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Abstract 

This paper reports the discovery of a new type of singularity 
that is as signijlcant as other singularities like kinematic 
singularity, algorithmic singularity, and semi-singularity. This 
singularity, named semi algorithmic singularity(SAS), occurs 
when a redundant manipulator, faced with inequality constraints 
arising from kinematic limits such as joint angle limits and 
obstacles, proceeds to conduct opthimtion of a pe$omnce 
measure. 

Through mathematical analysis, we have proved its existence 
and proposed an analytic matrix function to identify its presence. 
In conjunction, we have exposed its relationship with the other 
singularities above. More specifically, SAS is similar to the 
algorithmic singularity in that it is an artificial singularity 
coming from an endeavor for pe$omnce optimization. They are 
different in that the former occurs in one direction - among 
maximization direction and minimization direction - in the C- 
space, whereas the latter occurs bidirectionally. Besides, we have 
also found an analogy in the real singularities that while the 
semi-singularity is unidirectional in the workspace, the kinematic 
singularity is bi-directional. Through a simulation for a three 
DOF planar manipulatos we have visualized the existence of 
SAS and its relationship with the other singularities. 

1. Introduction 

Our research commenced upon the discovery of a new type of 
singularity' in controlling redundant manipulators. To be more 
specific, while searching for the optimum joint paths of a seven- 
degree-of-freedom (DOF) manipulator within the steam 
generator of a nuclear power plant, we observed that at a 
particular joint configuration, the manipulator displayed 
undesirable behaviors such as either sudden stop or rapid self- 
motions [ 11. Upon examination, w e  were able to determine that 
this joint configuration did not conform to any existing 
singularities but was rather a totally new type of singularity. We 
have designated this singularity as semi algorithmic singularity 
(SAS), and have sought to determine its importance as well as its 
significance. The following portion will outline the basic 
foundations for our research. 

The discovery of singularities such as kinematic singularity 
(KS), algorithmic singularity (AS) and semi-singularity ( S S )  has 
been well documented. First, kinematic singularity, an 
indigenous characteristic of the manipulator itself, is a 

~ 

' In this paper, all joint configurations causing problems during 
operations by a redundant manipulator are classified as singular points or 
singulari ties. 

configuration where the end-effector is unable to generate 
velocity in both a particular direction and its opposite direction 
within the workspace [2,3]. And algorithmic singularity is a 
configuration where during the simultaneous conduction of end- 
effector movement and optimization of the performance measure, 
the main and secondary tasks become interlocked making 
simultaneous execution impossible [4,5]. And recently 
discovered semi-singularity, resulting from kinematic inequality 
constraints such as obstacles and joint angle limits, is a 
configuration where the end-effector is unable to generate 
velocity in a particular direction within the workspace, while still 
capable of generating velocity in the opposite direction [2,3]. 

As already known, when a redundant manipulator is subject to 
these kinds of singularities, the manipulator becomes prone to 
undesirable responses such as instability and rapid self-motions, 
which ultimately prevent it from functioning properly. 
Consequently, understanding these singularities is important, 
which explains why extensive research aimed at determining 
their locations through identification or avoiding them altogether 
has been conducted over the years [2-6,11,15,16]. 

However, the semi algorithmic singularity presented in this 
paper is of an entirely new type in that it occurs under 
circumstances totally different from the aforementioned 
singularities. SAS occurs in circumstances where both kinematic 
inequality constraints and optimization of a performance measure 
should be satisfied simultaneously. Owing to this characteristic, 
SAS is similar to algorithmic singularity in the sense that the 
main and secondary tasks of the redundant manipulator cannot be 
fulfilled simultaneously. However, SAS can be distinguished 
from algori-hnic singularity in the fact that it causes problems in 
only a single direction whether it be the maximization or 
minimization direction; whereas at algorithmic singularity 
problems occur in both directions regardless of the direction of 
optimization (maximization or minimization), 

The significance of our research lies in the fact that it reports 
the initial discovery of a new type of singularity, SAS, presents 
its physicallmathematical implications, and confirms that SAS 
possesses the same degree of importance as algorithmic 
singularity. In addition, our research confirms that relationships 
of SAS with algorithmic singularity are similar to those of semi- 
singularity with kinematic singularity. 

