A Concurrency Preserving Partitioning Algorithm for Parallel Simulation of
Hierarchical, Modular Discrete Event Models

Ki Hyung Kim
Department of Computer Engineering
Yeungnam University
214-1 Dae-dong Kyungsan-si, Kyungsangbook-do 712-749, Korea.
khkim@coregate.kaist.ac.kr

Tag Gon Kim and Kyu Ho Park
Department of Electrical Engineering
Korea Advanced Institutes of Science and Technology
373-1 Kusong-dong Yusong-gu, Taejon 305-701, Korea.
{tkim kpark } @ee kaist.ac kr

Abstract

This paper presents a concurrency preserving partition-
ing algorithm for the optimistic parallel simulation of hi-
erarchical, modular discrete event models. The proposed
algorithm pursues the following three goals to achieve the
overall objective of the minimum simulation time: (1) bal-
ance the computational loads of partitions, (2) maximize
the parallel execution of independent models, and (3) min-
imize inter-processor communication. To estimate the par-
allelism inherent in models, the proposed algorithm utilizes
the inherent hierarchical structural information of DEVS
models. This paper describes how the proposed algorithm
works through an example partitioning process.

1 Introduction

Parallel and distributed simulation (PADS) has been an
active research area for more than a decade. As identi-
fied by previous performance studies of PADS, the parti-
tioning problem of models is one of the most important is-
sues that may affect the performance of parallel simulation.
Thus, finding the best possible partition of the model for
obtaining the fastest simulation time has been the goal of
many ongoing research efforts. Much research has been
conducted for devising partitioning strategies for the par-
titioning problem([1]. Basically, the partitioning problem
in parallel simulation belongs the class of NP-complete
problems[1] if we want to utilize perfect knowledge about
simulation, such as the sequence of events that have to be

0-8186-7901-8/97 $10.00 © 1997 IEEE

204

executed to simulate each process, the duration of each
event, the precedence imposed by event messages, and an
optimal schedule for execution of events. Looking at the
problem practically, it is not possible to accurately predict
such knowledge as the sequence and duration of run-time
simulation events at compile time. In addition, there is
no known polynomial algorithm to evaluate goodness of
a partitioning even if sequence and duration of simulation
events could be predicted based on compile-time informa-
tion. Thus, polynomial time algorithms that find a partition
which is near-optimal based on incomplete information at
compile time would be the reasonable.

This paper proposes a new partitioning algorithm
for parallel simulation of the models specified by the
DEVS(Discrete EVent Specification) formalism{5]. The
proposed algorithm is based on the simplifying assumption
which adopts the following three goals to achieve the over-
all objective of the minimum simulation time: (1) balance
the computational loads of partitions, (2) maximize the par-
allel execution of independent models, and (3) minimize
inter-processor communication. To estimate the parallelism
inherent in models, the algorithm utilizes the hierarchical
structural information of models.

The remainder of this paper is as follows. Section 2 ana-
lyzes the partitioning problem of the optimistic parallel sim-
ulation in general. Then, in section 3, we derive the above
mentioned three goals of the partitioning and propose the
hierarchical partitioning algorithm. Finally, section 4 con-
cludes this paper.

2 Partitioning Problem in Parallel Simula-
tion

In this section, we analyze the characteristics of the par-
tition problem in the parallel simulation. We assume that
the underlying simulation algorithm is an optimistic one
with the time window which is an interval in simulated time
such that only events within the window are eligible for
execution[2, 4].

A simulation task, 7, performs one of the following ac-
tivities during simulation.

1. True computation, T;, which is the simulation cy-
cle that will never be involved in roll-back process.
True computation under optimistic parallel simula-
tion consists of two parts : model execution time (M)
and state saving time (.5;).

Local synchronization, L;, which implies either one
of the following three simulation cycles: (1) a simu-
lation cycle that will eventually be rolled back (false
computation, or F}), (2) a roliback upon receipt of a
straggler message (R;), and (3) an idle cycle during
which no work is performed (I;).

