
BMQ-Index: Shared and Incremental Processing of
Border Monitoring Queries over Data Streams

Jinwon Lee, Youngki Lee, Seungwoo Kang, SangJeong Lee, Hyunju Jin, Byoungjip Kim, Junehwa Song
Korea Advanced Institute of Science and Technology

{ jcircle, youngki, swkang, peterlee, hyunju, bjkim, junesong}@nclab.kaist.ac.kr

Abstract

Border Monitoring Query (BMQ) has different query
semantic from conventional continuous range query. It
monitors the values of data streams and reports them only
when data streams cross the borders of its range. In this
paper, we first emphasize the importance and usefulness
of BMQ through attractive service scenarios. Then, we
propose BMQ-Index, which is specialized to BMQ
evaluation. It efficiently processes a large number of
BMQs in a shared and incremental manner. For shared
processing, BMQ-Index adopts a query indexing
approach, thereby achieving a high level of scalability.
For incremental processing, BMQ-Index employs an
incremental access method. Thus, successive BMQ
evaluations are significantly accelerated. We present an
index structure and a search algorithm to support one-
dimensional as well as multi-dimensional BMQ. Lastly,
we demonstrate the performance benefits of BMQ-Index
through analysis and experiments.

1. Introduction

Advances in mobile computing and embedded device
technologies open up new computing environments. The
environments contain numerous data generators such as
sensors, probes and agents, which generate data in the
form of continuous data stream. In order to monitor such
data streams and take proper actions, if needed, users
register a large number of range queries or filters which
are evaluated continuously [1][2][3][11][12][14].

One of primary concerns in the data stream monitoring
is to know which data streams begin or end to satisfy
range conditions of queries. In many cases, users are
interested in knowing whether a data stream falls within a
range or not. It is useful enough to report the beginning
and end of satisfying range conditions rather than all
satisfying events. In addition, the beginning and end
information is compelling to users who want proper
actions to be automatically triggered or stopped.

In this paper, we first characterize a new type of
continuous range query, namely Border Monitoring
Query (BMQ). It only reports data coming into or going
out from a query range, i.e., data crossing the borders of a
query range. Note that the semantic of BMQ is different
from that of a existing continuous range query, namely

Region Monitoring Query (RMQ) [2][12][14][17]. It
reports all matching data in a query range. In spite of the
usefulness of BMQ semantic, none of previous research
on data stream processing [1][3] has developed a special
mechanism for BMQ evaluation although many efficient
mechanisms are proposed for RMQ evaluation.

To address the challenge, we propose BMQ-Index, an
efficient query index specialized to BMQ evaluation. The
main idea of BMQ-Index is shared and incremental
processing. For shared processing, BMQ-Index adopts a
query indexing approach, thereby achieving a high level
of scalability. Once BMQ-Index is built on registered
queries, only relevant queries are quickly searched for
upon an incoming data. For incremental processing,
BMQ-Index employs an incremental access method, i.e.,
an index structure to store delta query information and an
incremental search algorithm. Thus, successive BMQ
evaluations are greatly accelerated.

Based on the main idea, we design a one-dimensional
BMQ-Index structure and a search algorithm. The one-
dimensional index divides the range of possible data
values into Region Segments by the borders of queries. It
stores a query into only two segments where the query
range starts and ends. Upon an incoming data, border-
crossed queries are incrementally derived during linear
traversals from a previous matching segment to a current
matching segment. We also design multi-dimensional
BMQ-Index by directly extending one-dimensional
BMQ-Index. For multi-dimensional search operation, we
additionally develop a cross-check algorithm.

BMQ-Index has two important features: excellent
search performance and low storage cost. As mentioned
before, the shared and incremental processing enables
BMQ-Index to achieve remarkable search performance.
Also, BMQ-Index only needs to maintain delta query
information, which consumes a small size of memory
space. Such low storage cost is essential in data stream
processing where only in-memory algorithm is practical.
Compared to the straightforward approach based on state-
of-the-art RMQ evaluation mechanism, BMQ-Index
achieves much better search performance and storage cost.

The contribution of this paper is summarized as
follows. First, we characterize a new type of continuous
range query semantic, i.e., Border Monitoring Query, and
formally define it. We also show its usefulness with
attractive service scenarios. Second, we develop BMQ-

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

Index which evaluates a large number of BMQs in a
shared and incremental manner, thereby achieving
excellent search performance and low storage cost.
Finally, we design multi-dimensional BMQ-Index to
support various applications requiring multi-dimensional
semantics.

This paper is organized as follows. Section 2 introduces
border monitoring scenarios and discusses BMQ
semantic. One-dimensional BMQ-Index is presented in
Section 3, and multi-dimensional version is presented in
Section 4. Section 5 presents experimental results. Section
6 discusses related work. Finally, we conclude the paper.

2. Border monitoring query

In this section, we characterize a new range query
semantic, namely border monitoring and show its
importance and usefulness in stream-based applications.

