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ABSTRACT

This paper proposes an efficient ordering method for
solving the state explosion problem in compositional
verification of discrete event systems. A system to be
verified is specified by untimed DEVS (Discrete EVent
system Specification) formalism. The size of the inter-
mediate state space during the compositional verifica-
tion is dependent on the sequence of composing sys-
tem components. Application of this method to some
classical verification problems has shown that the size
of the intermediate state space during composition is
markedly reduced.

1 INTRODUCTION

Man-made dynamic systems are no longer described
or analyzed by the ordinary or partial differential
equations. Examples of such systems are com-
puter/communication networks, manufacturing sys-
tems and various forms of plant-controller systems.
These systems might have safety critical abnormalities
such as deadlock, race condition or violation of the mu-
tual exclusive access that might result in an enormous
damages or even to death. So the importance of prov-
ing the functional correctness of these systems arises
and several models have been proposed to analyze such
abnormalities.

Verification is a confirming process to check
whether the implementation meets the specification or
not. It is an indispensable process for high quality and
reliable system development. An analysis technique is
called compositional if the results of analyzing subsys-
tems can be merged together to obtain the analysis re-
sults for the complete system. Thus the compositional
verification method, which consists of a sequence of
successive composition and concealment of the inter-
nal local events, could be a promising approach to at-
tack the state explosion problem. Hence the size of
the intermediate state space is dependent on the or-
der of composing system components, a good ordering
method is required to fullfil a fast and efficient verfica-
tion process.

The proposed method finds a good composition or-
dering by which the intermediate state space can be
significantly reduced. Our ordering method is based
on two metrics which are independent: number of the
internalized events between the components and num-
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ber of the observed events associated with a system
property. Application of the method to some classi-
cal verification problems has shown that the size of
the intermediate state space during composition was
markedly reduced.

This paper is organized as follows. In Section 2,
we describe our verification framework including the
models of computation and related operations. Sec-
tion 3 presents our composition ordering method and
shows the experimental results. Finally we conclude
this paper in Section 4.

2 CDEVS COMPOSITIONAL
VERIFICATION FRAMEWORK

In this section, we introduce our compositional verifi-
cation framework which is based on the new CDEVS
formalism.

There are two elementary models in the verifica-
tion process. One is an operational model (or behav-
ior model) which describes the behavior of a system.
The other is an assertional model (or property model)
which specifies a property of a system. As described
in Figure 1, both the models are represented by the
CDEVS formalism in our framework.

The CDEVS model, newly proposed one for the
analysis of DEVS models, is slightly augmented from
the DEVS|8] to support following two point of neces-
sity which are inevitable for our verification framework.
The one is the capability for nondeterministic repre-
sentation of a system behavior. The repetitive compo-
sition and minimization operations in our framework
converts a deterministic model into a nondeterminis-
tic one. This fact was the basic motive to propose the
CDEVS formalism. The other is for the closureness
property under two operation, i.e. composition and
minimization. The CDEVS formalism together with
the two operations provides a systematic and sound
means for our compositional verification framework

To show that a given specification is satisfied by the
implementation model, it is usually sufficient to con-
sider an abstraction of the global state space, because
much of the internal communication and interactions
are irrelevant from the observer’s point of view. This
abstraction may lead us to reduce the state graph dras-
tically small compared with that of the original one by
collapsing semantically equivalent states into a single
representative state.
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Figure 1: CDEVS Compositional Verification Frame-
work.

It is called an interest event that is important and
should not be projected out during the successive com-
position and minimization processes. The set of in-
terest events are said to be Interest Events Set (IES).
IES is constructed from the assertional model and both
the composition and the minimization operations are
" ‘dependent on it. For example, let’s assume we want
to show a philosopher could always eat the spaghetti
whenever he tries in the classical dining philosopher
problem. It is sufficient to reduce the model with re-
spect to the events of his own while projecting out
those of the others and then to verify the property is
satisfied at the reduced model.

2.1 Models of Computation

Models developed in a DEVS formalism could be au-
tomatically transformed into a CDEVS models. Func-
tional correctness are verified within the CDEVS
framework while the performance issues related with
time could be treated using the simulation packages
such as DEVSim++(4], which is a realization of the
DEVS formalism and its associated abstract simulator
algorithm in C++.

“The most outstanding feature of the DEVS formal-
ism is the specification of discrete event systems in a
hierarchical and modular form. Two types of models
called atomic model and coupled model are specified
within the DEVS formalism. Atomic model, which is
not broken into a smaller one, specifies the behavioral
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aspect of an entity. Coupled model specifies the con-
nectivity relation among the models, thus to form a
new model using the predeveloped ones.