Global synchronization, G;, which manages global
simulation progress (e.g., GVT calculation, flow con-
trol, and memory management efc.).

Thus, the total execution time for processor ¢ under a parti-
tioning P, ETp,, could be expressed as follows,

Vi, ETp, =T; + L, + G; (1)
=M;+Si+F+R+L+Gi. (2

Note that
Ti+Li+G=T;+Lj +G;, Vi,j. 3)

Speedup is defined by the execution time of the sequen-
tial simulation divided by that of the parallel one. Se-
quential simulation does not perform any operations re-
lated to parallel simulation specific operations, such as state
saving(S), local synchronization (L), and global synchro-
nization (G). Thus, in the equation (2), the only operation
performed in sequential simulation is the model execution
time(M), which is unique regardless of simulation method-
ologies (parallel or sequential) and partitioning algorithms.
The total execution time for sequential simulation, ETg,
can be expressed as follows,

m-1

ETs = () _ M)

2=0

@

205

, where m is the number of processors(or partitions) used in
parallel simulation. Then, from equation (2), (3), and (4),
speedup can be represented as follows,

m-1 _
(ZMi)/(Mj+Sj +F;+ R+ I; + G;), foranyj.
=0 (5)

To achieve a maximum speedup, a partitioning algorithm
should minimize each item in equation (2). In equation (2),
M is the only useful computation for simulation of models.
Thus, we define the average model execution time, M.,
as

m—1

Mayg = (ZMz)/m

==

(6)

, where m is the number of processors.

The state saving time (S) and global synchronization
time (G) in equation (2) are inevitable overheads for par-
allelizing the simulation. That is, since we assume that sim-
ulation algorithm is optimistic, the state saving should be
performed to support the rollback operation, and global syn-
chronization should also be performed to manage simula-
tion progress in each processor. Thus, to maximize speedup,
a partitioning algorithm should pursue the following goals
in general.

1. Computational loads of processors (or model execu-
tion time M;) should be balanced.

)

maz M; = Mg,
j=0m—1

2. Local synchronization work should be minimized.

Vi, Li=F;,+ R;+ I, —» 0. ®)

Thus, the maximum possible speedup can be expressed
as follows,

m—1

(ZMi)/(Mavg +S; +G;), forany j.
=0

®)

The partition which enables this maximum speedup is
called the optimal partition.

Now, let’s consider how to minimize L;. Rollbacks oc-
cur by a number of reasons. Among them are differences in
event processing times and event generation rates between
processors, communication delays between processors, and
the topology of the model (cyclic dependencies between
models are particularly notorious). Ultimately, rollbacks
occur because messages arrive out of chronological order
at a processor. Thus, minimizing the difference between lo-
cal simulation times of processors will reduce the frequency

of messages arriving out of chronological order. For this, a
partitioning algorithm should pursue the following goals:
(a) balance the computational loads of processors, (b) max-
imize the parallel execution of independent sirnulation tasks
(that can do true computation on a processor at any time),
and (c) minimize inter-processor communication. That is,
if simulation tasks are independent with each other, there
is no communication between them, and rollbacks do not
occur(L; becomes zero). Otherwise, simulation tasks com-
municate with each other, and this induces rollbacks or idle
cycle (I;) for waiting messages. The loads of each processor
should be balanced to reduce the idle cycle of early ended
processors. Moreover, the message communication delay
may cause additional rollbacks and wasted lookahead com-
putation; thus the above third goal should be pursued.

To maximize the parallel execution of independent sim-
ulation tasks, a partitioning algorithm should know the run-
time behavior of the simulation, such as the influence rela-
tion between simulation cycles. However, to estimate such
run time behavior at compile time is extremely difficult.
Moreover, even though we know the runtime behavior of
the model for one input data set, if we change input data set,
the runtime behavior changes. Thus, to estimate such paral-
lelism in models, we utilize the hierarchical structural infor-
mation inherent in the hierarchical model design methodol-
ogy of the DEVS formalism. In the methodology, when a
system is modeled, a modeler naturally partitions the sys-
tem into a set of subsystems while considering parallelism
between them. The next section details this approach.