This paper is organized in the following order. Section 2 
presents simulation results on semi algorithmic singularity 
generated occurrences, and explains its physical significance. 
Section 3 presents the mathematical foundations for semi 
algorithmic singularity and the analytical function used for its 
identification. Section 4 reconfirms the existence of semi 
algorithmic singularity by analyzing its relation with other 
singularities. Finally, the conclusion is given in Section 5. 
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2. Observation Based on Simulation 

This section will try to utilize simulation results to effectively 
portray the singular behavior of a redundant manipulator 
occurring at semi algorithmic singularity. Semi algorithmic 
singularity was initially observed from simulations conducted on 
a spatial 7-DOF manipulator [l]. Visualizing those simulation 
results, however, proved to be a difficult task, since it requires a 
complex configuration space analysis. For this reason, we will 
conduct simulations using a planar 3-DOF manipulator, which is 
of the most widely used type in redundant manipulator 
simulations. 

I 
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Fig. 1: End-effector path of the manipulator for simulations 

As seen in Fig. 1, the manipulator used in the simulation has 
three links with respective length of 3.0, 2.5, 2.0 units; and its 
end-effector is supposed to trace a circular trajectory having the 
center at (4.735,O.OOO) units and the radius of 1.965 units as 
follows: 

1 4.735 - 1.965 COS (2x0 
-1.965sin(2nt) Xd 0) = 

The simulated manipulator is subject to the following 
kinematic inequality constraints due to the angle limitation of the 
second joint: 

(2) 
At the same time, the manipulator is made to optimize a 
performance measure, which is the well-known manipulability 
measure [7]: 

600 s e, I 2650 . 

me) = &Z%, (3) 
where J denotes the Jacobian matrix of the manipulator. 

Depending on the direction of optimization, there exists a sort 
of trade-off relationship for all performance measure results. In 
the case of manipulability measure, its maximization leads to 
kinematic singularity avoidance and an increase in motion 
capability. Whereas its minimization leads to a decrease in 
motion capability while a corresponding amount of force 
capability increases [7]. 

Subsequent simulations will be conducted to compare results 
when the performance measure optimization direction is either 
maximized or minimized. To this end, as their initial joint 
configurations, we have selected local maximum point < and 

local minimum point Pz respectively, as follows: 

Needless to say, the main task for both cases is to avoid joint 
angle limits while ensuring that the end-effector follows the 
circular trajectory (1). 

The control methods for this redundant manipulator need to be 
capable of simultaneously managing both kinematic inequality 
constraint conditions and performance measure optimization. 
Two of typical control methods that meet these requirements may 
be Sung's method [8] and the compact quadratic programming 
method (CQPM) [9]. Note that Sung's method may be regarded 
as a generalization for the extended Jacobian method (EJM) [4,5] 
that covers the case with kinematic inequality constraint 
conditions, whereas CQPM the same generalization for resolved 
motion rate control (RMRC) [lo]. Owing to space limitations, 
introduction of these methods have been omitted in this paper. 

Fig. 2 and 3 present the respective simulation results when 
applying Sung's method and the compact quadratic programming 
method to conduct main and secondary tasks simultaneously. The 
left and right columns for each figure show the results for cases 
of maximizing and minimizing the measure, respectively, while 
the upper and lower rows present joint angle trajectory and 
results of its projection onto a configuration space (C-space) 
0, -e, plane. To be more specific, the shaded regions in the 
lower rows represent impenetrable zones caused by joint angle 
limits while the dashed and dotted lines each represent self 
motion manifolds (SMM) [ l l ]  for workspace points P, and 
P, in Fig. 1. 

Observing the results for application of Sung's method in Fig. 
2, for maximization (left column), the manipulator proceeds from < and stops at P a .  For minimization (right column), the 

manipulator proceeds from pZ and passes the same 

configuration P, without experiencing any problems and 
accomplishes all objectives with repeatability. 

