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Abstract 

Border Monitoring Query (BMQ) has different query 
semantic from conventional continuous range query. It 
monitors the values of data streams and reports them only 
when data streams cross the borders of its range. In this 
paper, we first emphasize the importance and usefulness 
of BMQ through attractive service scenarios. Then, we 
propose BMQ-Index, which is specialized to BMQ 
evaluation. It efficiently processes a large number of 
BMQs in a shared and incremental manner. For shared 
processing, BMQ-Index adopts a query indexing 
approach, thereby achieving a high level of scalability. 
For incremental processing, BMQ-Index employs an 
incremental access method. Thus, successive BMQ 
evaluations are significantly accelerated. We present an 
index structure and a search algorithm to support one-
dimensional as well as multi-dimensional BMQ. Lastly, 
we demonstrate the performance benefits of BMQ-Index 
through analysis and experiments. 

1. Introduction 

Advances in mobile computing and embedded device 
technologies open up new computing environments. The 
environments contain numerous data generators such as 
sensors, probes and agents, which generate data in the 
form of continuous data stream. In order to monitor such 
data streams and take proper actions, if needed, users 
register a large number of range queries or filters which 
are evaluated continuously [1][2][3][11][12][14]. 

One of primary concerns in the data stream monitoring 
is to know which data streams begin or end to satisfy 
range conditions of queries. In many cases, users are 
interested in knowing whether a data stream falls within a 
range or not. It is useful enough to report the beginning 
and end of satisfying range conditions rather than all 
satisfying events. In addition, the beginning and end 
information is compelling to users who want proper 
actions to be automatically triggered or stopped. 

In this paper, we first characterize a new type of 
continuous range query, namely Border Monitoring 
Query (BMQ). It only reports data coming into or going 
out from a query range, i.e., data crossing the borders of a 
query range. Note that the semantic of BMQ is different 
from that of a existing continuous range query, namely 

Region Monitoring Query (RMQ) [2][12][14][17]. It 
reports all matching data in a query range. In spite of the 
usefulness of BMQ semantic, none of previous research 
on data stream processing [1][3] has developed a special 
mechanism for BMQ evaluation although many efficient 
mechanisms are proposed for RMQ evaluation. 

To address the challenge, we propose BMQ-Index, an 
efficient query index specialized to BMQ evaluation. The 
main idea of BMQ-Index is shared and incremental
processing. For shared processing, BMQ-Index adopts a 
query indexing approach, thereby achieving a high level 
of scalability. Once BMQ-Index is built on registered 
queries, only relevant queries are quickly searched for 
upon an incoming data. For incremental processing, 
BMQ-Index employs an incremental access method, i.e., 
an index structure to store delta query information and an 
incremental search algorithm. Thus, successive BMQ 
evaluations are greatly accelerated. 

Based on the main idea, we design a one-dimensional 
BMQ-Index structure and a search algorithm. The one-
dimensional index divides the range of possible data 
values into Region Segments by the borders of queries. It 
stores a query into only two segments where the query 
range starts and ends. Upon an incoming data, border-
crossed queries are incrementally derived during linear 
traversals from a previous matching segment to a current 
matching segment. We also design multi-dimensional 
BMQ-Index by directly extending one-dimensional 
BMQ-Index. For multi-dimensional search operation, we 
additionally develop a cross-check algorithm.

BMQ-Index has two important features: excellent 
search performance and low storage cost. As mentioned 
before, the shared and incremental processing enables 
BMQ-Index to achieve remarkable search performance. 
Also, BMQ-Index only needs to maintain delta query 
information, which consumes a small size of memory 
space. Such low storage cost is essential in data stream 
processing where only in-memory algorithm is practical. 
Compared to the straightforward approach based on state-
of-the-art RMQ evaluation mechanism, BMQ-Index 
achieves much better search performance and storage cost. 

The contribution of this paper is summarized as 
follows. First, we characterize a new type of continuous 
range query semantic, i.e., Border Monitoring Query, and 
formally define it. We also show its usefulness with 
attractive service scenarios. Second, we develop BMQ-
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Index which evaluates a large number of BMQs in a 
shared and incremental manner, thereby achieving 
excellent search performance and low storage cost. 
Finally, we design multi-dimensional BMQ-Index to 
support various applications requiring multi-dimensional 
semantics. 