3 Partitioning Using the Hierarchical Struc-
tural Information

The basic strategy of the proposed algorithm is to in-
sert more larger component in the same partition if possi-
ble (i.e. to partition a hierarchical composition tree at the
higher level if possible). Following this basic strategy, the
algorithm tries to find a partition which satisfies the other
two goals.

For partitioning, the proposed algorithm transforms the
simulation tasks into a weighted task tree which is defined
as follows.

Definition 1 A task tree is a tuple G = (V, E, C,T), where
V = {n;, j =1: v}, is the set of nodes and v = |V|,
E = {e;; =< ny,n; >} isthe set of communication edges.
The set C is the set of edge communication costs and T is
the set of node costs.

For describing task trees, the following notations are em-
ployed. If e; ; is in E, then n; is called the parent of n;,
and n; is a child of n;. If there is a path from n; to n; and
ni # n;, then n; is the ancestor of nj and n; is a descen-
dant of n;. A node with no descendants is called a leaf. The

206

subtree of a node n; is a tree consisting of the descendants
of n; including n; itself which are all mapped in the same
partition. In that case, the node n; is called the root of the
subtree. The depth of a node n; in a task tree is the length
of the path from the root of the task tree to n;.

The value ¢; ; € C is the communication cost incurred
along the edge e; ; € E, which is zero if both nodes are
mapped in the same partition. The cost 7; € T of a node n;
consists of two weights < p;, s; >, where p; is the compu-
tation cost of n; and s; is the sum cost of the subtree of n;.
The computation cost p; of a node n; in a task tree is the
model execution time taken for all kinds of input messages
during sequential simulation. That is, the cost does not in-
clude parallel simulation overheads (L + G). The cost can
be expressed in our previous notation as follows:

pj = M; (10)

The computation cost of a node does not readily depend
on the size of the node’s associated model since some nodes
would be more often executed and the cost should incorpo-
rate such information. Rather, it depends on the probability
of receiving input events and the computational complexity
for each input event.

The sum cost s; of a subtree G; is the sum of compu-
tation and communication costs in G;, as shown in the fol-
lowing:

8 = Z Pr + Z (ck,v +cw,k)'

nR€G, ng€G,

an

The meaning of node and edge costs can be better under-
stood by comparing the following extreme cases. If there is
full parallelism between partitions (that is, partitions are in-
dependent with each other), the sum cost of the root node of
a subtree (or partition) is the execution time of the subtree.
Thus, the total execution time ETp of the parallel simula-
tion under a partition P can be determined as follows,

ETp =

J:O:%E—l(sj + Sj + Gj)

12)
, where S; is the state saving time, and G} is the global syn-
chronization time. That is, parallel simulation can remove
most of parallel simulation overheads such as false compu-
tation time (F}), rollback time (R;), and idle time (I;).

In contrast, if there is no parallelism between partitions
at all (that is, partitions are fully dependent with each other),
ETp is the sum of the execution time of each partition, as
shown in the following,

ETp= Y (s;+S;+F+R;+Gy).

7=0:m—1

(13)

That is, the execution time ET; of a partition 4 is s; + .5; +
F;+ R; +G; + I; from the equation (2), where I; = ETp —

(si + S; + Fj + R;j + G;). Therefore, these two extreme
cases become the upper and lower bounds of the simulation
completion time, respectively.

