < 2)

Plaae(X), X, o, X <)
PNy <, XNe <, Ny <)
(Lm g7 W01 o T W3 (L c7 )

After all, we can estimate the service rate g of activity
£ which is corresponding Lo the AND control structuce in
Figure 8 using the average cxecution time of the AND,
ElY] = ;71 — Gy(e)de. Because of B[Y] = - I").“
“, = .,,[,l + A. Tor the slack time reallocation in STEP2
we give activity 1, 2, ..., » the same slack times as activity {
because each path in thc AND is performed independently.

OR Control Structure:

We just consider an OR control structure with a single
aclivily per path by the same reason as an AND, In Figure
9, an OR control siructure is transformed into an activity
during STEP!. The average execution Lime ol activity ¢ is

363

[

}O,Anﬁ(j::é\

A s P —2
OR\K & :
l

Pl

Figure 9. Transformation of an OR control
struciure

Figure 10. Transformation of a LOOP control
structure

Wi = wnh the service rate g; and arrival raie P;A.
When { is ¢l ldmlmn variable on the average execution thne
of the OR, ¥ has a hyper-exponential distribution with the
I . . . R
probability density function A (1) = 5.7 - e W We
can linally obtain the service rate ;1.: of activity ¢ from the
average cxeculion Limn, of th OR, FIY] = S0, W
senuge of By _ 1

Because 0{. EY] = = ’\, W= mt A. Under STEP2,
the slack lime assigned to activity ¢ is equally allocated 1o
activity 1,2, .., n.

LOOP Control Structure:

Since each aclivily in a LOOP conirol struclure is con-
sidered as an independent M/M/T as mientioned in scetion 2,
we can transiorm a LOOP into a sequence in STEP]. Be-
cause of the feedback in Figure 10, the arrival rate A of the
LOQOP is stated as: A = ; fromA = A-F (1 —p)a.

I g1, 2,0, pooaire the average number of service re-
quesls slaying at activily 1, 2, 1, respectively, g =
A | L, 0. Henee, the average execution lime K5

of the LOOP is JL‘[H]: (10 v+ o+ pa) &

= _)\ 4 wul—)\ Ty I_A » whichis cqual to the aver-
age execulion lime ol the sequence composed of i activitics
with the arrival rale A and service vale pyg; of activity ¢ as
in Figure 10, A LOOP control structure can, thercfore, be
translormed in a sequential control structure. In addition,
Figure 11 shows thal our transformation is corvect.  Dur-
ing STEP2, the slack time ol an activity in the sequence is
cquilly allocated to its corresponding activity in the LOOP,

5. Experiments

When delermining the activity deadline, the PST methotl
is hased on the average execution time in an activity, which
may implicitly consider the workload at the activity. This
means that we analyzed and reflected workllow bottlenecks



45 =
L1l
=5 ~o—esiknation of 4 fransfarmed sequent @ structure
I —x— gimuladan of a LOOF struciure
& n
@
£ .
E H
E Hl
2
£
1
5 }___,a_fsﬂ»—“"?
[

1 1.9 2 25 1 35 4 15

arnval raftnumbar of service renuasts/sec)

Figure 11. Estimation of transforming a LOOP
to a sequence

in the activity deadline assignment. In the experinients, we
compare our PST with four previous methods, UD, LD,
1EQS, and 13QL after shghtly adjusting EQS and FQ 10 the
stalic deadline assignment method withoul the information
loss. Figure 12 is an example delermining static activily
deadlincs by the policies of UD, ED, EQS, EQYY, and our
PST, based on the workow schema, In this example, UD,
ED, EQS, and CQF consider the average iteration of activity
10 for the LOOP, i.e., two iteralions.

In Figure 13 and 14, aclivity deadlines determined by
the PST method arce all hard deadlines which means that s}
work(low instances will be escalated il they canmot meet the
deadlines. Figure 13 shows the number of cscalated activ-
itics for cach deadline assignment method. We can notice
that UD, FID, EQS, and EQF comparcd to PST may csca-
Tate workflow instances after many workflow activities have
already been completed, which may require high escalation
costs. Figure 14 depicts workflow throughput, ihe number
ol completed workflow instances satislying their deadlines,
for cach deadline assignment method. Our PST method can
suppart higher throughput than other methods in most cases
with less escalation.