This paper is organized as follows. Section 2 introduces 
border monitoring scenarios and discusses BMQ 
semantic. One-dimensional BMQ-Index is presented in 
Section 3, and multi-dimensional version is presented in 
Section 4. Section 5 presents experimental results. Section 
6 discusses related work. Finally, we conclude the paper. 

2. Border monitoring query 

In this section, we characterize a new range query 
semantic, namely border monitoring and show its 
importance and usefulness in stream-based applications.  

Many stream-based applications continuously monitor 
a large number of data streams with range queries. In this 
situation, it is quite important to know which data streams 
begin or end to satisfy range conditions of queries. It is 
mainly because users are usually interested in whether the 
continuous data streams satisfy range conditions or not. 
Thus, it is sufficient for people to know only the 
beginnings and ends of satisfying range conditions rather 
than all satisfying events. (see scenario 2) Also, the 
beginnings and ends of satisfying range conditions are 
useful to automatically trigger or stop necessary actions. 
(see scenario 1 and 2) In processing standpoint, notifying 
only the beginnings and ends rather than all satisfying 
events saves network bandwidth. 

2.1. Border monitoring scenarios 

Scenario 1: Financial Trading 
Consider the case of NASDAQ. Thousand of companies 
generate the streams of updates such as stock prices every 
30 seconds. In addition, millions of stock investors 
monitor them by registering their own queries. Assume 
that a stock investor wants to automatically buy IBM 
stock right after the price of stock falls below $40 and sell 
his stock when the price rises above $50. In this situation, 
it is very useful for the investor to be notified whenever 
price goes above or below a user-specified border. 

Scenario 2: Location-based Advertisement
As shown in Figure 1, many restaurants, cafes, and gas 
stations are willing to advertise lunch menu or send a 
discount coupon to people within nearby rectangle 
regions for two hours. For this service, it is required to 
quickly locate the people who are coming into or going 
out from the specified region by monitoring the streams 
of people’s locations. People do not like to receive the 
same advertisement more than once. Thus, it is not 

necessary to locate the people which are already in the 
region. 

Coupon

Pet-Care

Send lunch menu to people 
within the nearby region!!

Incoming

Outgoing

Figure 1. Location-based Advertisement 

2.2. Semantic definition of BMQ 
The semantic of range queries in the above border 

monitoring scenarios are different from well-known range 
queries in data stream processing. To distinguish such 
queries, we classify continuous range queries into two 
types, i.e., Border Mointoring Queries (BMQ) and Region 
Monitoring Queries (RMQ). Continuous range queries in 
existing data stream processing fall into the category of 
RMQ, i.e., the query that reports all data within a query 
range. BMQ is a type of query which reports only data 
crossing the border of a query range. 

The formal definition of BMQ on the set of data is as 
follows. Suppose that two consecutive sets of data and a 
BMQ are given. Let RSet(t–1) represent the data 
contained in the query range at previous update time t–1 
and RSet(t) represent the ones at current update time t.
Then, two sets of data are defined as the result of the 
BMQ. 

Definition 1. Border Monitoring Query (BMQ) 
RSetBMQ+(t) = RSet(t) − RSet(t–1)
RSetBMQ−(t) = RSet(t–1) − RSet(t)

3. One-dimensional BMQ-Index 
We first outline the main idea of BMQ-Index, shared 

and incremental processing.

Shared processing 

In border monitoring scenarios, a large number of 
BMQs can be issued by users. In order to achieve a high 
level of scalability, shared processing of BMQs is 
essential. For this purpose, BMQ-Index adopts a query 
indexing approach. Once BMQ-Index is built on registered 
BMQs, only relevant queries are quickly searched for 
without unnecessary access to irrelevant queries.  

Upon an incoming data tuple1, BMQ-Index retrieves 
two sets of relevant queries: (1) QSet+(t), the set of 
queries that match the current data value vt, but do not 

                                               
1 We assume that a tuple in a data stream has three attributes: stream_ID

(the ID of stream source), value (the value measured at the stream 
source), and time_stamp (the time when the value was measured) 
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match the previous data value vt-1
2. (2) QSet−(t), the set of 

queries that do not match the current data value, but 
match the previous data value. We call them differential 
query sets.

Incremental processing 

Evaluating BMQs over continuous data streams 
involves successive retrievals of differential query sets. 
These successive operations result in considerably high 
processing cost when a huge volume of data streams are 
rapidly incoming. 