As for the application results of the compact quadratic 
programming method, they are similar to those of Sung's method 
as seen in Fig. 3. For maximization (left column), the 
manipulator proceeds from < , rapidly jumps at P, to a 
different configuration through self-motion, and did not retum to 
the original joint configuration, revealing the repeatability 
problem. In contrast, for minimization (right column), it passes 
the same configuration p, without experiencing any problems 
and accomplishes all objectives 

MaXimhation 

Fig. 2: Simulation results of Sung's method 
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Fig. 3: Simulation results of the CQPM 
Min. MCL 

hax. MCL 

Fig. 4: Conceptual figure for P, (SAS) on C-space 

In order to understand the phenomena occurring at joint 
configuration P, , we need to consider the physical 
characteristics surrounding the area along with analysis of the 
joint configuration itself. In Fig. 4, with the focus being 
configuration < , the maximum (thick solid lines) and 
minimum values (thin solid line), obtained from kinematic limits, 
self-motion manifolds, and simulation results, are marked in the 
C-space. These values are designated as maximum measure 
constraint loci (MCL) and minimum measure constraint loci [ 121, 
respectively, since the maximum and minimum values form a 
series of loci. From P, , there exists a max. MCL and min. MCL 
along the lower and upper boundary of the kinematic limit, 
respectively, while another min. MCL exists crossing the 
boundary of the kinematic limit. In other words, P, is the spot 
where the maximum and minimum solution loci meet one 
another. 

The main task of the manipulator, the end-effector movement, 
can be represented as the configuration change in the C-space, 
from one self-motion manifold to a different one within the joint 
angle limit. If the secondary objective is to maximize the 
performance measure, then we can no longer move the 
manipulator upwards to a different self-motion manifold from e .  However, if minimization is the objective, then P, does 
not become a problematic configuration. And if optimization of 
the performance measure is not considered, we can proceed to 
move the manipulator to another self-motion manifold from Po 
without encountering any problematic configurations. It can be 

said that these situations occur when performance measure 
optimization is conducted, and that, along the boundaries of 
kinematic limits, algorithmic singularity is evident only for a uni- 
direction of optimization. Because of this fact, P, is designated 
as a semi algorithmic singularity. 

Thus, semi algorithmic singularity displays unique 
characteristics different to other existing singularities. In order to 
further determine the cause of these characteristics, we generalize 
semi algorithmic singularity through its mathematical analysis. In 
the following section, we will present the necessary mathematical 
evidence. 

3. Mathematical Foundation 

In this section, we will present the mathematical foundations 
for semi algorithmic singularity and in the process obtain its 
identification measure. For this, we will briefly introduce the 
constrained optimization problem and the necessary condition for 
optimization. 

Based on the nonlinear optimization theory [13], the 
manipulator redundancy resolution problem with multiple 
subtasks has been formulated into the general problem of local 
constrained optimization under kinematic inequality constraints 
[8,9] as follows: 

maximize (or minimize) H ( 0 )  
subject to f(0) = x and g(0) S 0, (6) 

where f ( 0 )  denotes the m-dimensional kinematic function 

vector and g(0) denotes a g-dimensional vector for describing 
kinematic limits such as joint angle limits and obstacles. 

The general constrained optimization problem (6) has already 
been solved by using the necessary conditions in [13], which are 
briefly reviewed in this section through Theorem 1. Note that the 
theorem uses the Lagrangian function given as follows: 

where R and p denote m and p-dimensional Lagrange 
multiplier vectors, respectively. 
Theorem 1 (Kuhn-Tucker conditions or the necessary conditions 
for constrained maximization (or minimization)[l3]): Let 8' be 
a local maximum (or minimum) configuration for the problem 
(6) and suppose 0' is a non-singular configuration for the 
constraints. Then there exist a vector AZE S p  and a vector 
p~ sZp with p < ( o r  2)o suchthat 

vL(8') = V H ( 8 ' )  +ATVf(8*) +pTVg(8') = 0 E '%", (8) 

 ea,^) = w e ) + a T m + P T g ( e ) ,  (7) 

pTg(e') = o E % I ,  (9) 
where v(.) denotes $(.). 
Proof: see [ 131. 