Many stream-based applications continuously monitor
a large number of data streams with range queries. In this
situation, it is quite important to know which data streams
begin or end to satisfy range conditions of queries. It is
mainly because users are usually interested in whether the
continuous data streams satisfy range conditions or not.
Thus, it is sufficient for people to know only the
beginnings and ends of satisfying range conditions rather
than all satisfying events. (see scenario 2) Also, the
beginnings and ends of satisfying range conditions are
useful to automatically trigger or stop necessary actions.
(see scenario 1 and 2) In processing standpoint, notifying
only the beginnings and ends rather than all satisfying
events saves network bandwidth.

2.1. Border monitoring scenarios

Scenario 1: Financial Trading
Consider the case of NASDAQ. Thousand of companies
generate the streams of updates such as stock prices every
30 seconds. In addition, millions of stock investors
monitor them by registering their own queries. Assume
that a stock investor wants to automatically buy IBM
stock right after the price of stock falls below $40 and sell
his stock when the price rises above $50. In this situation,
it is very useful for the investor to be notified whenever
price goes above or below a user-specified border.

Scenario 2: Location-based Advertisement
As shown in Figure 1, many restaurants, cafes, and gas
stations are willing to advertise lunch menu or send a
discount coupon to people within nearby rectangle
regions for two hours. For this service, it is required to
quickly locate the people who are coming into or going
out from the specified region by monitoring the streams
of people’s locations. People do not like to receive the
same advertisement more than once. Thus, it is not

necessary to locate the people which are already in the
region.

Coupon

Pet-Care

Send lunch menu to people
within the nearby region!!

Incoming

Outgoing

Figure 1. Location-based Advertisement

2.2. Semantic definition of BMQ
The semantic of range queries in the above border

monitoring scenarios are different from well-known range
queries in data stream processing. To distinguish such
queries, we classify continuous range queries into two
types, i.e., Border Mointoring Queries (BMQ) and Region
Monitoring Queries (RMQ). Continuous range queries in
existing data stream processing fall into the category of
RMQ, i.e., the query that reports all data within a query
range. BMQ is a type of query which reports only data
crossing the border of a query range.

The formal definition of BMQ on the set of data is as
follows. Suppose that two consecutive sets of data and a
BMQ are given. Let RSet(t–1) represent the data
contained in the query range at previous update time t–1
and RSet(t) represent the ones at current update time t.
Then, two sets of data are defined as the result of the
BMQ.

Definition 1. Border Monitoring Query (BMQ)
RSetBMQ+(t) = RSet(t) − RSet(t–1)
RSetBMQ−(t) = RSet(t–1) − RSet(t)

3. One-dimensional BMQ-Index
We first outline the main idea of BMQ-Index, shared

and incremental processing.

Shared processing

In border monitoring scenarios, a large number of
BMQs can be issued by users. In order to achieve a high
level of scalability, shared processing of BMQs is
essential. For this purpose, BMQ-Index adopts a query
indexing approach. Once BMQ-Index is built on registered
BMQs, only relevant queries are quickly searched for
without unnecessary access to irrelevant queries.

Upon an incoming data tuple1, BMQ-Index retrieves
two sets of relevant queries: (1) QSet+(t), the set of
queries that match the current data value vt, but do not

1 We assume that a tuple in a data stream has three attributes: stream_ID

(the ID of stream source), value (the value measured at the stream
source), and time_stamp (the time when the value was measured)

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

match the previous data value vt-1
2. (2) QSet−(t), the set of

queries that do not match the current data value, but
match the previous data value. We call them differential
query sets.

Incremental processing

Evaluating BMQs over continuous data streams
involves successive retrievals of differential query sets.
These successive operations result in considerably high
processing cost when a huge volume of data streams are
rapidly incoming.

To accelerate such successive operations, BMQ-Index
employs an incremental access method. First, BMQ-Index
stores only delta query information. It divides a domain
space, the range of possible data values, into region
segments by the borders of queries. Then, it stores a query
into only two segments where the query range starts and
ends3. We call the query stored in each segment delta
query. Second, BMQ-Index incrementally retrieves
differential queries through linear traversals from a
previous matching segment to a current matching segment.
Note that differential queries are easily derived from the
delta queries of the visited segments.

Based on the incremental access method, successive
BMQ evaluations are greatly accelerated. Due to the
locality of data streams4, an updated data tuple probably
remains in the same segment, which involves only a
simple comparison operation. Even if it does not, it is
highly possible that an updated data tuple falls in a nearby
segment. Thus, differential queries are quickly searched
for with a small number of segment visits.

3.1. Index structure

BMQ-Index consists of two data structures: a stream
table and an RS(Region Segment) list (see Figure 2). The
stream table maintains a node pointer to the last located
RS node for each data stream. A data stream is
distinguished by Stream_ID although data streams
simultaneously flow into BMQ-Index from multiple
sources. Such identification is quickly done in O(1)
because the stream table entries are hashed by Stream_ID.