To accelerate such successive operations, BMQ-Index 
employs an incremental access method. First, BMQ-Index 
stores only delta query information. It divides a domain 
space, the range of possible data values, into region 
segments by the borders of queries. Then, it stores a query 
into only two segments where the query range starts and 
ends3. We call the query stored in each segment delta 
query. Second, BMQ-Index incrementally retrieves 
differential queries through linear traversals from a 
previous matching segment to a current matching segment. 
Note that differential queries are easily derived from the 
delta queries of the visited segments. 

Based on the incremental access method, successive 
BMQ evaluations are greatly accelerated. Due to the 
locality of data streams4, an updated data tuple probably 
remains in the same segment, which involves only a 
simple comparison operation. Even if it does not, it is 
highly possible that an updated data tuple falls in a nearby 
segment. Thus, differential queries are quickly searched 
for with a small number of segment visits. 

3.1. Index structure 

BMQ-Index consists of two data structures: a stream 
table and an RS(Region Segment) list (see Figure 2). The 
stream table maintains a node pointer to the last located 
RS node for each data stream. A data stream is 
distinguished by Stream_ID although data streams 
simultaneously flow into BMQ-Index from multiple 
sources. Such identification is quickly done in O(1) 
because the stream table entries are hashed by Stream_ID. 

RS list is defined as follows. Let Q = {Qi} be a set of 
continuous range queries where a query Qi has the  range 
(li, ui) and let B denote the set of lower and upper bounds 
of the  range of each Qi in Q, i.e., B = {b | b is either li or 
ui of a Qi ∈ Q} { }. We denote the elements of the set 
B with a subscript in increasing order of their values. That 
is, b0 < b1 < … < bm < bm+1.

                                               
2 vt-1 and vt are the values of two consecutive tuples of a data stream.
3 We do not store an entire query string in the segment, just a query ID.
4 In our previous work [9][10], we demonstrate the existence and 

characteristic of the locality in real data streams. 

Q5

Q4

Q3

Q2

Q1

Registered BMQs

{Q1, Q2}

vt vt-1

{Q3}

{Q1}

{Q4}

{Q3} {Q2} {Q4}

{Q5}

{Q5}

vt
RS list

…

Node pointer

…

IBM

Stream_ID

…

Node pointer

…

IBM

Stream_IDStream Table

N1N1

+DQSeti
–DQSeti

b0 b2 b3 b4b1 b5 b6 b7

N2N2 N3N3 N4N4 N5N5 N6N6 N7N7

b8 b9

N8N8 N9N9

Figure 2.  Structure of BMQ-Index 

An RS list is a list of RS nodes, <N1, N2, …, Nm, Nm+1>.
Each RS node Ni is a tuple (Ri, +DQSeti, −DQSeti), where 

Ri  is the range of region segment  (bi-1, bi), bi ∈ B
+DQSeti is the set of queries Qk such that lk = bi-1 

for the range (lk, uk) of Qk
–DQSeti is the set of queries Qk such that uk = bi-1 

for the range (lk, uk) of Qk

An RS node holds two delta query sets, +DQSeti and 
−DQSeti. +DQSeti is the set of queries Qk that share the 
lower bound of their range with that of Ri, i.e., Qk ∈
+DQSeti if lk = bi-1. Similarly, a query Qk belongs to the 
−DQSeti of an RS node Ni if the upper bound of its range 
forms the lower bound of Ri, i.e., Qk ∈ −DQSeti if uk = bi-1.

In Figure 2, an RS list is built for five BMQs. Nine RS 
nodes are created. Each node has a range and ±DQSeti.
For instance, N5 has a range (b4, b5), {} as a +DQSet5, and 
{Q5} as a –DQSet5.

3.2. Query registration and deregistration.  

A query can be dynamically registered and 
deregistered in BMQ-Index. Assume that a query Qin
whose range is (lin, uin) is registered. First, BMQ-Index 
locates the RS node, Ni which contains lin, i.e., bi–1 ≤ lin < 
bi. If lin is equal to bi–1, Qin is inserted into the +DQSeti of 
Ni. Otherwise, Ni is split into two RS nodes: the left node 
with the range of (bi–1, lin) and the right node with the 
range of (lin, bi). The left node has the ±DQSet of Ni, and 
the right node contains Qin in its +DQSet. Second, BMQ-
Index locates the RS node, Nj which contains uin, i.e., bj–1

≤ uin < bj. If uin is the same as bj–1, Qin is inserted into the 
–DQSetj of Nj. Otherwise, Nj is also split into the two RS 
nodes: the left node with the range of (bj–1, uin) and the 
right node with the range of (uin, bj). The left node has the 
±DQSet of Nj, and the right node keeps Qin in its –DQSet.