Because the CDEVS is devised for the purpose of
system analysis, it need not have hierarchical cou-
pling information. The coupling information among
the models is flattened and transformed as the Cou-
pling Relation (CR), which specifies the coupling infor-
mation among the CDEVS components. The coupling
relation CR is of the form.

CRCMxY; xMxX;
where
M: component models set,
X;: input events set of the ith component,
Y;: output events set of the sth component

An element of the coupling relation (m,, y1,ms, z3)
means the connection from an outut event y; of a com-
ponent m, to the input event z5 of a component mo
There are two assumptions for the coupling relation.
One is that an input event comes from only one source;
that is, an input event is uniquely connected to one
output event of another process. While, an output
event of a process can be connected to multiple of in-
put events of processes. The other is that a self-loop
connection is not allowed; i.e., an output of a process
can not be coupled with an input event of the process
itself.

The CDEVS formalism which specifies the behav-
ior of each component models is as follows The inter-
nal transition funciton &;,; together with the output
transition function A of the DEVS formalism are sub-
stituted as internal transition relation denoted by Tin,.
T is an internal hidden transition changing the current
state to another state invisibly.

Definition 1 (CDEVS)
CDEVS = < X,Y,Q, beqt, Tint >
where
X : input events set,
Y : output events set,
Q: composite states set,
Sezt + @ X X — Q, external transition function,

Tint € Q x (Y U{r}) x Q, internal transition relation,
where x means no external output events happens.

2.2 Communicating Semantics

Various formalisms have been developed and studied
for the modeling, analysis and synthesis of discrete
event systems. Notable among them, the concur-
rency theory including CCS[5], CSP{3] et al. is one
of the successful. In their context the interaction be-
tween the processes and the environment is modeled
by parallel composition with a specified degree of event
synchronization. Heymann has classified the interac-
tions between the processes into three categories: strict



synchronization, broadcast synchronization and prior-
itized synchronization(2].

Strict synchronization restricts the shared events
to be either executed by both processes concurrently
or by none. Under the broadcast synchronization each
process can generate their events for execution and the
other process will participate in their execution syn-
chronoulsy if it can. But if it cannot, the initiating
process execute the event alone. For prioritized syn-
chronization refer to {2].

Most of the formalisms that have been defined and
investigated in the literature rely on some framework
of strict synchronization. In their framework, an event
with the same label of distinct processes must either
happen altogether or be disabled waiting all the other
processes to be ready to execute it. This restric-
tion makes those formalisms inherently inadequate for
modeling the interaction of discrete event processes in
which the spontaneity is an essential behavioral fea-
ture. For example broadcasts to the world (as in Ether-
net protocols) are not easily modeled by the formalisms
based on strict synchronization(6].

In our CDEVS model which is based on set-based
system theory, events are classified into three classes:
input, output and internal. Every input event is asso-
ciated with its causal output as specified in the cou-
pling relation. It occurs in a passive form, intiated by
an output of the other process. Processes can sponta-
neously generate either an output or an internal event.
No process could block the generation of an internal
or an output event of other processeses. A process has
only two choices; either accept the generated output
event as its input event and transiting to other state
if it can or simply stay at the same state not inter-
fering the execution of it. Therefore the interaction
between our CDEVS models conform to the broadcast
synchronization of the Heymann'’s classification.

2.3 Operators for Analysis

When two or more components are interconnected and
executed, its behavior is quite complex than that of the
single component. To prove the functional correctness
of a system we need to check all the behaviors gener-
ated by the composite model. But if we are interested
in only on the sequence of events which are sufficient
to prove our property named interest events, it is pos-
sible to keep the size of the intermediate state space to
be much smaller than that of the conventional compo-
sition method.

Consecutive composition and minimization yield a
compact CDEVS model which is observationally equiv-
alent with the original system which consists of several
components.

2.3.1 Composition: Two CDEVS models can be
composed to yield another CDEVS model which ex-
hibits the same behavior. It is a process of constructing
a new model from the given two models employing our

communicating semantics, broadcast synchronization.
Composition is defined as follows

Definition 2 (Composition (M) ||cr M2))
The composition operates on two CDEVS models, M;,
M, and on coupling relation CR, constructing a new
CDEVS as
CDEVS = < X7Y7Q1581t1n’nt >
where
X C Ui 0 MiY
YCM.YUM.Y
QC M.Q x Mz.Q
Oext: @ XX - Q
Tine CQx(YU{r}) xQ

Two component models in Figure 2 are composed
to form a new model shown in Figure 3(b). The cou-
pling relation used in the composition is specified in
Figure 3(a).