RS list is defined as follows. Let Q = {Qi} be a set of
continuous range queries where a query Qi has the range
(li, ui) and let B denote the set of lower and upper bounds
of the range of each Qi in Q, i.e., B = {b | b is either li or
ui of a Qi ∈ Q} { }. We denote the elements of the set
B with a subscript in increasing order of their values. That
is, b0 < b1 < … < bm < bm+1.

2 vt-1 and vt are the values of two consecutive tuples of a data stream.
3 We do not store an entire query string in the segment, just a query ID.
4 In our previous work [9][10], we demonstrate the existence and

characteristic of the locality in real data streams.

Q5

Q4

Q3

Q2

Q1

Registered BMQs

{Q1, Q2}

vt vt-1

{Q3}

{Q1}

{Q4}

{Q3} {Q2} {Q4}

{Q5}

{Q5}

vt
RS list

…

Node pointer

…

IBM

Stream_ID

…

Node pointer

…

IBM

Stream_IDStream Table

N1N1

+DQSeti
–DQSeti

b0 b2 b3 b4b1 b5 b6 b7

N2N2 N3N3 N4N4 N5N5 N6N6 N7N7

b8 b9

N8N8 N9N9

Figure 2. Structure of BMQ-Index

An RS list is a list of RS nodes, <N1, N2, …, Nm, Nm+1>.
Each RS node Ni is a tuple (Ri, +DQSeti, −DQSeti), where

Ri is the range of region segment (bi-1, bi), bi ∈ B
+DQSeti is the set of queries Qk such that lk = bi-1

for the range (lk, uk) of Qk
–DQSeti is the set of queries Qk such that uk = bi-1

for the range (lk, uk) of Qk

An RS node holds two delta query sets, +DQSeti and
−DQSeti. +DQSeti is the set of queries Qk that share the
lower bound of their range with that of Ri, i.e., Qk ∈
+DQSeti if lk = bi-1. Similarly, a query Qk belongs to the
−DQSeti of an RS node Ni if the upper bound of its range
forms the lower bound of Ri, i.e., Qk ∈ −DQSeti if uk = bi-1.

In Figure 2, an RS list is built for five BMQs. Nine RS
nodes are created. Each node has a range and ±DQSeti.
For instance, N5 has a range (b4, b5), {} as a +DQSet5, and
{Q5} as a –DQSet5.

3.2. Query registration and deregistration.

A query can be dynamically registered and
deregistered in BMQ-Index. Assume that a query Qin
whose range is (lin, uin) is registered. First, BMQ-Index
locates the RS node, Ni which contains lin, i.e., bi–1 ≤ lin <
bi. If lin is equal to bi–1, Qin is inserted into the +DQSeti of
Ni. Otherwise, Ni is split into two RS nodes: the left node
with the range of (bi–1, lin) and the right node with the
range of (lin, bi). The left node has the ±DQSet of Ni, and
the right node contains Qin in its +DQSet. Second, BMQ-
Index locates the RS node, Nj which contains uin, i.e., bj–1

≤ uin < bj. If uin is the same as bj–1, Qin is inserted into the
–DQSetj of Nj. Otherwise, Nj is also split into the two RS
nodes: the left node with the range of (bj–1, uin) and the
right node with the range of (uin, bj). The left node has the
±DQSet of Nj, and the right node keeps Qin in its –DQSet.

When a query Qout whose range is (lout, uout) is
deregistered, BMQ-Index first locates the RS node, Ni
whose lower bound is equal to lout, and removes Qout from
the +DQSeti. If both +DQSeti and –DQSeti are empty, Ni

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

is merged with Ni–1. Second, BMQ-Index locates the RS
node, Nj whose lower bound is uout, and removes Qout from
–DQSetj. If both +DQSetj and –DQSetj are empty, Nj is
merged with Nj–1.

3.3. Incremental search algorithm
In BMQ-Index, differential query sets are efficiently

retrieved from delta query sets. Given two consecutive
data values, vt-1 and vt, let vt-1 fall in the range of an RS
node Nj and vt fall in that of Nh, i.e., bj-1 ≤ vt-1 < bj and bh-1

≤ vt < bh. While visiting from Nj to Nh, two differential
query sets, QSet+ and QSet− are evaluated as follows.

If j < h, QSet+ = [h
ji 1+=

+DQSeti] − [h
ji 1+=

−DQSeti]

 QSet− = [h
ji 1+=

−DQSeti] − [h
ji 1+=

+DQSeti]

If j > h, QSet+ = [1+
=

h
ji
−DQSeti] − [1+

=
h

ji
+DQSeti]

 QSet− = [1+
=

h
ji
+DQSeti] − [1+

=
h

ji
−DQSeti]

If j = h, QSet+ = QSet− = φ

The evaluation of QSet+ and QSet− depends on the
relative order between Nj and Nh. If j < h, QSet+ has all
queries in the union of +DQSeti excluding the queries in
the union of −DQSeti where i takes the values from j+1 to
h. Similarly, QSet− is calculated by subtracting the union
of +DQSeti from the union of −DQSeti. On the other hand,
if j > h, +DQSeti and −DQSeti are switched while i takes
the values from j to h + 1. There is no differential query if
j = h. (See Appendix A.2 of [9] for the proof).