When a query Qout whose range is (lout, uout) is 
deregistered, BMQ-Index first locates the RS node, Ni
whose lower bound is equal to lout, and removes Qout from 
the +DQSeti. If both +DQSeti and –DQSeti are empty, Ni
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is merged with Ni–1. Second, BMQ-Index locates the RS 
node, Nj whose lower bound is uout, and removes Qout from 
–DQSetj. If both +DQSetj and –DQSetj are empty, Nj is 
merged with Nj–1.

3.3. Incremental search algorithm 
In BMQ-Index, differential query sets are efficiently 

retrieved from delta query sets. Given two consecutive 
data values, vt-1 and vt, let vt-1 fall in the range of an RS 
node Nj and vt fall in that of Nh, i.e., bj-1 ≤ vt-1 < bj and bh-1

≤ vt < bh. While visiting from Nj to Nh, two differential 
query sets, QSet+ and QSet−  are evaluated as follows. 

If j < h, QSet+ = [ h
ji 1+=

+DQSeti] − [ h
ji 1+=

−DQSeti]

             QSet− = [ h
ji 1+=

−DQSeti] − [ h
ji 1+=

+DQSeti]

If j > h, QSet+ = [ 1+
=

h
ji
−DQSeti] − [ 1+

=
h

ji
+DQSeti]

             QSet− = [ 1+
=

h
ji
+DQSeti] − [ 1+

=
h

ji
−DQSeti]

If j = h, QSet+ = QSet− = φ

The evaluation of QSet+ and QSet− depends on the 
relative order between Nj and Nh.  If j < h, QSet+ has all 
queries in the union of +DQSeti excluding the queries in 
the union of −DQSeti where i takes the values from j+1 to 
h. Similarly, QSet− is calculated by subtracting the union 
of +DQSeti from the union of −DQSeti. On the other hand, 
if j > h, +DQSeti and −DQSeti are switched while i takes 
the values from j to h + 1. There is no differential query if 
j = h. (See Appendix A.2 of [9] for the proof). 

Figure 2 shows the examples of our incremental search 
algorithm. Assume that the previous data value vt-1 was 
located in N5. If the current data value vt is located in N8,
 ±DQSet are retrieved while visiting from N6 to N8. Thus, 
QSet+ = {Q5} and QSet− = {Q2, Q4}. If vt is located N2,
±DQSet are retrieved during node visits from N5 to N3.
Thus, QSet+ = {Q3, Q1} and QSet− = {Q4}.  

3.4. Analysis of search and storage cost

The search cost of BMQ-Index can be represented as 
the total number of retrieved delta queries. The average 
number of retrieved delta queries U is determined by two 
factors. First, U is proportional to the average distance 
between two consecutive data values. As the distance 
increases, more RS node visits are required to locate a 
new matching node, thereby increasing the number of 
retrieved delta queries. We define Fluctuation Level (FL)
as the average distance normalized with respect to the 
domain size. 

sizeDomain
1

1sizeDomain
distanceAverage 2

1

×
−

−
==

∑
=

−

M

XX
FL

M

i
ii

(Xi is ith data value and M is the total number of data tuples) 

Second, U is proportional to the average density of 
delta queries in an RS list. As the density increases, more 
delta queries are retrieved even with the same FL. The 
average density of delta queries in an RS-list can be 
approximated as (2 × Nq / Domain size), where Nq is the 
number of BMQs. It is because each query ID is inserted 
only twice into an RS list. Thus, the average search cost 
of BMQ-Index can be formulated as Θ(2 × Nq × FL). 

The storage cost of BMQ-Index is decided by the sizes 
of an RS list and a stream table. The size of the RS list is 
Θ(2Nq) since each query is inserted once into +DQSet and 
−DQSet, respectively. The size of the stream table is 
proportional to the number of input data streams, Nd.
Consequently, the total storage cost of BMQ-Index is 
Θ(2Nq + Nd). 