Table 1. Workflow Throughput according to
Escalation Policles

) # of workflow instauces
Arrival rate :!au{s‘Eyl:;;}:i::vée;gls::g:es ;;::i!;fying hardfsoft dead-
2 #0035 §322
4 7700 R1ID
[§ 1614 TOR0
8 7517 7028
1o 4059 a6idd

On the other hand, Table 1 shows the number of work-
flow instances completed timely of 10000 workflow in-
stanges, ic., workllow throughput under the two differ-

364

P=_f5/'®“x_, //@‘*@\__‘ N A-gens
O 1B @i @ <0
1-p ‘3‘5‘*@/”’ '“““--’/ =
[TAcfivity [ Service Time_| Deadlins{UD) | Deadline{ED) |
] 005 see Ssee 1854ec
2 03ser e 4053ee
3 Ol see Gser 405 soe |
4 0.2 5ee 5sen 425580
3 005 se¢ Sasen 43srr
& [ Fsee 44 sec
7 0.1 sce S5ac0c d5s5¢0c
8 0.1 scc T Saer 45 sec
9 02 acr Ssee A ene
10 0. scc Ssa0 | 4B aae
11 02 sen dsee | Saee
Activily | DeadlinetiQ®) [ Deadline(EQF) | Deadiine(PST)
[ 1 O.ddl see 0.192sec | (Ll aee
T3 1072 see D961 s 0561 scr
3 072 sk 0.961 sec 0.361 s¢e
4 V685 ser 173 sec [ T553sec
5 Zladsec | 192Taec 1633 sec
[ 2.655a¢ec 2307 s5¢c | T8sRsec
7 |7 3i66sce 2692 sec 2123 s6r
| & b sec T69%sec | 2123scc
B 3T e JidbTsec | 1.H8sec
10 $ I8 s 423 gec 4007 aee |
__n Saec TEEC [ Sace

* Workflow Deadling = 5 sec * Warkllow Slack Time =38 e

Figure 12. Activity Deadline Allocation

ent esealation policies about aclivily deadlines in the PST
method. One is that all activity deadlines are considered
as hard deadlines, so all workflow instances not 10 meet
aclivity deadlines are cscalated. The other is that activity
deadlines are divided into hard and sofi deadlines vsing (he
concept of critical and non-critical activitics mentioned in
section 3. In case of soft activity deadlines, workflow in-
stances can continue to perform their works even il they
migs soll activity deadlines. The escalation policy distin-
guishing between hard and soft activity deadlines can somce-
what reduce the possibility that some workflow instances
being cotnpleted timely in the Jong run may be escalated
due to missing the soll activity deadline. Consequently,
workflow throughpul can be improved if more appropriate
escalalion policies arc applied.

6. Conclusion

Many business processes have time properties, which re-
quires new time management technologics appropriate to
work (lew system enviromments. One of the most fundamen-
tal time management in a workflow s to manage workflow
and activity deadlincs. Because the worklow deadfine is
hardly changed in general, the way to assign activity dead-
lines effectively has been studied in many materials with
the objective of improving workflow throughput and perfot-
mance. Recently, the explosive increase of workflow users



EEE

of escalated @
- & B

anlval rate

Figure 13. The number of escalated activities

55

&

tnrcugnpaX)

]

arival rate

Figure 14. Worlkflow throughput

takes this issue more important,

In this paper we propose an cflective scheme to improve
warklow throughput by wmanaging activity deadlines. First,
we divides activities into Lwo groups, 1.c., a critical and non-
critical activity group using the ICST algorithm o find out
the critical path in a workllow, The PST algorithm then
delermines static activily deadlines using queucing theory.
If an activity belongs to a critical or non-critical activity
group, it has the hard or soft deadline, respectively. Accord-
ing to the activity group, we can apply various escalation
policies to improve workflow throughput. The usefulness
of our scheme wag shown through various experiments. For
the further work, the cscalation cost model appropriate to
work{low system environments needs 10 be delined.

References

[11 R. L. Diisnay. Qucucing networks, American Mathematice!
Society Proceedings of Symposivm in Applied Mathemaiics,
1981,

J. Eder, F. Panagos, and M. Rabinovich. Time constraints
in workllow systems. Conference on Advanced Inforination
Systems Engineering, pages 286-300, 1999,

B. Kao and 11, Garcia-Molina. Deadline assignment in a dis-
tributed soll real-time system. Ir Proceedings of the {3th
International Conference on Distributed Computing Systentis,
pages 428-437, 1993,

P. Lawrence. Workflow Handbook 1997, John Wiley & Sons
Lud, 1997,

12]

[3]

[4]

(5] E. Panagosand M. Rabinovich. Predictive work flow manage-
ment. The 3th lnternational Workshop on NGITS, 1997.

161 L. Panagos and M, Rabinovich. Reducing escalation-related
costs in wimss, Mt NATO Advanced Study Institute on Work-
flow Management Systems and Interoperability, pages 106-
128, 1997,

[71 1. H. Son and M. TL. Kim. Improving the performance of
time-constrained workilow processing.  Jowmal of Systems
and Software, appearcd.

[8] R, W. Wollt. Stechastic Modeling and the Theory of Queres.
Prentice Tlall, 1989,