Observing the simulation results in Section 2, semi algorithmic 
singularity occurs at the joint configuration where the direction 
of optimization changes after following the boundaries of 
kinematic limits. To be more. specific, Sung's method is an 
algorithm derived directly from the Kuhn-Tucker necessary 
condition [8]. And the fact that Sung's method ceases to function 
when encountering semi algorithmic singularity, indicates that 
the Kuhn-'hcker necessary condition is no longer satisfied once 
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it passes the spot of semi algorithmic singularity. In this section, 
we will seek to present the mathematical foundations of semi 
algorithmic singularity through the confirmation of the Kuhn- 
Tucker necessary condition in the situation mentioned above. 

The fact that an optimization value exists along a certain 
kinematic limit boundary indicates that the following set exists: 

(10) 

Here, Gi(8') denotes the i -th scalar element of vector 

g ( 8 ' ) .  Then, depending on whether it belongs to set B, 

G, (8') can be classified as either case GI (8') = 0 (i E B )  or 

case GI (8') < 0 (i 4. B )  . Next, pi , which denotes the i -th 
scalar element of the Lagrange multiplier vector p ,  can be 
classified as the following 4 cases using the Kuhn-Tucker 
necessary condition (9): & 1 = 0 , i 4 . B ] ,  i i ~ ~ = O , i ~ B l ,  
& i < O , i ~ B ] , a n d  &l>O, i eB] ,wh ich i s shownwel l in  
Fig. 5. Here, it is helpful to note that [p, = 0 ,  i E B] exists 
along the boundaries of the other 3 conditions: [PI = 0 , i 4 B]  , 
[pl < O , i ~ B J , a n d  [pi > O , ~ E B ] .  

By observing the Kuhn-Tucker necessary condition, we can 
detect that the signs of the Lagrange multiplier vector p , differ 
greatly according to the direction (maximization/ minimization) 
of optimization. In other words, according to the Kuhn-Tucker 
necessary condition, [PI I O ,  i E B ]  and [p, 2 0 ,  i E B ]  are 
the respective necessary conditions for maximization and 
minimization. And = 0 ,  i E B]  can become the necessary 
condition for both maximization and minimization. Therefore, it 
can be said that the maximum and minimum values diverge at 
configuration [pi = 0 ,  i E B ]  , and that this configuration is 
identical to the semi algorithmic singularity we discovered. 

B = { i I GI (8') = 0 } . 

Fig. 5: Conceptual figure for 4 cases of pi on C-space 

Now, using [pi = 0 ,  i E B ]  , we will obtain the sole analytic 

function of 8'.  First, g,  is defined as a vector with an 
element of Gi (i E B )  and p, is defied as a Lagrange vector 

related to g ,  and satisfying p f g ,  = 0. Then (8) is expressed 
as the following: 

When assuming transpose to both sides of the equation (ll),  the 
following is obtained: 

~ ~ + a ~ v f + p ; v g ,  = o .  (1 1) 

h + J T A + V g l p b  = 0 ,  (12) 

where h = (VH)T and J = V f  . And then by multiplying z , 
the null space matrix of J , to both sides of the equation (12) 
and by arranging the equation, we obtain the following 

Z V g t p ,  = -Zh (13) 
because of Z J T  = 0 . Then, by multiplying vg ,ZT to both 
sides of the equation (13), we obtain the following: 

Then p, is obtained as follows: 
Vg,ZTZVg,Tpb = -Vg,ZTZh.  (14) 

Here, we define a new matrix function, c,  = diagonal( p b ) .  
Then the following square matrix function can be finally 
obtained 

C,,(8') = diagonal(-(Vg,Z'ZVg,')-' V g , Z T Z h ) .  (16) 

Ultimately, the semi algorithmic singularity condition of 
Pi = 0 ,  i E B ]  is identical to the singular case of the matrix 

function c,(8') . Consequently, C,(O') denotes the 
analytic function for identifying the semi algorithmic singularity. 