4. Multi-dimensional BMQ-Index 

We design multi-dimensional BMQ-Index by directly 
extending one-dimensional BMQ-Index. N-dimensional 
BMQ-Index stores delta query information in N different 
RS lists. Each RS list contains borders and delta queries 
for one of N dimensions. Upon a data arrival, all RS lists 
are searched in order to obtain differential query sets per 
dimension. We develop an efficient cross-check algorithm, 
which validates queries in the per-dimension differential 
query sets to identify a final result. 

Our solution approach has three advantages. First, it 
has significantly low storage cost. It is because a query is 
not repeatedly saved in an N-dimensional region but 
saved only a few times in N one-dimensional RS lists. 
Note that a query is saved only twice in an RS list.  
Second, it has an high search performance. As shown in 
Section 4.4, the search algorithm including the cross-
check requires only NN )1( −  times of search time for 
one-dimensional BMQ-Index. For the two-dimensional 
index, only 2 times as much search time as the one-
dimensional index is needed. Finally, multi-dimensional 
BMQ-Index can be easily implemented due to the 
simplicity of the index structure and its access algorithms. 

In the rest of this section, we present two-dimensional 
BMQ-Index to simplify the explanation. 

4.1 Index structure 

Two-dimensional BMQ-Index consists of following 
data structures: two RS lists (an RS-X list and RS-Y list), 
a stream table, and a query table. Figure 3 shows an 
example of the index with three registered queries. The 
RS-X list is a list of region segments that together 
comprise the range of an X-dimension, <RS-X1, RS-X2, …, 
RS-Xn>. Each region segment RS-Xi maintains lower and 
upper bounds of the region and ±DQSet for the X-
dimension. The RS-Y list maintains the information for a 
Y-dimension similar to the RS-X list. 
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Range

Q3

Q2

Q1

QueryID

Query Table

Figure 3. Two-dimension BMQ-Index 

In a two-dimensional case, each entry of the stream 
table has two pointers, Px and Py, pointing RS-Xi which 
contains the current X-dimension value of the stream, and 
RS-Yi, which contains the current Y-dimension value of 
the stream. Also, current data value is saved for the next 
search operation. The stream table entry is updated upon 
an arrival of a new data tuple for each data stream. The 
query table, which is hashed with query ID, saves borders 
of queries; it is required for the cross-check algorithm. 

4.2 Query registration and deregistration 

Two-dimensional BMQ-Index also supports dynamic 
query registration and deregistration. Upon a query 
registration and deregistration, an X-dimension predicate 
and Y-dimension predicate of a query are separately 
processed. Consider a query Qn, whose range is (xl, xu, yl,
yu). When registering Qn to the index, an X-dimension 
predicate, (xl, xu), is registered in the RS-X list and an Y-
dimension predicate, (yl, yu), is registered in the RS-Y list. 
It is done by the one-dimensional query registration 
method. Also, Qn is added to the query table. 
Deregistration of Qn is similarly processed using one-
dimensional deregistration method. 

4.3 Search algorithm 

Upon an arrival of a data value, two-dimensional BMQ-
Index is searched to obtain QSet+ and QSet−. Figure 4 
shows overall flow of the search algorithm. The first step 
of the algorithm is to calculate differential query sets for 
each dimension: ±XQSet and ±YQSet. This is simply done 
by applying one-dimensional incremental search 
algorithm on the RS-X list and RS-Y list. 

RS-X list.search()

(xc, yc)

RS-Y list.search()

XQSet

YQSet

cross-check
with Y-dimension

cross-check
with X-dimension

Union

xc

yc YBMQSet

XBMQSet

QSet

RS-X list.search()

(xc, yc)

RS-Y list.search()

XQSet

YQSet

cross-check
with Y-dimension

cross-check
with X-dimension

Union

xc

yc YBMQSet

XBMQSet

QSet

Per-dimension
search

Validation through
cross-check

Union of 
per-dimension

results

Figure 4. Flow of a search algorithm 

/* Cross-check algorithm to validate queries in ±XQSet and ±YQSet */ 
/* Input : stream si’s data tuple with value of (vXc, vYc)              */ 

/* Initialize the result sets */ 
±XBMQSet= {} and ±YBMQSet = {}; 