Figure 2 shows the examples of our incremental search
algorithm. Assume that the previous data value vt-1 was
located in N5. If the current data value vt is located in N8,
 ±DQSet are retrieved while visiting from N6 to N8. Thus,
QSet+ = {Q5} and QSet− = {Q2, Q4}. If vt is located N2,
±DQSet are retrieved during node visits from N5 to N3.
Thus, QSet+ = {Q3, Q1} and QSet− = {Q4}.

3.4. Analysis of search and storage cost

The search cost of BMQ-Index can be represented as
the total number of retrieved delta queries. The average
number of retrieved delta queries U is determined by two
factors. First, U is proportional to the average distance
between two consecutive data values. As the distance
increases, more RS node visits are required to locate a
new matching node, thereby increasing the number of
retrieved delta queries. We define Fluctuation Level (FL)
as the average distance normalized with respect to the
domain size.

sizeDomain
1

1sizeDomain
distanceAverage 2

1

×
−

−
==

∑
=

−

M

XX
FL

M

i
ii

(Xi is ith data value and M is the total number of data tuples)

Second, U is proportional to the average density of
delta queries in an RS list. As the density increases, more
delta queries are retrieved even with the same FL. The
average density of delta queries in an RS-list can be
approximated as (2 × Nq / Domain size), where Nq is the
number of BMQs. It is because each query ID is inserted
only twice into an RS list. Thus, the average search cost
of BMQ-Index can be formulated as Θ(2 × Nq × FL).

The storage cost of BMQ-Index is decided by the sizes
of an RS list and a stream table. The size of the RS list is
Θ(2Nq) since each query is inserted once into +DQSet and
−DQSet, respectively. The size of the stream table is
proportional to the number of input data streams, Nd.
Consequently, the total storage cost of BMQ-Index is
Θ(2Nq + Nd).

4. Multi-dimensional BMQ-Index

We design multi-dimensional BMQ-Index by directly
extending one-dimensional BMQ-Index. N-dimensional
BMQ-Index stores delta query information in N different
RS lists. Each RS list contains borders and delta queries
for one of N dimensions. Upon a data arrival, all RS lists
are searched in order to obtain differential query sets per
dimension. We develop an efficient cross-check algorithm,
which validates queries in the per-dimension differential
query sets to identify a final result.

Our solution approach has three advantages. First, it
has significantly low storage cost. It is because a query is
not repeatedly saved in an N-dimensional region but
saved only a few times in N one-dimensional RS lists.
Note that a query is saved only twice in an RS list.
Second, it has an high search performance. As shown in
Section 4.4, the search algorithm including the cross-
check requires only NN)1(− times of search time for
one-dimensional BMQ-Index. For the two-dimensional
index, only 2 times as much search time as the one-
dimensional index is needed. Finally, multi-dimensional
BMQ-Index can be easily implemented due to the
simplicity of the index structure and its access algorithms.

In the rest of this section, we present two-dimensional
BMQ-Index to simplify the explanation.

4.1 Index structure

Two-dimensional BMQ-Index consists of following
data structures: two RS lists (an RS-X list and RS-Y list),
a stream table, and a query table. Figure 3 shows an
example of the index with three registered queries. The
RS-X list is a list of region segments that together
comprise the range of an X-dimension, <RS-X1, RS-X2, …,
RS-Xn>. Each region segment RS-Xi maintains lower and
upper bounds of the region and ±DQSet for the X-
dimension. The RS-Y list maintains the information for a
Y-dimension similar to the RS-X list.

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

(vX3, vY3)

(vX2, vY2)

(vX1, vY1)

V

RS-Y4

RS-Y5

RS-Y2

PY

RS-X5s3

RS-X3s2

RS-X2s1

PXStreamID

(vX3, vY3)

(vX2, vY2)

(vX1, vY1)

V

RS-Y4

RS-Y5

RS-Y2

PY

RS-X5s3

RS-X3s2

RS-X2s1

PXStreamID

Stream Table

bY7

{Q1} {Q2}
{Q1}

{Q3}

{Q3} {Q2}

Q1

Q2

Q3

RS-X List
RS-Y List

RS-X5 RS-X6 RS-X7RS-X4RS-X3RS-X2
{} {}

-DQSet-Xi {} {}
{}

RS-Y2

RS-Y3

RS-Y4

RS-Y5

RS-Y6

RS-Y7

+DQSet-Yi-DQSet-Yi

{Q1}

{Q2}

{Q3}

{}

{}

{}

{}

{}

{}

{Q1}

{Q3}

{Q2}

+DQSet-Xi

{}

bX0 bX1 bX2 bX3 bX4 bX5 bX7

bY1

bY2

bY3

bY4

bY5

bY6

bX6

RS-X1

{}
{}

{} {} RS-Y1 bY0

v(s1)

v(s2)

v1(s3)

v3(s3)

v2(s3)