If then, what is the relationship of semi algorithmic singularity 
with other singularities? We will address this issue in the 
following section by comparing its physical and mathematical 
significance. 

4. Relationships with Other Singularities 

In this section, we will examine the relationship of 
singularities other than semi algorithmic singularity such as 
kinematic singularity, semi-singularity, and algorithmic 
singularity. In order to visualize the respective characteristics of 
each, we will use a conceptual figure within C-space. The 
redundant manipulator deployed for this conceptual figure is the 
planar 3-DOF manipulator identical to the one used for 
simulation in Section 2. 

Self Motion Manifolds 

Fig. 6: kinematic singularity on C-space 

As shown in Fig. 6, kinematic singularity* is situated at the 
configuration where two or more self-motion manifolds 
intercross within C-space [ll].  Since it is possible from this 
configuration to change configurations in several directions while 

Kinematic singularity here means only intemal kinematic singularity. 
Extemal kinematic singularity is located at the boundary of the 
workspace and does not allow any self-motion, thus self-motion manifold 
are designated as a point in C-space. 

1982 



moving along a self-motion manifold, we can effectively avoid 
kinematic singularity by controlling self-motion [ 111. However, 
while this leads to an increase in the degree of freedom for self- 
motion occurring directly above kinematic singularity, it results 
in a decrease in a corresponding degree of freedom within the 
workspace [ 141. Consequently, particular bi-directional 
movement within the workspace is impossible to achieve from 
this configuration [2,3]. Kinematic singularity can be easily 
identified through the singularity of the Jacobian matrix [4], 
which is given as the following square matrix function. 

c, = J J ~  (17) 
Self Motion 

Min. MC:/// Manifolds 

Measure 

' \ '  
Fig. 7: Algorithmic singularity (AS) on C-space 

As illustrated in Fig. 7, algorithmic singularity always occurs 
at a point where a self-motion manifold is tangent to the measure 
constraint locus (MCL) [15,16]. In order to perform the main 
task, movement from one self-motion manifold to another must 
be accomplished, and for the secondary task, maintaining of the 
optimum value trajectory (MCL) is essential. However, 
simultaneous conduction of the main and secondary tasks 
becomes impossible beyond the point of contact where the 
measure constraint locus and self-motion manifold meet. This 
configuration can be defined as algorithmic singularity since an 
algorithm incurs it [15,16]. Algorithmic singularity can be 
identified by the following square matrix function [ 15,161. 

c, =v(zh)zr (18) 

Fig. 8: Semi-singul&ty ( S S )  on C-space 
As for the recently discovered semi-singularity, it possesses 

the same level of importance as kinematic singularity with the 
viewpoint of self-motion topology and global path planning [2,3]. 
Observing Fig. 8, semi-singularity always occurs at a point on 
the boundary of kinematic limits where a self-motion manifold is 
tangent to such a boundary [2,3]. While semi-singularity prevents 
end-effector movement in a particular direction within the 
workspace, this configuration enables movement in the opposite 
direction [2,3]. In other words, kinematic singularity is bi- 
directional whereas semi-singularity is uni-directional [2,3]. The 

term semi-singularity is derived from this characteristic, however, 
when considering its physical aspects, semi kinematic singularity 
should be a more accurate term. Determining the singularity of 
the following square matrix function can identify semi- 
singularit? [ 31. 

css = Vg,Z'ZVg,' (19) 
Fig. 9 explains the various joint configurations from which the 