/* Validate ±XQSet through cross-check with Y-dimension */ 
For each element Qi of +XQSet 
    Get Qi’s Y-dimension predicate, (Qi_yl, Qi_yh), from the query table 
    If(Qi_yl <vYc< Qi_yh)  +XBMQSet  Qi 

Obtain si’s previous data value, (vXp, vYp), using the stream table 
For each element Qi of –XQSet 
    Get Qi’s Y-dimension predicate, (Qi_yl, Qi_yh), from the query table 
    If(Qi_yl <vYp< Qi_yh)  -XBMQSet  Qi 

/* Validate ±YQSet through cross-check with X-dimension */ 
Cross-check queries in ±YQSet with X-dimension using above method; 

/* Output : ±XBMQSet and ±YBMQSet */ 

Figure 5. A cross-check algorithm 

The second step is to validate if all the borders of 
queries in ±XQSet and ±YQSet are indeed crossed by the 
data value. The validation is required because those 
queries may not satisfy the condition for other dimension. 
For the validation, we developed an efficient cross-check 
algorithm described in Figure 5. The cross-check 
algorithm examines borders of unchecked dimensions of 
the queries in per-dimension differential query sets. For 
example, if a query Qi belongs to +XQSet, the cross-
check algorithm checks if the data value actually crosses 
the Y-dimension border of Qi. A cross-check method for 
+XQSet(+YQSet) is different from that for –XQSet(–
YQSet). For a query in +XQSet, it is checked if a newly 
arrived data value is located between the Y-dimension 
borders of the query. On the other hand, for a query in –
XQSet, it is checked if the previous value of the stream 
was located between the Y-dimension borders. 

Through the cross-check, the verified result BMQ sets, 
±XBMQSet and ±YBMQSet, are obtained. Finally, QSet+

is calculated as a union of +XBMQSet and +YBMQSet.
QSet− is also calculated similarly. 

4.4. Analysis of search and storage cost 
The search performance of multi-dimensional BMQ-

Index is determined by the cost of RS node visits and the 
cost of the cross-check. The total number of RS node 
visits on multiple RS lists is decided by the sum of 
projections of distance vector on each dimension. Under 
the assumption that the average distance is same as one-
dimensional case, the number of RS node visits becomes 
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d  times as many as that of one-dimensional BMQ-Index 
in maximum, where d is the number of dimensions. In the 
cross-check, d–1 times of comparison are performed for 
queries in per-dimension differential query sets, since 
predicates for all other dimensions should be checked. 
Therefore, the required search cost is dd )1( −  times as 
much as that of one-dimensional BMQ-index, thereby 
being   Θ( FLNdd q ××− 2)1( ), where Nq is the number of 
BMQs.  

The storage consumption is decided by the sizes of RS 
lists, a stream table and a query table. Since there is an RS 
list per dimension and the stream table has an RS node 
pointer per dimension, the storage size for the RS lists and 
the stream table is d times as large as that of one- 
dimensional BMQ-Index. Additionally, multi-
dimensional BMQ-Index maintains a query table, thus the 
storage cost of multi-dimensional BMQ-Index is Θ(d(2Nq
+ Nd) + Nq), where Nd is the number of input data streams. 

5. Experiments 

In this section, we present our experimental results and 
discuss the performance of BMQ-Index. Due to the page 
limitation, we only present the result for one-dimensional 
BMQ-Index which is enough to show the effectiveness of 
BMQ-Index. Interested readers can find the preliminary 
result for multi-dimensional BMQ-Index in [10].  

We first explain how data streams and queries are 
generated as a workload. Next, we compare the search 
performance and storage cost of BMQ-Index with a 
mechanism based on query indices for RMQ evaluation, 
namely DiffRMQ. DiffRMQ derives differential query 
sets via two steps. It first retrieves consecutive matching 
query sets for previous and current data values. Then, it 
performs a set difference operation on them to remove the 
queries containing both data values. The state-of-the-art 
query indices, i.e., CEI [17] and IS-list [4], are used for 
DiffRMQ. The experiments are conducted using a 
machine equipped with P-III 1GHz CPU, 512MB RAM, 
and Linux 2.4. 

5.1. Stream and query generation 

5.1.1. Stream generation. As an experimental scenario, 
we consider the financial trading which is described in 
section 2.1. Based on the real observation on Korean 
stock market (see details in [9]), we synthetically generate 
stock price streams. We consider that FL varies from 
0.01% to 0.1%, which are derived from the real traces. 
We use multiple stream sources as an input; the number 
of stream sources is 2,000 and each stream contains 1,000 
data tuples, respectively. 