(bX4, bX5, bY3, bY5)

(bX2, bX6, bY2, bY6)

(bX1, bX3, bY1, bY4)

Range

Q3

Q2

Q1

QueryID

(bX4, bX5, bY3, bY5)

(bX2, bX6, bY2, bY6)

(bX1, bX3, bY1, bY4)

Range

Q3

Q2

Q1

QueryID

Query Table

Figure 3. Two-dimension BMQ-Index

In a two-dimensional case, each entry of the stream
table has two pointers, Px and Py, pointing RS-Xi which
contains the current X-dimension value of the stream, and
RS-Yi, which contains the current Y-dimension value of
the stream. Also, current data value is saved for the next
search operation. The stream table entry is updated upon
an arrival of a new data tuple for each data stream. The
query table, which is hashed with query ID, saves borders
of queries; it is required for the cross-check algorithm.

4.2 Query registration and deregistration

Two-dimensional BMQ-Index also supports dynamic
query registration and deregistration. Upon a query
registration and deregistration, an X-dimension predicate
and Y-dimension predicate of a query are separately
processed. Consider a query Qn, whose range is (xl, xu, yl,
yu). When registering Qn to the index, an X-dimension
predicate, (xl, xu), is registered in the RS-X list and an Y-
dimension predicate, (yl, yu), is registered in the RS-Y list.
It is done by the one-dimensional query registration
method. Also, Qn is added to the query table.
Deregistration of Qn is similarly processed using one-
dimensional deregistration method.

4.3 Search algorithm

Upon an arrival of a data value, two-dimensional BMQ-
Index is searched to obtain QSet+ and QSet−. Figure 4
shows overall flow of the search algorithm. The first step
of the algorithm is to calculate differential query sets for
each dimension: ±XQSet and ±YQSet. This is simply done
by applying one-dimensional incremental search
algorithm on the RS-X list and RS-Y list.

RS-X list.search()

(xc, yc)

RS-Y list.search()

XQSet

YQSet

cross-check
with Y-dimension

cross-check
with X-dimension

Union

xc

yc YBMQSet

XBMQSet

QSet

RS-X list.search()

(xc, yc)

RS-Y list.search()

XQSet

YQSet

cross-check
with Y-dimension

cross-check
with X-dimension

Union

xc

yc YBMQSet

XBMQSet

QSet

Per-dimension
search

Validation through
cross-check

Union of
per-dimension

results

Figure 4. Flow of a search algorithm

/* Cross-check algorithm to validate queries in ±XQSet and ±YQSet */
/* Input : stream si’s data tuple with value of (vXc, vYc) */

/* Initialize the result sets */
±XBMQSet= {} and ±YBMQSet = {};

/* Validate ±XQSet through cross-check with Y-dimension */
For each element Qi of +XQSet
 Get Qi’s Y-dimension predicate, (Qi_yl, Qi_yh), from the query table
 If(Qi_yl <vYc< Qi_yh) +XBMQSet Qi

Obtain si’s previous data value, (vXp, vYp), using the stream table
For each element Qi of –XQSet
 Get Qi’s Y-dimension predicate, (Qi_yl, Qi_yh), from the query table
 If(Qi_yl <vYp< Qi_yh) -XBMQSet Qi

/* Validate ±YQSet through cross-check with X-dimension */
Cross-check queries in ±YQSet with X-dimension using above method;

/* Output : ±XBMQSet and ±YBMQSet */

Figure 5. A cross-check algorithm

The second step is to validate if all the borders of
queries in ±XQSet and ±YQSet are indeed crossed by the
data value. The validation is required because those
queries may not satisfy the condition for other dimension.
For the validation, we developed an efficient cross-check
algorithm described in Figure 5. The cross-check
algorithm examines borders of unchecked dimensions of
the queries in per-dimension differential query sets. For
example, if a query Qi belongs to +XQSet, the cross-
check algorithm checks if the data value actually crosses
the Y-dimension border of Qi. A cross-check method for
+XQSet(+YQSet) is different from that for –XQSet(–
YQSet). For a query in +XQSet, it is checked if a newly
arrived data value is located between the Y-dimension
borders of the query. On the other hand, for a query in –
XQSet, it is checked if the previous value of the stream
was located between the Y-dimension borders.

Through the cross-check, the verified result BMQ sets,
±XBMQSet and ±YBMQSet, are obtained. Finally, QSet+

is calculated as a union of +XBMQSet and +YBMQSet.
QSet− is also calculated similarly.