4 types of singularities occur in the planar 3-DOF manipulator 
during simulation of Section 2. Analyzing the results, we can 
determine that these singularities are derived from the correlation 
among self-motion manifolds (thin solid line), kinematic limits 
(shaded region), maximum measure constraint loci (thick solid 
line), and minimum measure constraint loci (thick dashed line). 
The maximum and minimum measure constraint loci in Fig. 9 are 
obtained by using the respective necessary and sufficient 
conditions [13] for maximization and minimization, respectively. 
We can observe that at the borders of the maximum and 
minimum solution loci, there exist 3 kinematic singularities 
(filled circles), 4 semi-singularities (blank circles), 8 algorithmic 
singularities (filled squares), and 8 semi algorithmic singularities 
(blank squares). To be more specific, while following the 
maximum (or minimum) measure constraint loci, there is bound 
to exist one of the 4 types of singularities at the spot where 
further compliance to the maximum (or minimum) solutions is 
no longer possible. Therefore, upon encountering any one of the 
4 types of singularities mentioned above when using a redundant 
manipulator, under optimum control conditions, to track 
maximum (minimum) solutions, the manipulator ceases to follow 
the maximum (minimum) solutions and depending on the control 
methods, experiences singular behaviors such as break-down, 
rapid self-motion and sudden stop. 

- ........ 
singularity manifold max. MCL min. MCL 

0 (KS) 0 (SS) (AS) 0 (SAS) 
Fig. 9: Locations of singularities of the simulated manipulator on 

C-space 
It is noteworthy that each and all of the 4 types of singularities, 

Semi-singularity includes both smooth tangency case and non-smooth 
tangency case. Without loss of generality, in this paper, we consider only 
smooth tangency case. 
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kinematic singularity, semi-singularity, algorithmic singularity 
and semi algorithmic singularity, occurred under different 
circumstances. In cases where only the kinematic equation - the 
equality constraint - is considered, there exists only kinematic 
singularity. If we include performance optimization along with 
the kinematic equation, then algorithmic singularity occurs in 
addition to kinematic singularity. Also, if kinematic limits - 
kinematic inequality constraints - exist without any performance 
optimization, only semi-singularity occurs in addition to 
kinematic singularity. Finally, if both kinematic inequality 
constraints and performance optimization are considered 
simultaneously, then all the types of singularities (KS, SS, AS, 
and SAS) become present. It is also noteworthy that SAS occurs 
only when we have all the three circumstances together: 
kinematic equation, kinematic limit and performance 
optimization. In our opinion, it is for this reason that semi 
algorithmic singularity was the last singularity to be discovered. 

In addition to these facts, kinematic singularity and semi- 
singularity are caused by mechanical kinematics and may be 
classified as real singularity. In contrast, algorithmic singularity 
and semi algorithmic singularity are caused by performance 
measure optimization and thus may be categorized as artificial 
singularity. Also, since kinematic singularity and algorithmic 
singularity are caused solely by equality constraints, they are bi- 
directional, whereas semi-singularity and semi algorithmic 
singularity, being caused by inequality constraints, become uni- 
directional. This relationship is illustrated in Table 1. Of course, 
directionality for kinematic singularity and semi-singularity 
implies to the direction in the workspace, whereas directionality 
for algorithmic singularity and semi algorithmic singularity 
implies to direction of optimization (mdmin) .  However, it 
appears a natural analogy that as there exists semi-singularity 
possessing properties of reality and uni-directionality, so exists 
semi algorithmic singularity having properties of artificiality and 
uni-directionality. 

Table 1: Properties of Singularities 
I I vi-directional I uni-directional I 

artificial singularity 

I realsingularitv I KS I SS(=SKS) I 
AS SAS 

5. Conclusion 

The objective of this paper was to report a new type of 
singularity, semi algorithmic singularity, during control of a 
redundant manipulator, and to explain the importance and 
significance of this new discovery. Semi algorithmic singularity 
occurs when a redundant manipulator, faced with inequality 
constraints arising from kinematic limits such as joint angle 
limits and obstacles, proceeds to conduct optimization of a 
performance measure. 

Through simulation results for a planar 3-axis manipulator and 
mathematical analysis, the existence of SAS was reconfirmed. In 
addition, as the result of mathematical analysis, an analytic 
matrix function has been proposed to identify its presence. 