The line between two nodes means an external tran-
sition and the dotted line denotes an internal transi-
tion. “I” “?”  “*” mark specify the type of an event,
i.e. output, input, and internal event, respectively.

b) CDEVS model: fork

Figure 2: component model: phil, fork

A transition which is synchronized between the two
components and do not influence other models is re-
named as an internal hidden transition. The event
“*fl.usel” at the composed model is such one. An
output “usel” of the component “f1” does not influece

I —808



other compoents except the component “pl”. Thus
it is remarked as an internal event in the composed
model.

CR = {(p}, req, f1, reql), (p1, req, f3, reqr), (p1, rel, f1, rell), (p1, rel, f3, relr),
(p2, req, 2, req), (p2, req, f1, reqr), (p2, rel, £2, rell), (p2, rel, f1, relr),
(p3, req, 13, regl), (p3, req, 2, reqr), (p3, rel, f3, rell), (p3, rel, £2, relr),
(f1, usel, pl, user), (f1, user, p2, usel), (f2, usel, p2, user),
(f2, user, p3, usel), (3, usel, p3, user),(£3, user, f1, usel)}

a) coupling relation

b) composed model

Figure 3: coupling relation and the composed model:
pf

Composition also deletes the coupling relations re-
lated with the models used in the composition and adds
new coupling relations which specify the coupling be-
tween the newly constructed model and the other com-
ponents. An event which belongs to the IES should
not be internalized at all during the composition, even
if it could be. It is still marked as an output event.
Therefore its occurrence is always observed. The more
internal transitions a model has, the more reduction is
possible at the minimization operation. The successive
processes involving both the composition and the min-
imization transform the overall system into a compact
CDEVS model whose events set is the interest events
set.

2.3.2 Minimization: Minimization is an opera-
tion to collapse the equivalent states into a represen-
tative state. The equivalent states exhibit the same
observable behavior.

A notable fact in the minimization operation is
that it should guarantee the behavior of the minimized
model to comply with that of before minimization.

Definition 3 (Equivalence Relation(x))
Two states s1 and s are equivalent denoted by
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$1 & s2 if and only if
'
ly
1-1) whenever s; — si,
* 1
for some sb, sy — N sy and s} ~ sh
7z
1-2) whenever s; — s},
z
for some sh, s — s and s} = s}
T
1-3) whenever sy — s},
T *
for some s, so — sh and sy = s
]
2-1) whenever sy —2 sb,
f Ty, dsl s
for some si, s1 — — 8} and sy = 57
gz
2-2) whenever sy — sb,
' [N} ds ~g
for some sy, s; — 57 and sy R )
T
2-3) whenever s5 — s},
T *
for some si, s — s} and sy ~ s}

The notation —= in Definition 3 means that ar-
bitrary number of internal transition = might happen
including zero time. The equivalence relation is reflex-
ive, symmetric and transitive.

In Figure 3, nodes in the same dashdotted line are
all equivalent sates. Here let’s just consider the two
state (3,3) and (4,4). The state (4,4) generate the out-
put event “Ipl.rel” before it reaches the state (0,5).
The state (3,3) enters the state (4,4) but it has no
interaction with any outside component models untill
it reaches (4,4). Thus the coupling “*fl.usel” can be
localized from the viewpoint of the outside model.

3 COMPOSITION ORDERING
‘ STRATEGY

The intermediate state space which is generated in the
middle step of the incremental compositional process
can be varied according to its composition ordering.
In the dining philosopher problem, a philosopher has
interactions only with its neighboring forks. Thus com-
posing the philosophers all together, the forks alto-
gether and then composing these two models results in
large intermediate state space. Therefore the ordering
in which the philosophers and the forks are composed
first and then the neighboring pairs is preferable.

In this section, we suggest an composition ordering
strategy which probably reduces the intermediate state
space much smaller.

3.1 The Notion: Level of Interaction

Consider composing of the two model M; and Ms, in
which the number of states are N; and Ns, respec-
tively. The number of states of the composed model
M can vary in the range from maz(Ny, N2) at least
to N7 X Ny at most. The minimum size arises when
two models are tightly coupled and synchronized with
each other at each state. While the largest size hap-
pens in case the two models have no coupling relations
at all just exibiting true independency. Thus we can
derive a notion of the Level Of Interaction (LOI) like



follows. Where N is the number of states of the com-
posed model of M; and M,.

Definition 4 (LOI)

N — max(Ny, N3)

Lor= N1 X N2 —mam(Nl,Ng)

The variable LOI is zero when there is no inter-
ations at all between M; and M, and one if they
communicate in the most synchronized manner. Com-
posing the models in which the value of LOI is high
can result in much reduction of the intermediate state
during the overall compositional process.

The following principles should be kept to increase
the LOIL.