4.4. Analysis of search and storage cost
The search performance of multi-dimensional BMQ-

Index is determined by the cost of RS node visits and the
cost of the cross-check. The total number of RS node
visits on multiple RS lists is decided by the sum of
projections of distance vector on each dimension. Under
the assumption that the average distance is same as one-
dimensional case, the number of RS node visits becomes

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

d times as many as that of one-dimensional BMQ-Index
in maximum, where d is the number of dimensions. In the
cross-check, d–1 times of comparison are performed for
queries in per-dimension differential query sets, since
predicates for all other dimensions should be checked.
Therefore, the required search cost is dd)1(− times as
much as that of one-dimensional BMQ-index, thereby
being Θ(FLNdd q ××− 2)1(), where Nq is the number of
BMQs.

The storage consumption is decided by the sizes of RS
lists, a stream table and a query table. Since there is an RS
list per dimension and the stream table has an RS node
pointer per dimension, the storage size for the RS lists and
the stream table is d times as large as that of one-
dimensional BMQ-Index. Additionally, multi-
dimensional BMQ-Index maintains a query table, thus the
storage cost of multi-dimensional BMQ-Index is Θ(d(2Nq
+ Nd) + Nq), where Nd is the number of input data streams.

5. Experiments

In this section, we present our experimental results and
discuss the performance of BMQ-Index. Due to the page
limitation, we only present the result for one-dimensional
BMQ-Index which is enough to show the effectiveness of
BMQ-Index. Interested readers can find the preliminary
result for multi-dimensional BMQ-Index in [10].

We first explain how data streams and queries are
generated as a workload. Next, we compare the search
performance and storage cost of BMQ-Index with a
mechanism based on query indices for RMQ evaluation,
namely DiffRMQ. DiffRMQ derives differential query
sets via two steps. It first retrieves consecutive matching
query sets for previous and current data values. Then, it
performs a set difference operation on them to remove the
queries containing both data values. The state-of-the-art
query indices, i.e., CEI [17] and IS-list [4], are used for
DiffRMQ. The experiments are conducted using a
machine equipped with P-III 1GHz CPU, 512MB RAM,
and Linux 2.4.

5.1. Stream and query generation

5.1.1. Stream generation. As an experimental scenario,
we consider the financial trading which is described in
section 2.1. Based on the real observation on Korean
stock market (see details in [9]), we synthetically generate
stock price streams. We consider that FL varies from
0.01% to 0.1%, which are derived from the real traces.
We use multiple stream sources as an input; the number
of stream sources is 2,000 and each stream contains 1,000
data tuples, respectively.

5.1.2. Query generation. Queries specify the ranges of
stock prices. The lower bounds of query ranges are
randomly chosen between 1 and D – 1, where D is fixed

to 1,000,000 which is the maximum price of most Korean
stocks [7]. In practice, the width of query W is usually
larger than FL. Thus, we regard that W is 1 ~ 10 times
larger than FL. W is also normalized with respect to the
domain size. Finally, the number of queries N varies from
10,000 to 100,000.

5.2. Comparison with alternative approaches

5.2.1. Average search time. In this experiment, we
compare the search performance of BMQ-Index with that
of DiffRMQ. For intuitive comparison, we first measure
the Search Efficiency (SE) which is defined as follows.

∑

∑

=

== M

i

M

iSE

1

1

resultteintermediaofsize

resultfinalofsize

(M is the total number of input data tuples)
In BMQ-Index, the size of intermediate result is the

total number of accessed delta queries during an
evaluation. In DiffRMQ, it is the number of accessed
matching queries. In both cases, the size of final result is
the total number of differential queries after the
evaluation. Then, we measure average search time to
show practical search performance. We measure SE and
search time while varying three parameters: the number of
queries N, the width of queries W and fluctuation level FL.

First, we vary N from 10,000 to 100,000. W and FL
are fixed to 0.1% and 0.01%, respectively. Figure 6 shows
SE and average search time as a function of the number of
queries. The SE of BMQ-Index is 100% regardless of the
number of queries and much higher than the SE of
DiffRMQ. In DiffRMQ, consecutive matching query sets
are likely to much overlap due to the locality of data
stream. Thus, many irrelevant queries are accessed to
obtain only a few differential queries. Consequently, the
search time of DiffRMQ is significantly higher than that
of BMQ-Index. The slight increase in the search time of
BMQ-Index mainly comes from the increase in the final
result size as the number of registered queries increases.

Second, we vary W from 0.01% to 0.1%. N and FL are
fixed to 100,000 and 0.01%, respectively. Figure 7 shows
the results. As the width of queries increases, the SE of
DiffRMQ rapidly decreases, whereas that of BMQ-Index
remains almost 100%. It is because the size of
intermediate result of DiffRMQ increases as the width of
queries increases. However, that of BMQ-Index is not
affected by the width of queries. Note that the size of final
result does not change in both cases. Therefore, as the
width of queries increases, the search time of DiffRMQ
increases significantly, and that of BMQ-Index is kept as
a constant.