5.1.2. Query generation. Queries specify the ranges of 
stock prices. The lower bounds of query ranges are 
randomly chosen between 1 and D – 1, where D is fixed 

to 1,000,000 which is the maximum price of most Korean 
stocks [7]. In practice, the width of query W is usually 
larger than FL. Thus, we regard that W is 1 ~ 10 times 
larger than FL. W is also normalized with respect to the 
domain size. Finally, the number of queries N varies from 
10,000 to 100,000. 

5.2. Comparison with alternative approaches 

5.2.1. Average search time. In this experiment, we 
compare the search performance of BMQ-Index with that 
of DiffRMQ. For intuitive comparison, we first measure 
the Search Efficiency (SE) which is defined as follows. 

∑

∑

=

== M

i

M

iSE

1

1

resultteintermediaofsize

resultfinalofsize

(M is the total number of input data tuples) 
In BMQ-Index, the size of intermediate result is the 

total number of accessed delta queries during an 
evaluation. In DiffRMQ, it is the number of accessed 
matching queries. In both cases, the size of final result is 
the total number of differential queries after the 
evaluation. Then, we measure average search time to 
show practical search performance. We measure SE and 
search time while varying three parameters: the number of 
queries N, the width of queries W and fluctuation level FL.

First, we vary N from 10,000 to 100,000. W and FL 
are fixed to 0.1% and 0.01%, respectively. Figure 6 shows 
SE and average search time as a function of the number of 
queries. The SE of BMQ-Index is 100% regardless of the 
number of queries and much higher than the SE of 
DiffRMQ. In DiffRMQ, consecutive matching query sets 
are likely to much overlap due to the locality of data 
stream. Thus, many irrelevant queries are accessed to 
obtain only a few differential queries. Consequently, the 
search time of DiffRMQ is significantly higher than that 
of BMQ-Index. The slight increase in the search time of 
BMQ-Index mainly comes from the increase in the final 
result size as the number of registered queries increases. 

Second, we vary W from 0.01% to 0.1%. N and FL are 
fixed to 100,000 and 0.01%, respectively. Figure 7 shows 
the results. As the width of queries increases, the SE of 
DiffRMQ rapidly decreases, whereas that of BMQ-Index 
remains almost 100%. It is because the size of 
intermediate result of DiffRMQ increases as the width of 
queries increases. However, that of BMQ-Index is not 
affected by the width of queries. Note that the size of final 
result does not change in both cases. Therefore, as the 
width of queries increases, the search time of DiffRMQ 
increases significantly, and that of BMQ-Index is kept as 
a constant. 
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Figure 6. Effect of the number of queries (W=0.1%, FL=0.01%)
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Figure 7. Effect of the widths of queries (N=100000, FL=0.01%)
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Figure 8. Effect of the Fluctuation Level (N=100000, W=0.1%)

Finally, we vary FL from 0.01% to 0.1%. N and W are 
fixed to 100,000 and 0.1% respectively. As FL increases, 
the size of intermediate result of BMQ-Index increases 
while that of DiffRMQ does not change. Also, the size of 
final result increases in both cases as FL increases. Thus, 
the SE of BMQ-Index decreases slowly while that of 
DiffRMQ increases rapidly as shown in Figure 8 (a).  

Interestingly, the SE of BMQ-Index is higher than that 
of DiffRMQ as long as FL is smaller than W. 
Consequently, the search time of BMQ-Index is much 
smaller than that of DiffRMQ when FL is smaller than W. 
Note that W is relatively larger than FL in practice. If FL 
increases up to W, the search time of BMQ-Index is 
slightly larger than that of DiffRMQ due to additional 
cost for RS node traversals. 

5.2.2. Storage cost. In this experiment, we compare the 
storage cost of BMQ-Index with that of DiffRMQ. We 
measure the memory space taken by each query index. To 
identify the effect of N and W on the storage cost, we run 
two experiments. In the first experiment, we vary N from 
10,000 to 100,000 and fix W to 0.1%. In the second, we 
vary W from 0.01% to 0.1% and fix N to 100,000. 
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Figure 9. Storage cost 

Figure 9(a) shows the size of index storage as a 
function of the number of queries. BMQ-Index uses much 
less memory than two DiffRMQ approaches, especially 
than CEI-based DiffRMQ. In general, query indices for 
RMQ evaluation store queries redundantly. CEI stores a 
query into many grids covered by the range of query. 
Even tree-based query index, i.e., IS-list, stores a query 
log (the number of registered queries) times. In contrast, 
BMQ-Index stores a query only twice, thereby showing a 
lot better storage usage with the same number of queries. 