Now, we can represent the partitioning problem by using
a task tree. That is, the partitioning is a mapping of the
nodes of a task tree G onto maximum m partitions. More
specifically, the problem is to determine a mapping

K, j=1l:vandi=0: (M -1)

(14)

map(n;)

for the nodes(njs) of G onto M(< m) partitions
Ko, Ky, ..., Kpr-.1, with the following objective function

2.

n; €Ki ny,nw €K

(pj + (¢ + cw,j)))-

min (mazx (
Y (15)

i=0:M—1

Note that our problem specifies just the maximum num-
ber of partitions, m. Thus, the resulting number of parti-
tions, M, may be smaller than m. The final goal of parti-
tioning is to minimize the total simulation time, not to fully
utilize the given number of processors. Depending on the
characteristics of simulation models, these two goals do not
always match up. That is, in parallel simulation, using more
processors for simulation does not imply smaller simulation
time.

Algorithm 1 HIPART(n,)
> Initially, Lavg = (sv/m + (3°3 cij}/|E|), where |E| is the
ij

number of edges in E.
> Check if there are imminent children n!, s whose loads are greater
than Lavg.
1 while (3 child ny, and sw > Laywg(1 +)) do
D Ny IS 100 big to be inserted into one partition and should be
partitioned more.

2 Hipart(ny);

3 end while
> Now, ny has only those children whose loads are smaller than
Lavg(l + a)

4 while (s, > Lavg(1 + &) and number of partitions already

made < m) do
5 Make a partition P for satisfying the objective function H =
min|(2-cui+ Y, 8i)— Lavg|, where K is the set of
n; €PN €K
children of ny;
> Update Lgyg.
6 Layyg = >
n; €PN ¢P
7 After partitioning, update the computation and communica-
tion costs of the parents of n,, including n, itself;
8 end while

(¢ik +pi);

Figure 1. Hierarchical partitioning algorithm

Figure 1 shows the proposed partitioning algorithm.
Since the task graph is a tree, the algorithm is of a recursive
form. The algorithm starts at the root node of a task tree.

207

When the algorithm enters a node, it checks whether there
are children whose sum cost is greater than the average cost
of partitions(Lgyg). If there is such a child, the child is too
big to be inserted in one partition and should be partitioned
more. Thus, the algorithm enters the child to partition it.
After this recursive process, the algorithm finds a node hav-
ing children whose sum costs are all smaller than Lg,4. In
this case, we call that the algorithm visits the node. When
the algorithm visits a node, it finds a partition with the min-
imum sum cost among the children by using some efficient
heuristics such as Kernighan and Lin’s algorithm[3].

<10, 1300>

<100, 100> <100, 100> 106, 100><100, 100>

20
<100, 100>,

<100, 100> <100, 100>

Figure 2. An example task tree T

<100, 100> <100. 100;

00, 100> <100, 100>

Re-visiting node na

Figure 3. The partition result for the task tree
T

For example, consider a task tree in Figure 2. We want
to partition the task tree into three partitions. The algorithm
Hipart partitions the task tree with the following average
load of each partition while maximizing the parallelism of

the models.
Lavg = Sa/m = 1300/3 = 433

Figure 3 shows the obtained partition result.

4 Conclusion

This paper has presented a novel partitioning algorithm
for the parallel simulation of hierarchical, modular DEVS
models. To maximize parallel execution of models, the
proposed algorithm utilized the hierarchical structural in-
formation of models. We derived the partitioning algorithm
through general analysis of the partitioning problem in the
optimistic parallel simulation. Through a partitioning pro-
cess of an example model, we described how the algorithm
works.

References

[1]1 P.Chawla. Assignment Strategies for Parallel Discrete Event
Simulation of Digital Systems. PhD thesis, University of
Cincinnati, 1994.

[2] R. M. Fujimoto. Optimistic approaches to parallel discrete
event simulation. Trans. of The Society for Computer Simula-
tion, 7(2):153-191, Oct. 1990.

[3] B. W. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. Bell Syst. Tech. Journal, 49:291-307,
1970.

[4] K. H. Kim. Distributed Simulation Methodology Based on
System Theoretic Formalism: An Asynchronous Approach.
PhD thesis, Korea Advanced Institute of Science and Tech-
nology, 1996.

[5] B. P. Zeigler. Multifacetted Modelling and Discrete Event
Simulation. Academic Press, 1984.

208