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

(a) Search Efficiency (%)

0

20

40

60

80

100

0 20000 40000 60000 80000 100000
Number of queries

BMQ-Index
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(b) Average search time (ms)

0

20

40

60

80

100

0 20000 40000 60000 80000 100000
Number of queries

BMQ-Index
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

Figure 6. Effect of the number of queries (W=0.1%, FL=0.01%)

(a) Search Efficiency (%)

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1

Width of queries

BMQ-Index
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(b) Average search time (ms)

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1

Width of queries

BMQ-Index
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

Figure 7. Effect of the widths of queries (N=100000, FL=0.01%)

(a) Search Efficiency (%)

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1
Fluctuation Level

BMQ-Index
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(b) Average search time (ms)

0

20

40

60

80

100

120

0 0.02 0.04 0.06 0.08 0.1
Fluctuation Level

BMQ-Index
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

Figure 8. Effect of the Fluctuation Level (N=100000, W=0.1%)

Finally, we vary FL from 0.01% to 0.1%. N and W are
fixed to 100,000 and 0.1% respectively. As FL increases,
the size of intermediate result of BMQ-Index increases
while that of DiffRMQ does not change. Also, the size of
final result increases in both cases as FL increases. Thus,
the SE of BMQ-Index decreases slowly while that of
DiffRMQ increases rapidly as shown in Figure 8 (a).

Interestingly, the SE of BMQ-Index is higher than that
of DiffRMQ as long as FL is smaller than W.
Consequently, the search time of BMQ-Index is much
smaller than that of DiffRMQ when FL is smaller than W.
Note that W is relatively larger than FL in practice. If FL
increases up to W, the search time of BMQ-Index is
slightly larger than that of DiffRMQ due to additional
cost for RS node traversals.

5.2.2. Storage cost. In this experiment, we compare the
storage cost of BMQ-Index with that of DiffRMQ. We
measure the memory space taken by each query index. To
identify the effect of N and W on the storage cost, we run
two experiments. In the first experiment, we vary N from
10,000 to 100,000 and fix W to 0.1%. In the second, we
vary W from 0.01% to 0.1% and fix N to 100,000.

Index storage (MB)

0

20

40

60

80

0 20000 40000 60000 80000 100000

Number of queries

BMQ-Index
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

Index storage (MB)

0

20

40

60

80

0 0.02 0.04 0.06 0.08 0.1
Width of queries

BMQ-Index
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(a) The effect of N (b) The effect of W
Figure 9. Storage cost

Figure 9(a) shows the size of index storage as a
function of the number of queries. BMQ-Index uses much
less memory than two DiffRMQ approaches, especially
than CEI-based DiffRMQ. In general, query indices for
RMQ evaluation store queries redundantly. CEI stores a
query into many grids covered by the range of query.
Even tree-based query index, i.e., IS-list, stores a query
log (the number of registered queries) times. In contrast,
BMQ-Index stores a query only twice, thereby showing a
lot better storage usage with the same number of queries.

Figure 9(b) shows the size of index storage as a
function of the width of queries. The storage cost of CEI-
based DiffRMQ increases rapidly as the widths of queries
increase. In CEI, a query with a large width is repeatedly
inserted in the grids overlapping the query range,
resulting in high storage cost. The storage cost of IS-list-
based DiffRMQ is less affected by the width of queries
because it has tree-based structure. However, BMQ-Index
shows a constant storage usage regardless of the width of
queries since it only stores two delta queries for a query
registration.

6. Related Work
Semantic of BMQ: In the context of query languages for
data streams, a concept of I-Stream and D-Stream
operators has been proposed [1]. I-Stream operator
retrieves the set of data tuples which are inserted into a
Relation, and D-Stream operator retrieves the set of data
tuples which are deleted from a Relation. They represent a
general concept to transform a Relation to a Stream. On
the other hand, the BMQ is a specific class of continuous
range query, and it has useful meanings in practical
stream-based applications as described in section 2.1.

Shared and incremental processing: In the context of
data stream processing, there have been extensive
researches on evaluating a large number of continuous
range queries. However, they concentrate on Region
Monitoring Query (RMQ) rather than Border Monitoring
Query (BMQ).

Query indexing is widely used for shared evaluation of
RMQs. We call it RMQ-Index. Upon each data arrival,
matching queries are quickly determined by searching the
query index. Existing RMQ-Index can be classified into

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

one-dimensional indices [2][4][5][14][17] and two-
dimensional indices [6][8][13][16]. For 1-D range queries,
two different approaches are proposed: tree-based query
indices [2][4][5][14] and a grid-based query index [17].
The tree-based indices have O(log N) search cost and O(N
log N) storage cost, where N is the number of registered
queries. Compared to the tree-based indices, the grid-
based query index has better search performance. Those
two approaches are also used to support 2-D range
queries. 2-D grid-based indices [8][16] show much better
search performance than the 2-D tree-based indices
[6][13]. However, the grid-based indices require much
more index storage since queries are redundantly inserted
into many grids covered by query ranges.