Figure 9(b) shows the size of index storage as a 
function of the width of queries. The storage cost of CEI-
based DiffRMQ increases rapidly as the widths of queries 
increase. In CEI, a query with a large width is repeatedly 
inserted in the grids overlapping the query range, 
resulting in high storage cost. The storage cost of IS-list-
based DiffRMQ is less affected by the width of queries 
because it has tree-based structure. However, BMQ-Index 
shows a constant storage usage regardless of the width of 
queries since it only stores two delta queries for a query 
registration. 

6. Related Work 
Semantic of BMQ: In the context of query languages for 
data streams, a concept of I-Stream and D-Stream 
operators has been proposed [1]. I-Stream operator 
retrieves the set of data tuples which are inserted into a 
Relation, and D-Stream operator retrieves the set of data 
tuples which are deleted from a Relation. They represent a 
general concept to transform a Relation to a Stream. On 
the other hand, the BMQ is a specific class of continuous 
range query, and it has useful meanings in practical 
stream-based applications as described in section 2.1. 

Shared and incremental processing: In the context of 
data stream processing, there have been extensive 
researches on evaluating a large number of continuous 
range queries. However, they concentrate on Region 
Monitoring Query (RMQ) rather than Border Monitoring 
Query (BMQ). 

Query indexing is widely used for shared evaluation of 
RMQs. We call it RMQ-Index. Upon each data arrival, 
matching queries are quickly determined by searching the 
query index. Existing RMQ-Index can be classified into 
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one-dimensional indices [2][4][5][14][17] and two-
dimensional indices [6][8][13][16]. For 1-D range queries, 
two different approaches are proposed: tree-based query 
indices [2][4][5][14] and a grid-based query index [17]. 
The tree-based indices have O(log N) search cost and O(N
log N) storage cost, where N is the number of registered 
queries. Compared to the tree-based indices, the grid-
based query index has better search performance. Those 
two approaches are also used to support 2-D range 
queries. 2-D grid-based indices [8][16] show much better 
search performance than the 2-D tree-based indices 
[6][13]. However, the grid-based indices require much 
more index storage since queries are redundantly inserted 
into many grids covered by query ranges. 

Due to the semantic difference between RMQ and 
BMQ, the existing RMQ-Indexs are generally not suitable 
for BMQs. Even though the RMQ-Index can be used for 
BMQ evaluation, it requires costly post-processing to 
identify only the data streams crossing the borders of the 
queries. Thus, the performance is considerably low 
compared to that of BMQ-Index which is designed 
primarily for efficient BMQ evaluation. 

In the context of spatio-temporal database, SINA [11] 
and GPAC [12] have been proposed for the incremental 
evaluation of RMQs. Similar to BMQ-Index, they 
compute only updates from the previously reported 
answer (positive and negative updates), thereby reducing 
the processing overhead of continuous reevaluation. 
However, GPAC is designed for an evaluation of one 
outstanding continuous query, not for shared processing 
of multiple queries. To achieve shared processing, SINA 
performs a spatial join between a set of objects and a set 
of queries. However, SINA adopts a disk-based algorithm 
so that SINA is difficult to be applied in data stream 
processing in which in-memory processing is essential. 
Furthermore, SINA is not a purely incremental access 
method. SINA stores the query information redundantly 
based on a grid index, rather than storing delta query 
information. Thus, complex invalidation as well as spatial 
join is required to retrieve the positive and negative 
updates. In contrast, BMQ-Index retrieves them with an 
incremental search operation. 

7. Conclusion 

In this paper, we first emphasize the importance and 
usefulness of BMQ. Then, we propose BMQ-Index, 
which evaluates a large number of BMQs efficiently in a 
shared and incremental manner. We demonstrate the 
excellent search performance and low storage cost of 
BMQ-Index through analysis and experiments. Currently, 
we are extending BMQ-Index to support aggregation and 
join operation and developing a specialized system for 
border monitoring services. 
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