Furthermore, we have investigated its relationship with other 

singularities such as kinematic singularity, algorithmic singularity, 
and semi singularity. As a result, we have shown that just as 
semi-singularity is derived from kinematic singularity, so was 
SAS from algorithmic singularity. In other words, we conf i ied  
that natural analogy played a role in the existence of singularities. 

In conclusion, through this paper, we were able to analyze all 
types of singularities occurring when optimal control of a 
redundant manipulator was being conducted. We believe that this 
knowledge can contribute to the optimal control of various types 
of redundant manipulators. 

References 
[l] K.C. Park, P.H. Chang, and J.K. Salisbury, “A Unified 

Approach for Local Resolution of Kinematic Redundancy 
with Inequality Constraints and Its Application to Nuclear 
Power Plant,” in Proc. IEEE ICRA, pp.766-773, 1997. 

[2] C.L. Luck and S. Lee, “Self-Motion Topology for 
Redundant Manipulators with Joint Limits,” in Proc. IEEE 

[3] C.L. Luck and S. Lee, “Redundant Manipulators under 
Kinematic Constraints: A Topology-Based Kinematic Map 
Generation and Discretization,” in Proc. IEEE ICRA, pp.1-6, 
1995. 

[4] J. Bailieul, “Kinematic Programming Altematives for 
Redundant Manipulators,” Proc. IEEE Int. Conf Robotics 
andAutomation, pp. 722-728, 1985. 

[5] J. Bailieul, “Avoiding Obstacles and Resolving Kinematic 
Redundancy,” Pmc. IEEE Int. Conj Robotics and 
Automation, pp. 1698-1704, 1986. 

161 D.N. Nenchev, “Redundancy Resolution through Local 
Optimization: A Review,” J. Robotic Systems, ~01.6, 110.6, 

[7] T. Yoshikawa, “Manipulability of Robotic Mechanism,” Int. 
J. Robotics Res. voI.4, n0.2, pp.3-9, 1985 

[SI Y.W. Sung, D.K. Cho, and M.J. Chung, “A Constrained 
Optimization Approach to Resolving Manipulator 
Redundancy,” J. Robotic Systems, ~01.13, no.5, pp.275-288, 
1996. 

[9] E-T. Cheng, T.-H. Chen, and Y.-Y. Sun, “Resolving 
Manipulator Redundancy Under Inequality Constraints,” 
IEEE Trans. Robotics Automat., vol.10, no.1, pp.65-71, Feb. 
1994. 

[lo] D.E. Whitney, “Resolved Motion Rate Control of 
Manipulators and Human Prosthesis,” IEEE Trans. Man- 
Machine Systems, vol.MMS-10, no.2, pp.47-53, 1969. 

[ I l l  J.W. Burdick, “On the Inverse Kinematics of Redundant 
Manipulators: Characterizations of the Self-Motion 
Manifold,” in Proc. IEEE ICRA, pp. 264-270, 1989. 

[12] B.W. Choi, J.H. Won, &d M.J. Chung, “Manipulability 
Constraint Locus for a Redundant Manipulator,” in Pmc. 

[13] D.G Luenberger, Linear and Nonlinear Programming, Znd 
ed. Addison-Wesley Publishing Company, 1984. 

[I41 Y. Nakamura, Advanced Robotics: Redundancy and 
Optimization, Addison-Wesley Publishing Company, 1991. 

[15] D.K. Cho, B.W. Choi, and M.J. Chung, “Optimal 
Conditions for Inverse Kinematics of a Robot manipulator 
with redundancy,” Robotica, vo1.13, pp.95-101, 1995. 

[16] J. Park, W.-K. Chung, and Y. Youm, “Characteristics of 
Optimal Solutions in Kinematic Resolutions of Redundancy,” 
IEEE Trans. R &A, vo1.12, no.3, pp.471-478, 1996. 

ICRA, pp.626-631, 1993. 

pp.769-798,1989. 

IEEE/RSJ IROS, pp.167-172,1991. 

1984 