1. Components which have many events that can be
internalized are better to be composed first. A pair
of events which have interactions only between the
two models are remarked as an internal one after
composition. Because the minimization operation
can be more effective with many internalized event,
the composed model are likely to be reduced much
smaller if it has many internalied ones.

2. Symmetric and even composition is prefered. Com-
position tends to construct a new model which has
larger states than that of before in most cases. A
model which has experienced many composition op-
erations charges higher cost than others. Earlier
researchers(7] reported that symmentric composi-
tion with hierarchical compression techniue is very
efficient.

3. The models which contain many interest events are
better to be composed later. An event which be-
longs to IES is an observed one not reduced until
the final step of the compositional process. Thus,
in this case little state reduction is carried at the
minimization operation.

3.2 Experimentation

Let’s a composition ordering denoted by O =
C1,...,Ciy-..,Cn means that it consists of n composi-
tion steps and the i’th composition is ¢;. Assume that
¢; produces a composed model m; after composing the
two model m;; and m; 3.

Two heuristic functions were defined to decide the
goodness of the ordering. These functions estimate
the level of interaction. The larger is the value, the
more reduced is the state space at the minimization
operation.

They estimate the degree of the state reduction for
a given ordering without conducting the actual com-
position and minimization operations.

h1 function measures LOI using the number of in-
ternalized events betweeen the components for a com-

position step. For a composition step it is defined as

(mi1) + e(ms2) — e(my)
depth(c;)

hl (Cl) = ¢

where e(m) means the total number of input and out-
put events, and depth(c;) is the depth of the com-
position. All models before any composition have
depth 1. The composed model m; after composi-
tion of the two model m;; and m;2 has the depth
maz(depth(m;,1),depth(m;2)) + 1. Composing those
models which have much interaction later results in
larger composition depth indicating a bad ordering.

he function was designed to measure the compli-
ance of the third principle in previous subsection. It
suggests that the models which contain many inter-
est events should be composed later. The minus sign
means that the smaller absolute value of hy denotes
the better ordering.

ies(m;)
ho(e;)) = ——~.
2(ei) depth(c;)
Where ies(m) is the number of interest events.
Now H; and Hj, are defined as the metrics for a
composition ordering.

Hy(Ox) = Zm (c:)
Hy(Op) = th(ci)

Now, we are to show the effectivenss of our method
by applying it to the dining philosopher example in
which six philosophers and forks are engaged. Figure 2
shows the elementary component models used in our

~ experiment. Our model is more complex than that of

Ben-Ari{l]. The fork always permits the first philoso-
pher to use itself if it has receives requests from both
neighboring philosophers.

To show that a philosopher can always eat the
spaghetti whenever he requests, two event, reg and rel
of the first philosopher model were selected as the in-
terest events. Figure 4 shows the final result of the
successive composition and minimization process. We
can easily verify that the philosopher can always eat
the spaghetti whenever he tries to eat by sending re-
quests to forks in our model.

pl.req

pl.rel
Figure 4: Finally Reduced Model.

Four composition orderings were compared and
each ordering is shown in Figure 5. Table 1 shows the
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values of Hy, Hy functions together with the largest
size of the intermediate state space generated during
the successive composition and minimization process.
H; function is more crucial than H, to select a good
ordering. We recommend H, to be used as the primary
metric and H, as secondary one.

The Ordering4 reveals the reckleness of composing
the components in an arbitrary order. It was impos-
sible to compute the final composed model after fol-
lowing the Ordering4 in our experiment. As the result

shows our metric function could be effectively used to

choose a good ordering without employing the time
consuming composition and minimization operations
in advance. The computing time spent during the pro-
cess was also proportional to the size of the intermedi-
ate state space.
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Table 1: The Experiment Results
Ordering Number of int. state H; H,

Orderingl 187 243 2.7
Ordering2 121 213 -1.7
Ordering3 427 14.7 -29
Orderingd  more than 531441 0 -3.83

4 CONCLUSION

Our compositional framework is based on CDEVS for-
malism, a newly defined formalism for the analysis of
the DEVS models. The DEVS formalism has been de-
veloped and investigated in the simulation areas. Qur
framework shows that the DEVS could be a unified
formalism supporting both the performance evaluation
and the logical analysis of discrete event systems.

In this paper an effiecient ordering method for com-
positional verification has been suggested. The inter-
mediate state space during the stepwise composition
and minimization process in the compositional frame-
work is much dependent on the composition ordering.
The experiment shows that our method could be effec-
tively used to choose a good ordering thus saving much
computational memory and time.

Currently, the complexity of the algorithm used in
our minimization operation is very high. Development
of a fast algorithm for it remains as a future work.
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