Due to the semantic difference between RMQ and
BMQ, the existing RMQ-Indexs are generally not suitable
for BMQs. Even though the RMQ-Index can be used for
BMQ evaluation, it requires costly post-processing to
identify only the data streams crossing the borders of the
queries. Thus, the performance is considerably low
compared to that of BMQ-Index which is designed
primarily for efficient BMQ evaluation.

In the context of spatio-temporal database, SINA [11]
and GPAC [12] have been proposed for the incremental
evaluation of RMQs. Similar to BMQ-Index, they
compute only updates from the previously reported
answer (positive and negative updates), thereby reducing
the processing overhead of continuous reevaluation.
However, GPAC is designed for an evaluation of one
outstanding continuous query, not for shared processing
of multiple queries. To achieve shared processing, SINA
performs a spatial join between a set of objects and a set
of queries. However, SINA adopts a disk-based algorithm
so that SINA is difficult to be applied in data stream
processing in which in-memory processing is essential.
Furthermore, SINA is not a purely incremental access
method. SINA stores the query information redundantly
based on a grid index, rather than storing delta query
information. Thus, complex invalidation as well as spatial
join is required to retrieve the positive and negative
updates. In contrast, BMQ-Index retrieves them with an
incremental search operation.

7. Conclusion

In this paper, we first emphasize the importance and
usefulness of BMQ. Then, we propose BMQ-Index,
which evaluates a large number of BMQs efficiently in a
shared and incremental manner. We demonstrate the
excellent search performance and low storage cost of
BMQ-Index through analysis and experiments. Currently,
we are extending BMQ-Index to support aggregation and
join operation and developing a specialized system for
border monitoring services.

8. References
[1] A. Arasu, S. Babu and J. Widom, “The CQL Continuous

Query Language: Semantic Foundations and Query
Execution” Technical Report Oct. 2003

[2] S. Chandrasekaran and M. J. Franklin, “Streaming Queries
over Streaming Data”, VLDB 2002

[3] L. Golab and M. Tamer Ozsu, “Data Stream Management
Issues – A Survey”, SIGMOD Record 2003

[4] E. Hanson and T. Johnson, “Selection Predicate Indexing for
Active Databases using Interval Skip Lists”, Information
Systems, 21(3):269–298, 1996

[5] E. Hanson, M. Chaabouni, C. Kim, and Y. Wang, “A predicate
matching algorithm for database rule systems”, SIGMOD 1990

[6] H. Hu, J. Xu and D. Lee, "A Generic Framework for
Monitoring Continuous Spatial Queries over Moving Objects",
SIGMOD 2005

[7] Korea stock exchange. http://www.kse.or.kr.
[8] D. V. Kalashnikov, S. Prabhakar, W. G. Aref, and S. E.

Hambrusch, “Efficient evaluation of continuous range queries
on moving objects”, DEXA 2002

[9] J. Lee, S.Kang, S. Choi, H. Jin, S. Choe, and J. Song, “ LARI:
Locality-Aware Range query Index for High Performance
Data Stream Processing”, Technical Report August 2004
available in http://nclab.kaist.ac.kr/~jcircle/publication.html

[10] S. Lee, S. Kang, J. Lee, Y. Lee, B. Kim, H. Jin, and J. Song,
“M-LARI: Locality-Aware Multidimensional Range query
Index for Border Monitoring Queries over Data Streams”,
Technical Report, January 2005 available in
http://nclab.kaist.ac.kr/~jcircle/publication.html

[11] M. F.Mokbel, X. Xiong and W. G. Aref, "SINA: Scalable
Incremental Processing of Continuous Queries in Spatio-
temporal Database", SIGMOD 2004

[12] M. F.Mokbel and W.G.Aref, "Generic and Progressive
Processing of Mobile Queries over Mobile Data", MDM 2005

[13] S. Prahakar, Y. Xia, D. V.Kalashnikov, W. G.Aref and S. E.
Hambrusche. "Query In-dexing and Velocity Constrained
Indexing: Scalable Techniques for Continuous Queries on
Moving Objects", IEEE Transaction on Computers
51(10):1124-1140, 2002

[14] S. R. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman,
“Continuously Adaptive Continuous Queries over Streams”,
SIGMOD 2002

[15] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“The Design of an Acquisitional Query Processor for Sensor
Networks”, SIGMOD 2003

[16] K.L. Wu, S. Chen and P. S. Yu, "Indexing Continual Range
Queries for Location-Aware Mobile Services", EEE 2004

[17] K. L. Wu and P. S. Yu, “Interval Query Indexing for Efficient
Stream Processing”, CIKM, 2004

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

